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Figure 1: Aligning 3D data is a hard problem which typically requires manual intervention, and most 3D learning SotA methods rely
on good alignment. We propose Adjoint Rigid Transform (ART) Network, a self-supervised module which can be added to existing 3D
networks to boost performance on a variety of tasks. Here we show (A) automatic shape alignment with ART; and use ART to improve (B)
shape auto-encoding with PointNet [39] and (C) human mesh registration with 3D-CODED [23].

Abstract

Most learning methods for 3D data suffer significant
performance drops when the data is not carefully aligned
to a canonical orientation. Aligning real world 3D data
collected from different sources is non-trivial and requires
manual intervention. In this paper, we propose the Adjoint
Rigid Transform (ART) Network, a neural module which
can be integrated with a variety of 3D networks to sig-
nificantly boost their performance. ART learns to rotate
input shapes to a learned canonical orientation, which is
crucial for a lot of tasks such as shape reconstruction, in-
terpolation, non-rigid registration, and latent disentangle-
ment. ART achieves this with self-supervision and a rota-
tion equivariance constraint on predicted rotations. With
only self-supervision, ART facilitates learning a canonical
orientation for both rigid and nonrigid shapes, which leads
to a notable boost in performance of aforementioned tasks.
Our code and model are available at [2].

1. Introduction
With the rise of consumer grade 3D sensors and the

popularity of a wide range of applications such as virtual

and augmented reality, digital humans [32, 36] and ani-
mals [59], general objects [13] and scenes [17], there is
an increasing demand for learning powerful representations
from 3D data. Architectures such as PointNet [39], Point-
Net++ [40], or EdgeConv [51] for processing point clouds,
and Graph Convolutions [12, 22, 28] for processing 3D
meshes allow researchers to obtain impressive results on
challenging tasks such as shape encoding [41], disentan-
gling object shape and pose [56], shape and pose interpo-
lation [56] and 3D human mesh registration [23, 11, 10].
However, experiments show that the performance of these
methods significantly decreases when 3D objects are not
aligned to a common global orientation, which is a severe
limitation since real world scanned objects are not aligned.

The question we pose here is: Can we automatically
learn a network module to align shapes with only self-
supervision? The ability to do so would allow existing 3D
networks to consume unaligned raw data and still keep a
good performance.

The most common way to align shapes is with prepro-
cessing, as done in ShapeNet [13] and ModelNet [54]. But
this is time-consuming and not completely automatic. The
Spatial Transformer Networks (STN) [26] in 2D, and its 3D
analogous incorporated in PointNet [39], allow the network
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Figure 2: We propose a simple yet powerful module, Adjoint Rigid Transform (ART) Network that can automatically align 3D shapes to
a common orientation. Given an input shape, ART predicts a rotation that maps the shape to a canonical orientation. The aligned shape is
then fed to the target task and the output is rotated back to its original orientation. We show meshes here just for illustration purpose; the
input can be either point cloud or mesh in practice.

to predict an affine transformation of the data to minimize
the downstream loss. However, we experimentally show
that STN alone does not achieve alignment. As a result,
existing networks still struggle dealing with unaligned data.

We propose a simple yet powerful module, Adjoint Rigid
Transform (ART) Network, which can be plugged into 3D
networks with an auto-encoder backbone and learn to au-
tomatically align 3D shapes conditioned on tasks including
shape reconstruction, shape interpolation and nonrigid reg-
istration, as shown in Fig. 1. Different from previous work
on learning rotation equivariance [19, 43, 47], ART does
not depend on any specially designed feature or architec-
ture, hence directly applicable to existing models.

An overview of our method is shown in Fig. 2. Our first
key idea is to learn to rotate the object to a canonical orienta-
tion, perform the target task, and rotate it back to its original
pose, see Fig. 2. This leads to canonical orientations which
are convenient for the task, but many such orientations can
arise during learning due to local minima, which hinders
the network from achieving optimal performance. To ob-
tain a single canonical orientation per shape class, we show
that the rotation predictor needs to be rotation equivariant.
Hence our second key idea is to impose a self-supervised
equivariance loss during training. The remarkable result is
that by just using self-supervision, ART can discover a sin-
gle canonical orientation of general objects, which leads to
a significant boost in task performance. This is desirable as
downstream networks can focus on the task instead of de-
voting capacity to learning rotation equivariance. Our con-
tributions are as follows:

• We propose a novel rotation equivariance loss, which
allows ART to learn a canonical orientation condi-
tioned on the target task. The alignment quality of
ART is shown to be superior to previous works.

• We demonstrate that a wide range of 3D tasks lose per-
formance when the data is not aligned. ART signifi-

cