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Abstract

Reconstructing human-object interaction in 3D from a
single RGB image is a challenging task and existing data
driven methods do not generalize beyond the objects present
in the carefully curated 3D interaction datasets. Captur-
ing large-scale real data to learn strong interaction and
3D shape priors is very expensive due to the combinato-
rial nature of human-object interactions. In this paper, we
propose ProciGen (Procedural interaction Generation), a
method to procedurally generate datasets with both, plau-
sible interaction and diverse object variation. We gener-
ate 1M+ human-object interaction pairs in 3D and lever-
age this large-scale data to train our HDM (Hierarchical
Diffusion Model), a novel method to reconstruct interact-
ing human and unseen object instances, without any tem-
plates. Our HDM is an image-conditioned diffusion model
that learns both realistic interaction and highly accurate
human and object shapes. Experiments show that our HDM
trained with ProciGen significantly outperforms prior meth-
ods that require template meshes, and our dataset allows
training methods with strong generalization ability to un-
seen object instances. Our code and data are released.

1. Introduction

Modelling interactions between humans and their surround-
ings is important for applications like creating realistic
avatars, robotic control and gaming. In this paper, we ad-
dress the task of jointly reconstructing human and object
from a monocular RGB image, without any prior object
templates. This is very challenging due to depth-scale am-
biguity, occlusions, diverse human pose and object shape
variations. Data-driven methods have shown great progress
in reconstructing humans [31, 41, 46, 69–71, 85] or ob-
jects [55, 112] from monocular inputs thanks to large-scale
datasets [1, 9, 12, 19, 37, 63, 94, 108]. However, meth-
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Figure 1. Given a single RGB image, our method trained only on
our proposed synthetic interaction dataset, can reconstruct the hu-
man, object and contacts, without any predefined template meshes.

ods for joint interaction reconstruction are still constrained
by the amount of available data. Recent datasets like BE-
HAVE [7], InterCap [35] capture real interactions with 10
to 20 different objects, which is far away from the number
of objects in reality: the chair category from ShapeNet [12]
alone has more than 6k different shapes. Training on these
real datasets has limited generalization ability to unseen ob-
jects (Sec. 4.3). Capturing real interaction data with more
objects is prohibitively expensive due to the combinatorial
nature: the number of humans times the number of objects
leads to a huge number of variations. This motivates us to
generate synthetic data which has been shown effective for
pre-training reconstruction methods [9, 29, 55, 63, 70].

Synthesizing realistic interaction for different objects is
non-trivial due to variations of object topology, geometry
details and complex interaction patterns. To address this,
we propose ProciGen: Procedural interaction Generation,
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a method to generate interaction data with diverse object
shapes. We design our method based on the key idea that
the way humans interact with objects of the same category
is similar. And despite the geometry variations, one can still
establish semantically meaningful correspondence between
different objects. More specifically, we train an autoencoder
to obtain correspondences between different objects from
the same category, which are then used to transfer contacts
from already captured human-object interactions to new ob-
ject instances. Our method is scalable and allows the multi-
plicative combination of datasets to generate over a million
interactions with more than 21k different object instances,
which is not possible via real data capture.

Current reconstruction methods [7, 60, 95, 96] are not
only bottle-necked by data. Template-based methods [7,
95, 96] cannot generalize to unseen objects as they are
trained only for specific object templates. Template free
methods like PC2 [60] cannot separate human and object,
and have limited shape accuracy. See Tab. 1 for detailed
comparison. To alleviate these issues, we propose HDM:
Hierarchical Diffusion Model, that predicts accurate shapes
and reasons about human-object semantics without using
templates. Our key idea is to decompose the combinatorial
interaction space into separate human and object sub-spaces
while preserving the interaction context. We first use a dif-
fusion model to jointly predict human, object and segmenta-
tion labels, and then use two separate diffusion models with
cross attention that further refine the separate predictions.

We evaluate our data generation method ProciGen, and
model HDM, on BEHAVE [7] and InterCap [35]. Experi-
ments show that HDM with ProciGen significantly outper-
forms CHORE [95] (which requires object templates) and
PC2 [60]. Our ProciGen dataset also significantly boosts
the performance of PC2 and HDM. Methods trained on our
synthetic ProciGen dataset show strong generalization abil-
ity to real images even though the objects are unseen.

In summary, our key contributions are:
• We introduce the first procedural interaction generation

method for synthesizing large-scale interaction data with
diverse objects. With this, we generate 1M+ interaction
images with 21k+ objects paired with 3D ground truth.

• We propose a hierarchical diffusion model that can faith-
fully reconstruct human and object shapes from monocu-
lar RGB images without relying on template shapes.

• Our dataset and code are publicly released.

2. Related Work
Interaction Capture. Modelling 3D interactions has been
an emerging research field in recent years, with works that
model hand-object interaction from RGB [17, 22, 29, 42,
102], RGBD [10, 11, 26] or 3D [42, 80, 83, 114, 116] in-
put, or predict contacts from RGB images [14, 34, 86] and
works that model human-scene interaction from single im-

Method No-template Shape acc. General. Semantic
CHORE X ✓∗ X ✓

PC2 ✓ X X X
PC2 + Our ProciGen ✓ X ✓ X

Ours ✓ ✓ ✓ ✓

Table 1. Comparison of different reconstruction methods.
CHORE [95] reconstructs high shape fidelity with known template
meshes but does not generalize to new object instances. PC2 [60]
is template-free but its shape predictions lack fidelity and gener-
alization ability is constrained by existing datasets. Training PC2

with our ProciGen dataset allows better generalization but it can-
not reason contacts. Our proposed data generation together with
our hierarchical diffusion model can predict accurate shapes, gen-
eralize to unseen objects and reason about interaction semantics.

age [8, 28, 47, 74, 101] or video [24, 105]. A recent line
of works model full body interacting with dynamic large
objects [25, 27, 39, 40, 44, 53, 64, 78, 91, 100, 113]. BE-
HAVE [7] and follow up works [35, 109] capture interac-
tion datasets, which allow training and benchmarking meth-
ods [97] for reconstructing 3D human-object from single
RGB images [90, 95, 110] or videos [96]. Despite impres-
sive results, they require predefined mesh templates, which
limits applicability to new objects. Our method is template-
free and generalizes well to unseen objects.

Synthetic Datasets are powerful resources to deep net-
works. For humans, synthetic rendering of 3D scans [1, 4,
63, 84, 103] are used extensively to train human reconstruc-
tion methods [5, 6, 18, 70, 71, 81, 98, 99]. Recent work
BEDLAM [9] showed that training purely on synthetic
datasets [9, 63] allows strong generalization. Orthogonal
to these, large scale 3D object CAD model datasets [12, 94]
are also used to pretrain backbone models[38, 51, 62, 107].
Other works [20, 23, 67, 93] consider generating diverse
scenes. While being useful for humans, objects or scenes
respectively, they do not consider interactions. Our pro-
posed approach can generate millions of interactions with
diverse object shapes, allowing for training interaction re-
construction models with great generalization ability.

Diffusion-based Reconstruction. Diffusion models
[32, 76] have been shown powerful for 3D reconstruction of
human [36, 48] and objects [55, 60, 72]. These works distil
pretrained 2D diffusion model [36, 48, 59, 65, 72, 104, 118]
or fine-tune diffusion model [54, 55, 73] for 3D recon-
struction from images. Recent works also propose image-
conditioned point diffusion models for reconstruction [60,
87]. Despite remarkable results, they only model the dis-
tribution of single shapes, while our method can learn the
complex interaction space with high shape fidelity.

3. Method

We first introduce our method to generate large amounts of
interaction data with diverse object shapes in Sec. 3.1. This
data allows us to train our novel diffusion model with strong
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Figure 2. Our procedural interaction generation method. Given a seed interaction and a new object from the same category (A), we use a
network to compute dense correspondences (B, Sec. 3.1.1), which allows us to transfer contacts and initialize the new object (C, Sec. 3.1.2).
We further optimize the human and object poses to avoid interpenetration while satisfying the transferred contacts (D, Sec. 3.1.3). We then
add clothing and textures to render images, leading to a large interaction dataset with diverse object shapes (E, Sec. 3.1.4).

generalization ability, which is explained in Sec. 3.2.

3.1. ProciGen: Procedural Interaction Generation

Given a small seed dataset of captured human-object inter-
actions and datasets of various object models, we aim to
generate a large-scale interaction dataset with diverse object
shapes. Via multiplicative scaling, it would allow generat-
ing enormous data which is not possible by capturing real
data. This is however non-trivial as object geometry varies
strongly even within one category. Therefore, we propose
a procedural method based on the key observation that hu-
mans interact similarly with objects of the same category.
By transferring contacts from captured interactions to new
object instances, we procedurally scale up the shape varia-
tions of real interaction datasets. The task involves solving
four different sub-problems, as outlined in Fig. 2:
1. Establishing dense semantic correspondences be-

tween all objects within one category (Sec. 3.1.1).
2. Transferring contacts from real to synthetic objects, us-

ing the obtained correspondences (Sec. 3.1.2).
3. Jointly optimizing human and object to the newly ob-

tained contacts under a set of constraints (Sec. 3.1.3).
4. Rendering novel intersection pairs with textures to

make them available as training data (Sec. 3.1.4).

3.1.1 Dense Semantic Correspondence

Given two meshes M and M′ of two different objects of
the same category, the problem of finding dense correspon-
dence amounts to finding a bijective map ψ : M → M′,
which maps points from one mesh to their semantic counter-
parts on the other. In cases of arbitrary meshes with chang-
ing topology, this problem is heavily ill-posed [3, 21, 79].
Thus, we turn to an approximate solution on discrete surface
samples that leverages the regularization and output order-
ing of MLPs[50] and works well on a wide range of input
topologies in practice.

Let {Mi}Mi=1 be a dataset of meshes from the same
object category and Pi ∈ RN×3 a point cloud sam-
pled from the surface of Mi. We train an autoencoder
f : RN×3 7→ RN×3 on {Pi}Mi=1 to minimize the Chamfer
distance between predicted and input point clouds. The net-
work f consists of a PointNet [66] encoder and a three-layer
MLP decoder that takes unordered points as input and out-
put ordered points. We found that the MLP decoder learns
to reconstruct the objects as a mixture of low-rank point ba-
sis vectors, thus it automatically provides dense correspon-
dence across objects through the order in the output, as also
found in [79, 92, 115]. Effective training of this network re-
quires all shapes to be roughly aligned in a canonical space.
When shapes are not aligned, we use ART [115] which uses
an additional network to predict an aligning rotation.

To ensure the reconstruction quality, we overfit one net-
work per object category. We show some example recon-
structions and correspondences for chairs in Fig. 2B.

3.1.2 Contact Transfer

Given dense correspondences between a set of point clouds,
we use them to transfer contact maps from one object to the
other. Let (H ∈ RM×3,P ∈ RN×3) be a pair of human
and object point clouds from an existing interaction dataset.
And let T ∈ SE(3) be the non-rigid transformation that
brings the object point cloud into canonical space where
shapes are roughly aligned. Then, we can find our contact
set as a set of point pairs from human and object that lie
within a distance σ to each other:

C = {(i, j) | ||Hi −T−1f(TP)j)||22 < σ}. (1)

We first bring P into canonical pose, then apply f to obtain
a coherent point cloud, which is brought back into interac-
tion pose by T−1. Since our autoencoder f produces co-
herent point clouds, the obtained contact set can be directly
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transferred to all other objects P′ within the category, allow-
ing us to pair the human with all other objects, one example
transfer is shown in Fig. 2C. Once we transfer the contact
points to the new object, we can find the corresponding con-
tact facets in the meshes that have the smallest distances.

3.1.3 Contact-based Joint Optimization

The newly obtained contact sets define how and where a hu-
man should interact with the new object. We can also trans-
form the object from canonical to interaction pose with our
dense correspondence. However, this naive placement does
not guarantee the plausibility of the interaction due to ob-
ject geometry changes (see Fig. 2D). Hence, we propose a
joint optimization to refine the human and object pose such
that: a) contact points are close to each other, b) contact
face normals match, and c) interpenetration is avoided.

We use the SMPL-H [57, 68] body model H(θ,β) to
parameterize the human as a function of pose θ and shape
β parameters. The object pose is given as non-rigid trans-
formation T ∈ SE(3), and we denote the new object point
cloud to which we have transferred contacts as P′. We find
the refined human-object poses jointly, by minimizing:

L(θ,β,T) = λcLc + λnLn + λcolli + λinitLinit, (2)

where the individual loss terms are given as:
• Contact: Lc =

∑
(i,j)∈C ||Hi − P′

j ||22, minimizing the
distance between contact points.

• Normal: Ln =
∑

(i,j)∈C ||1 + nT
i nj ||22, ensuring that

normals ni,nj of contacting faces point in opposite di-
rections.

• Interpenetration: Lcolli penalizing interpenetration
based on the bounding volume hierarchy [88].

• Initialization: Linit is the L2 distance between new and
original human pose, regularizing the deformation.

The pose θ is initialized from the original human pose and
β is randomly sampled from a set of registered scans [4].
The object pose T is initialized by Procrustes alignment be-
tween the two coherent point clouds P′ and P. After joint
optimization we obtain realistic interactions, see Fig. 2D.

3.1.4 Dataset Rendering

Our contact transfer and joint optimization provide us the
skeleton of interaction with new objects. To render them as
images, we take the optimized SMPL-H parameters from
Sec. 3.1.3 and randomly sample the clothing deformation
and texture from SMPL+D registrations in MGN [4]. For
objects, we use the original texture paired with the mesh.
We render the scenes in Blender [16], which is detailed in
supplementary. See example renderings in Fig. 2E.

Method Scalability. We emphasize that the proposed
procedural generation is a scalable solution that can gen-

erate large-scale datasets with only a small amount of ef-
fort for data capture: with 2k different interactions (e.g.
BEHAVE [7] chair interaction), 6k different objects (e.g.
Shapenet chairs [12]) and 100 human scans (e.g. MGN [4]),
one can have maximum 1.2 billion different variations in to-
tal, which is not possible with real data capture. The data
scale allows for training powerful models that reach per-
formance not obtainable by training on real data only. An
example of such a method is detailed in the next section.

3.2. HDM: Hierarchical Diffusion Model

Modelling the joint shape space of humans interacting with
objects is difficult since the product of human and object
shape variations is huge. One solution is to use two sep-
arate networks that reconstruct human and object respec-
tively. However, such a method ignores the interaction
cues that have been show important for coherent reconstruc-
tion [7, 95, 96, 105]. This motivates us to design a hierar-
chical solution where we first jointly estimate both human
and object(Sec. 3.2.2), and then use separate networks that
focus on refining individual shape details (Sec. 3.2.3). An
overview of our method can be found in Figure 3.

3.2.1 Preliminaries

Task Overview. Given an input RGB image I of a per-
son interacting with an object, we aim to jointly reconstruct
3D human and object point clouds Ph,Po. Same as prior
works [95, 96, 110], we assume known 2D human and ob-
ject masks, which we consider a weak assumption, given
recent advances in 2D segmentation [43, 45, 75].

Due to the ambiguity from monocular input, we adopt
a probabilistic approach for 3D reconstruction, which has
been proven effective in learning multiple modes given
same input [60, 111, 118]. Specifically, we use a diffusion
model [32] to learn the distribution of 3D human object in-
teractions conditioned on a single image.

Diffusion models [32, 76] are general-purpose genera-
tive models that consist of iterative forward and reverse pro-
cesses. Formally, given a data point x0 sampled from a data
distribution pdata, the forward process iteratively adds Gaus-
sian noise q(xt|xt−1) to the sample x0. The distribution at
step t can be computed as:

xt =
√
ᾱtx0 + ϵ

√
1− ᾱt (3)

where ᾱt controls the noise level at step t and ϵ ∼
N (0,1) [32]. The reverse process starts from Gaussian
noise at step T and gradually denoises it back to the orig-
inal data distribution pdata at step 0. At each reverse step,
we use a neural network pθ to approximate the distribution:
pθ ≈ q(xt−1|xt). The network is trained with the vari-
ational lower bound to maximize the log-likelihood of all
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Figure 3. Our hierarchical diffusion model. Given an RGB image of a human interacting with an object, we first jointly reconstruct the
human and object as one point cloud with segmentation labels (Stage 1, Sec. 3.2.2). This prediction reasons interaction but lacks accurate
shapes. We then use two diffusion models for human or object separately with cross attention to refine the initial noisy prediction while
preserving the interaction context(Stage 2, Sec. 3.2.3). Our hierarchical design faithfully predicts interaction and shapes.

data points, which is parametrized to minimize the L2 dis-
tance between the true noise ϵ and network prediction[32]:

L = Et∼[1,T ]Eϵt∼N (0,I)[||ϵt − pθ(xt, t)||22] (4)

3.2.2 Joint Human-object Diffusion

In this first stage, we simultaneously predict both hu-
man and object hence the output is one point cloud P ∈
RN×3. We adopt PC2 [60] that diffuses point cloud con-
ditioned on single images. Formally, we use a point voxel
CNN [56, 117] pθ : RN×D 7→ RN×3 as the point diffusion
model. Here D is the feature dimension. To obtain per-
point input features, we first use a pre-trained encoder [30]
to extract feature grid F ∈ RF×H′×W ′

from input image I,
here F and H ′,W ′ are feature and spatial dimensions re-
spectively. Points p ∈ P are then projected to 2D image
plane with π(·) : R3 7→ R2 to extract pixel-aligned feature
Fπ(p). We further concatenate it with point location and
diffusion timestamp encodings tenc as the input to the dif-
fusion model: Fp = (Fπ(p),p, tenc). To allow generative
prediction for points that are occluded, the image features
Fπ(p) are set to zeros when points are occluded [60].

3.2.3 Hierarchical Diffusion for Interaction

Naively using one network to reconstruct interaction leads
to noisy point predictions (see Fig. 5), as the combinatorial
shape space of human-object interaction is too complex to
model. Thus, we propose a second stage to refine human
and object shapes separately, by having two additional dif-
fusion models while also preserving the interaction context.
In the following, we discuss special aspects of our second
stage, namely 1) how the point cloud is segmented into hu-
man and object, 2) how separate networks are designed to
model interaction, 3) how these models are combined.

Point cloud segmentation. To reason the contacts dur-
ing interaction and obtain accurate shapes for human and
object separately, the combined point cloud needs to be seg-
mented into the points for human and object. To this end,
we use an additional network gϕ : RN×D 7→ {0, 1}N that
takes point features Fp as input and predicts a binary label
to indicate whether this is a human or object point. With
this prediction, we can segment the point cloud P predicted
by pθ into human and object points Ph,Po.

Preserving interaction context. In our second stage,
we use two additional diffusion models phθ , p

o
θ to predict

human and object. The networks follow the same design
as the joint network pθ using PVCNN [56, 117]. To en-
courage the networks to explore interaction cues, we add
cross-attention layers between the encoder and decoder lay-
ers of human and object branches. Given downsampled
points Pl ∈ RNl×3 with features Fl ∈ RNl×Dl after net-
work layer l, we propagate information from human branch
to object branch by computing feature:

Fh7→o
l = Attn(enc(Po

l ), enc(Ph
l ),FPh

l
), (5)

where Attn(Q,K,V) is learnable cross attention[89],
enc(·) is positional encoding from NeRF [61], and FPh

l
=

(enc(Ph
l ),C) is the concatenation of positional encoding

and onehot encoding C indicating these points belong to
human. The attention feature Fh 7→o

l is then concatenated to
the object feature Fo

l as input to the next layer. We prop-
agate information from object to human branch similarly.

Model Combination. With the separate networks
phθ , p

o
θ, one can run the full reverse diffusion process from

t = T to t = 0 and then combine the denoised points.
However, this does not leverage the predicted interaction
context from the joint reconstruction stage and is slow. We
hence start the reverse diffusion steps from an intermedi-
ate step t = T0 instead of T . Specifically, after denoising
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Figure 4. Comparing reconstruction results on BEHAVE[7] dataset. CHORE[95] relies on object mesh templates and the prediction
is inaccurate for challenging poses. PC2[60] does not rely on templates but its predicted point clouds are noisy (red circles) and it cannot
predict contacts. Ours can reason about human object interaction, and predicts high-fidelity human and object shapes without templates.

and segmentation with the joint model, we apply the for-
ward diffusion process to Ph and Po until step t = T0 us-
ing Eq. (3). Then, the individual diffusion models take the
noised points as input and gradually denoise them until step
t = 0. The forward process destroys local noisy predictions
but keeps the global structure of human-object interaction.
We set T0 = T

2 , see supp. for analysis of this value. Our
hierarchical design is important to obtain sharp predictions,
see Tab. 5 and Fig. 5.

Recall from Eq. (3) that the forward diffusion ends up
with a normal distribution. Hence the input and output
points of all diffusion models are centered at the origin and
scaled to unit sphere, which requires normalization param-
eters to project them back to image. We estimate it for the
first diffusion model pθ when GT is not available and com-
pute them for separate diffusion models phθ , p

o
θ from the seg-

mented points. We show in Sec. 4.4 that it is better than
directly predicting from input image. More details in Supp.
Implementation. We train our diffusion models pθ, phθ , p

o
θ

using the standard loss ( Eq. (4)) and segmentation model
gϕ using L2 distance between predicted and ground truth
binary labels. See Supp. for more implementation details.

4. Experiments

In this section, we first describe our data generation and then
evaluate the proposed ProciGen data and HDM for recon-
struction. Please refer to supp. for implementation details.
Data generation. We leverage the BEHAVE [7], Inter-
Cap [35], ShapeNet [12], Objaverse [19], ABO [15] and
MGN [4] dataset to generate our synthetic data ProciGen.
BEHAVE and InterCap capture multi-view images of hu-
mans interacting with 20 and 10 different objects respec-
tively. ShapeNet [12], Objaverse [19] and ABO [15] pro-
vide 3D object models as meshes paired with textures. The
objects from ShapeNet and ABO are aligned in canoni-
cal space while objects from Objaverse are not aligned.

MGN [4] consists of 100 human scans paired with SMPL-
D registration that allows reposing scans while preserving
clothing deformation.

Following the same split from [96], we randomly sample
from 380k interactions in BEHAVE and InterCap training
set, 21k different shapes in ShapeNet, ABO and Objaverse,
and 100 different human shapes and textures in MGN. In
total, we generate ∼1.1million training images. Please see
supplementary for more data distribution details.
Evaluation metric. We evaluate the reconstruction perfor-
mance using the F-score based on Chamfer distance be-
tween point clouds, which is more suitable for measuring
the shape accuracy [82]. We compute F-score with a thresh-
old of 0.01m [60] and report the error for human, object and
combined point clouds separately, as typically done in inter-
action reconstruction methods [95, 96].

4.1. Reconstruction on BEHAVE and InterCap

We compare our method with CHORE [95] and PC2[60] on
BEHAVE[7] and InterCap [35] test set in Tab. 2 and Fig. 4.
We train CHORE and PC2 on the training set of BEHAVE
and InterCap. Our HDM is trained on our synthetic Pro-
ciGen with or without BEHAVE and InterCap training set.
We also report per-category accuracy in supplementary.

CHORE is designed for interaction reconstruction and
requires known object templates. PC2 is a general shape re-
construction method without templates but it does not sepa-
rate human and object hence cannot reason the semantics of
interaction. Our method trained only on our synthetic Pro-
ciGen dataset performs on par with CHORE which already
knows the template and PC2 which already sees the object
shapes. After training our HDM on both our ProciGen and
real data, our method significantly outperforms baselines.

4.2. Contribution of our ProciGen and HDM

We propose ProciGen for interaction data generation and
HDM for interaction reconstruction. To decouple the con-
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Method Human↑ Object↑ Comb.↑
B

E
H

AV
E CHORE† 0.3454 0.4258 0.3966

PC2‡ X X 0.4231
Ours‡ 0.3925 0.5049 0.4604

Ours synth. only‡ 0.3477 0.4351 0.4110

In
te

rC
ap

CHORE† 0.4064 0.5135 0.4687
PC2‡ X X 0.5057
Ours‡ 0.4399 0.6072 0.5344

Ours synth. only‡ 0.3851 0.4928 0.4530

Table 2. Reconstruction results (F-sc.@0.01m) on BEHAVE [7]
and InterCap [35]. † denotes methods with template meshes while
‡ denotes template-free methods. CHORE [95] requires known
object templates and is prone to noisy pose predictions. PC2 [60]
does not require templates but cannot predict semantics of human-
object and the prediction is inaccurate. Our method separates hu-
man and object, does not require any templates and outperforms
PC2 and CHORE. Training only on our synthetic ProciGen data
performs on par with CHORE even it has never seen the objects.

Method Human Object Combined
a. PC2 X X 0.4231

b. Our HDM 0.3605 0.4575 0.4214
c. PC2 + our ProciGen X X 0.4486

d. Our HDM + ProciGen 0.3925 0.5049 0.4604

Table 3. Decoupling the contribution of our ProciGen dataset
and reconstruction method. Our ProciGen dataset significantly
boosts performance of both PC2 (c) and our method (d) compared
to training on BEHAVE only (a-b). Both our ProciGen and HDM
model are important to achieve the best result.

tribution of our data and method, we compare our method
against PC2 [60] trained on BEHAVE [7] only (Tab. 3 a-
b) and BEHAVE + our ProciGen dataset (Tab. 3 c-d). The
methods are evaluated on the BEHAVE test set. It can be
seen that both our proposed data and model are important
to obtain the most accurate reconstruction. We also report
the model performance vs. data amount in supplementary.

4.3. Generalization Performance

Our ProciGen dataset allows training shape reconstruction
methods to generalize to unseen object instances. To eval-
uate this, we train CHORE[95], PC2[60] and our HDM
model on BEHAVE[7] and our proposed dataset respec-
tively. We then evaluate them on unseen objects of the same
categories from InterCap [35] in Table 4. CHORE requires
a template to predict 6D pose, which makes it difficult to
train on our synthetic dataset with more than 21k different
shapes. We hence only train CHORE on BEHAVE dataset.

Methods trained on BEHAVE have limited generaliza-
tion to InterCap (Tab. 4a-c). An alternative to our ProciGen
is to randomly scale and shift the objects from BEHAVE
and render new images, which only slightly improves gen-
eralization (Tab. 4d). In contrast, our ProciGen significantly
boosts the generalization performance (Tab. 4e-f).

Method Human ↑ Object↑ Combine↑
a. CHORE 0.2263 0.1924 0.2176
b. PC2 X X 0.2327
c. Our HDM 0.2389 0.1592 0.2127
d. Our HDM+ augm. 0.3076 0.2089 0.2680
e. PC2 + Our ProciGen X X 0.3843
f. Our HDM+ ProciGen 0.3502 0.4233 0.3976

Table 4. Generalization performance of methods trained on
BEHAVE [7] (a-c), BEHAVE + random augmentation (d) and
our ProciGen (e-f), evaluated on unseen objects from InterCap
(F-score@0.01m). CHORE predicts template-specific 6D poses
hence does not work on unseen objects from InterCap. PC2 (b)
and our method (c) do not require templates but are constrained
by the limited shape variations from BEHAVE. Adding random
shape augmentation on BEHAVE objects (d) slightly improves
generalization but is still suboptimal. With our proposed Proci-
Gen dataset, both PC2 and our method can generalize to InterCap
and our method achieves better accuracy.

Some qualitative results are shown in Fig. 5. Our method
reconstructs human and object with high shape fidelity. We
also show the generalization results to COCO dataset [49] in
Fig. 6. Our method trained only on our ProciGen data gen-
eralizes well to in-the-wild images with large object shape
variations. See Supp. for more generalization examples.

4.4. Ablating the Hierarchical Diffusion Model

Our HDM predicts interaction semantics and better shapes.
In Tab. 5, we ablate alternative designs to our method on the
824 chair images from BEHAVE test set [7] due to resource
limit. All methods are trained on our ProciGen dataset.

The human-object segmentation allows us to compute
the contacts and manipulate human and object separately.
An alternative is projecting the predicted points to 2D image
and segment points based on the masks. Due to occlusion
and complex interaction, this segmentation is inaccurate, as
reflected in the large human and object errors in Tab. 5a.
The model that predicts human, object and segmentation
with a single model (Tab. 5 b) also does not work as it is
difficult to learn high-fidelity interaction shapes.

Another alternative to our first joint diffusion model is
to use a network that predicts translation and scale directly
from input image and then use them to combine predictions
from two separate models. However, such a global predic-
tion does not model interaction with local fine-level details
hence the performance is subpar(Tab. 5b). Our cross atten-
tion module also improves the performance (Tab. 5d).

5. Conclusion

In this paper, we proposed a procedural generation method
to synthesize interaction datasets with diverse human and
object shapes. This method allows us to generate 1M+
images paired with clean 3D ground truth and train large
image-conditioned diffusion models for reconstruction,
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Generalization small

Input image CHORE PC  OursPC + Our ProciGen

Figure 5. Generalization results to InterCap [35] dataset. Note that all object instances are unseen during training time. CHORE [95]
predicts template specific object pose hence cannot generalize to new object instances. PC2[60] does not rely on template but its general-
ization ability is constrained by limited shape variations from BEHAVE [7]. Training PC2 on our ProciGen improves its generalization but
the predicted point clouds are still noisy. Our method is able to generalize and predicts human and object with high shape fidelity.

Input image Front view Side view Input image Front view Side view Input image Front view Side view

Figure 6. Testing our method on COCO [49] dataset. Human and object to be reconstructed are highlighted with blue and yellow box
respectively. Our method generalizes to diverse objects from in the wild images without any shape templates.

Method (with our ProciGen) Hum.↑ Obj.↑ Comb.↑
a. PC2 + projected segm. 0.2961 0.3436 0.3776
b. Single model + segm. 0.3349 0.3638 0.3743
c. Direct pred. + sep. models 0.2809 0.3487 0.3380
d. Ours w/o cross attention 0.3387 0.3806 0.3807
e. Our full model 0.3433 0.3916 0.3875

Table 5. Ablating alternative methods to our HDM (F-
score@0.01m). Projecting PC2 predictions to 2D masks to obtain
segmentation (a) is inaccurate and single stage diffusion model (b)
cannot learn high-fidelity shapes for both human and object. Com-
bining predictions from separate human and object models using
direct translation prediction from images (c) also does not work as
it cannot learn fine-grained interactions. Our hierarchical design
together with our cross attention module achieves the best result.

without relying on any shape templates. To learn accurate
shape space for human and object, we introduce a hierarchi-
cal diffusion model that learns both the joint interaction and

high fidelity human and object shape subspaces.
We train our method with the proposed synthetic dataset

and evaluate it on BEHAVE and InterCap datasets. Results
show that our method significantly outperforms CHORE
which requires template meshes and PC2 which does not
reason interaction semantics. Ablation studies also show
that our synthetic dataset is important to boost the per-
formance and generalization ability of both PC2 and our
model. Our method generalizes well to real images from
COCO that have diverse object geometries, which is a
promising step toward real in-the-wild reconstruction. Our
code and data are released to promote future research.
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Template Free Reconstruction of Human-object Interaction with Procedural
Interaction Generation

Supplementary Material

In this supplementary, we first discuss in more detail
about our implementation for the ProciGen and HDM in
Appendix A. We also present the statistics of our generated
ProciGen dataset. We then show more results and experi-
mental analysis of our method in Appendix B. We conclude
with a discussion of limitations and future works.

A. Implementation Details
We describe in more details of the implementation of our
ProciGen and HDM. Our code for both data generation and
reconstruction will be made publicly available.

A.1. ProciGen Data Generation

Correspondence estimation. We use the implementation
from ART [115] for our autoencoder, which uses Point-
Net [66] as encoder and 3-layer MLPs as decoder. We sam-
ple 8000 points from the mesh surface and train the network
with bidirectional Chamfer distance. To ensure reconstruc-
tion quality, we overfit one network per category. Each
model is trained for 5000 epochs. We report an average
reconstruction error of around 7mm for our autoencoders,
which indicates highly accurate reconstructions.
Contact transfer and optimization. We use a threshold of
σ = 2cm to find points that are in contact. The loss weights
for our contact based loss optimization are: λc = 400, λn =
6.25, λcolli = 9, λinit = 6.25 · 104.
Rendering. We use blender to render our synthesized
human-object interactions. We choose one set of 4 camera
configurations from BEHAVE [7] and another set of 6 cam-
era configurations from InterCap [35]. For each synthesized
interaction, we additionally add small random global rota-
tion and translation to have variations of camera viewpoints.
We render the interactions with an empty background since
our network also takes images with background masked out
as input. We add lights at fixed locations with random light
intensities. Our blender scene and rendering code will also
be made publicly available.

A.2. HDM: Hierarachical Diffusion Model

We use the modified Point Voxel CNN from [117] as the
network for our joint diffusion pθ, segmentation gϕ, and
separate diffusion models phθ , p

o
θ. The input images are

cropped and resized to 224×224. The joint diffusion model
diffuses in total 16384 points while the separate models dif-
fuse 8196 points each. We use the MAE [30] as the image
feature encoder. We additionally stack the human and ob-
ject masks as well as distance transform as additional image

features, same as PC2 [60]. We train our diffusion models
for a total of 500000 steps with batch size 20. We use a
linear scheduler without warm-up for the forward diffusion
process, in which beta increases from 1 · 10−5 to 8 · 10−3.
For the network optimization, we use AdamW optimizer
with linear learning rate decay starting from 3 · 10−4 and
decreasing to 0 during the course of training. The diffu-
sion models are trained with the standard diffusion training
scheme [32]. To train the segmentation model, we add small
Gaussian noise to the GT point clouds and project them to
obtain image features. The loss is then computed between
the prediction and recomputed GT labels on the points with
noise. To speed up training, we train stage 1 (gϕ, pθ) and
stage 2 (phθ , p

o
θ) models separately. For each stage, it takes

around 4 days to train on a machine with 4 A40 GPUs.
Camera estimation. Recall from Sec. 3.2.3 that a cam-

era translation is required to project the normalized point
clouds back to the image. This needs to be estimated from
input when GT camera pose is not available, especially for
generalization to diverse datasets. The camera translation
consists of three unknowns, which requires at least two
point pairs of 3D location and 2D-pixel coordinates. We
empirically choose the Gaussian point center and one edge
of the point cloud. The idea is to have the initial Gaussian
point clouds cover the 2D human object interaction region
and the 3D center is projected to 2D crop center.

Formally, let pc = (cx, cy) be the center coordinate of
the 2D interaction region, w be the width of the 2D inter-
action square crop, pe = (σ, 0, z) be a 3D point near the
edge of the Gaussian sphere with unknown depth z. Given
camera projection matrix K ∈ R3×3 and translation vector
tc, we define the following equations:

Ktc = pc; K(pe + tc) = p2D
e (6)

The first equation projects origin to pc and the second
equation projects pe to the middle right of the 2D crop
p2D
e = (cx +w/2, cy). This is a linear system of four equa-

tions with four unknowns (camera translation and depth z),
leading to a unique solution for the translation tc. We em-
pirically set σ to different values for different categories
based on the estimation error on the BEHAVE training set.
Furthermore, we compute pc as the centroid of all 2D points
inside the human and object masks. From Fig. 6, Fig. 17,
Fig. 16, Fig. 18, Fig. 19 and , Fig. 20, it can be seen that our
method can reconstruct human and object well on different
datasets using our estimated translation.

1



Figure 7. The number of objects per category we used to generate our ProciGen dataset. It can be seen that the shape variations are
dominated by tables and chairs, which are also the categories with the most complex shapes.

Figure 8. Distribution of interactions per object category. Our dataset features interaction data with very diverse object shapes, which is
not possible via real data capture.

A.3. Dataset statistics

We generate our ProciGen dataset based on interactions
from BEHAVE [7] and InterCap [35], human scans from
MGN [4], object shapes from ShapeNet [12], Obja-
verse [19] and ABO [15]. When generating our data, we
mainly consider the variation of object shapes and interac-
tion poses while the object sizes remain the same. We also
try to avoid large imbalances among objects. Therefore,
chairs and tables are two dominant categories as they have
the most geometry and interaction pose variations (Fig. 7,
Fig. 8). Other categories have similar amounts of synthetic
data as they have similar amounts of interaction poses. The
difference comes from failures in joint optimization due to
irregular mesh.

In total we rendered 1.1M interaction images with 21555
different object shapes. The distribution for object shapes
and interactions per category are shown in Fig. 7 and Fig. 8.
Our dataset has very diverse object shapes, especially for
chairs and tables whose geometry also varies a lot in real-
ity. Our procedural generation method is a scalable solution
and it allows for generating large-scale interaction datasets
with great amount of variations which is not obtainable via
capturing real data.
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Method CHORE ↑ PC2 ↑ Ours ↑
Hum. Obj. Comb. Comb. Hum. Obj. Comb.

Chair 0.373 0.491 0.443 0.407 0.384 0.521 0.463
Ball 0.330 0.388 0.374 0.424 0.395 0.517 0.471
Backpack 0.399 0.509 0.469 0.436 0.397 0.457 0.444
Table 0.304 0.455 0.389 0.470 0.379 0.642 0.517
Basket 0.301 0.266 0.292 0.381 0.412 0.297 0.364
Box 0.352 0.347 0.362 0.409 0.414 0.401 0.424
Keyboard 0.335 0.412 0.383 0.450 0.353 0.606 0.493
Monitor 0.358 0.412 0.395 0.377 0.368 0.348 0.370
Suitcase 0.400 0.477 0.443 0.404 0.431 0.484 0.462
Stool 0.351 0.479 0.424 0.443 0.394 0.543 0.479
Toolbox 0.281 0.330 0.306 0.398 0.373 0.400 0.403
Trashbin 0.376 0.402 0.398 0.387 0.407 0.414 0.422
BEHAVE all 0.345 0.426 0.397 0.423 0.392 0.498 0.457

Chair 0.389 0.468 0.433 0.470 0.384 0.604 0.500
Cup 0.412 0.538 0.510 0.566 0.487 0.601 0.578
Skateboard 0.520 0.684 0.612 0.578 0.491 0.739 0.624
Bottle 0.426 0.501 0.495 0.592 0.549 0.582 0.593
InterCap all 0.406 0.513 0.469 0.506 0.440 0.607 0.534

Table 6. Per-category F-score@0.01m comparison. Note that PC2
cannot separate human-object hence we only report the combined
error, and that CHORE requires template meshes. Our method
outperforms baselines for almost all categories.

Trained with 100% data

Trained with 5% data

Input image

Figure 9. Reconstruction performance vs. amount of data. It can
be seen that more data leads to better results.

B. Additional Experiments and Results
B.1. Per-category reconstruction accuracy

We report the accuracy of each category in Tab. 6. Our
method consistently outperforms baselines in almost all cat-
egories. While the improvements in numbers look small,
the visual difference is quite significant, as shown in the pa-
per Fig. 4, Fig. 6.

B.2. Performance vs. amount of data

We show in Table 3 that our data contributes a lot to improve
the reconstruction accuracy. To further understand the data
contribution, we train our model for the same epochs with
different amounts of synthetic data and test on BEHAVE
images without fine-tuning. The performance vs. data plot
is shown in Fig. 9. More data consistently leads to better
performance both quantitatively and qualitatively.

B.3. Analysis of T0 for our HDM

In our second stage, we first add noise to the clean predic-
tions from stage one until step t = T0, and then run the re-
verse diffusion process from t = T0 to t = 0. We evaluate
the performance of our method under different values of T0
in Figure 10. There is a trade-off for the number of forward
steps T0: with a larger T0, less interaction information and

Figure 10. The performance of our method using different inter-
mediate step T0 for the input to our second stage diffusion. Meth-
ods are evaluated using F-score@0.01m. At T0 = 500, we obtain
a good balance between human and object performance.

noisy details are preserved and the network predicts sharper
detail but less faithful to initial prediction and interaction
constraints. It can be seen that T0 = 500 is a good balance
between shape fidelity and interaction coherence.

B.4. Shape fidelity

Our method predicts dense and clean point clouds which are
ready for accurate surface extraction. We show in Fig. 11
that high-quality meshes can be extracted from our pre-
dicted point clouds. More specifically, we use screened
Poisson surface reconstruction for the human points using
normals estimated by MeshLab. For the object, we first use
Delaunay triangulation to obtain triangle mesh. We then
run fusion-based waterproofing [77] to obtain a watertight
mesh. We also apply Delaunay triangulation and water-
proofing to PC2 [60] predictions and results are shown in
Fig. 11. It can be seen that PC2 predictions have miss-
ing structure and noisy point clouds, leading to low-quality
meshes. In contract, we can extract high-quality meshes
directly from our point cloud reconstructions, without any
post processing.

B.5. Interaction semantics

Our method predicts the segmentation of human and ob-
ject, allowing separate manipulation which is important
for downstream applications. To demonstrate this, we use
Text2txt [13] to generate textures for the meshes extracted
from PC2 and our predicted point clouds. Other methods
such as Paint-it [106] are also applicable here. We show
the reconstruction and generated textures in Fig. 13. It can
be seen that PC2 predictions are noisy and it does not rea-
son human and object separately. This leads to low-quality
mesh and generating coherent texture for a combined mesh
of human and object is difficult. On the contrary, our
method separate human and object while also predicting
high quality individual shapes. This allows generating high
quality texture and changing textures for human and object
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Input image 𝑃𝐶ଶ Ours 𝑃𝐶ଶ mesh Ours mesh 𝑃𝐶ଶ mesh - side Ours mesh - side

Figure 11. Comparing the shape fidelity of our method with PC2 on the BEHAVE [7] dataset. PC2 does not separate human and object and
its prediction is noisy, leading to inaccurate meshes. Our method predicts clean point clouds with human object segmentations, allowing
us to extract high-quality mesh surfaces. 4



Figure 12. Out of distribution generalization. Our method can
reconstruct some categories that are unseen in training data.

differently.

B.6. More generalization results

We show more generalization comparison on the Inter-
Cap [35] dataset in Fig. 15. Note that all objects from Inter-
Cap are unseen during training time. It can be seen that PC2

trained on BEHAVE [7] only cannot generalize to objects
from InterCap. Training PC2 with our ProciGen dataset al-
lows better generalization ability but its shape prediction is
still noisy. Furthermore, PC2 cannot segment human and
object, which is important to reason the interaction seman-
tics and manipulate them separately. Our method general-
izes well to InterCap and reconstructs high quality shapes
with interaction semantics.

Our method trained only on our synthetic ProciGen
dataset generalizes well to other datasets. We show re-
sults on NTU-RGBD [52], SYSU [33] and challenging in
the wild COCO [49] images in figure Fig. 16, Fig. 17 and
Fig. 18, Fig. 19, Fig. 20 respectively. Note that our method
is trained only on our synthetic ProciGen dataset and not
fine-tuned on any images from these datasets. It can be seen
that our method generalizes to different datasets with di-
verse object shapes, without requiring any template meshes.

For quantitative evaluation, we focus on 15 ob-
ject categories that are seen from our synthetic data
(Tab. 6). We test our method on three additional cate-
gories from BEHAVE and InterCap that are unseen and
have GT data. The F-scores (human/object/combined) are:
0.465/0.453/0.479 (tennis racket), 0.333/0.332/0.361 (yoga
mat), 0.375/0.305/0.360 (umbrella), 0.353/0.443/0.420 (all
seen categories). We also show example reconstructions in
Fig. 12. Our method can reconstruct unseen categories.

C. Limitations and Future Work
We present a scalable solution to synthesize large amount
of interaction dataset which allows training methods with
strong generalization ability. We also propose a model
for obtaining high quality human, object shapes and also
interaction semantics, without any template shapes. We
demonstrate the generalization ability of our method on di-
verse datasets. Our template-free reconstruction method is a
promising first step towards real in-the-wild reconstruction.

Nevertheless, there are still some limitations to the cur-
rent approach. First, our ProciGen data generation method
always starts with a seed interaction pose sampled from
an existing interaction dataset. This limits the diversity in

terms of interaction poses. Future works can explore gener-
ative models such as Object-Popup [64] to further diversify
the interaction pose. It is also highly desirable to combine
the large human pose variations from AMASS [58], which
can further improve the robustness of reconstruction meth-
ods to challenging poses.

Secondly, our method struggles to predict accurate hu-
man shapes when large chunk of the human body is oc-
cluded, see Fig. 14. This is because our method is purely
template-free and only use the network to learn the human
and object shape priors. Future works can try to further
explore human shape or pose constraints to regularize net-
work training and predictions. In addition, our hierarchi-
cal diffusion model are designed for human object inter-
action, which is applicable for general bilateral interaction
cases like human-human, hand-hand, and hand-object inter-
actions. However, it cannot handle multi-person or multi-
object interactions. We leave these for future works.
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Input image PC  reconstruction and texture Our reconstruction and texture control

Figure 13. Comparing textures generated for meshes extracted from PC2 [60] and our predicted point clouds. Textures are obtained using
Text2txt [13]. PC2 predicts human and object as one joint point cloud with noisy points, which leads to inaccurate mesh surfaces and it is
difficult to generate textures for this combined mesh. It also does not allow changing human and object textures separately. Our method
predicts high quality point clouds with segmentation. This enables us to extract high-fidelity mesh, which is important for generating
high-quality texture and manipulating human and object differently.

Input image Ours Ours  - side view Input image Ours Ours  - side view

Figure 14. Example failure cases of our method. Our method can fail when large parts of human body are invisible, leading to incoherent
human shape reconstructions. Future works can explore human body shape priors to regularize the network predictions.
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Input image
𝑃𝐶ଶ 𝑃𝐶ଶ + Our ProciGen Ours

Front view

𝑃𝐶ଶ 𝑃𝐶ଶ + Our ProciGen Ours

Side view

Figure 15. Comparing generalization performance on InterCap [35]. All objects are unseen during training time. PC2 trained only on
BEHAVE [7] has limited generalization ability. Training PC2 with our ProciGen improves generalization but it still cannot reason human
and object separately and the predicted points are noisy. Our method trained only on our ProciGen generalizes well to InterCap objects
even they are completely unseen.
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Figure 16. Generalization results on NTU-RGBD [52] dataset. Our method can reconstruct different objects faithfully under various
camera viewpoints and lighting conditions, without relying on any template shapes.

Input image Front view Side view Input image Front view Side view Input image Front view Side view

Figure 17. Generalization results on SYSU action [33] dataset. Our method can reconstruct different real-life human and objects during
challenging interactions and occlusions.
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Figure 18. Generalization results to COCO [49] dataset. Our method can reconstruct high-quality human and object from in the wild
images which has very diverse shape variations, without using any template shapes.
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Figure 19. Generalization results to COCO [49] dataset. Our method reconstructs diverse object shapes in the wild.
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Figure 20. Generalization results to COCO [49] dataset. Our method can reconstruct challenging human and object pose as well as shapes
without using any template shapes.
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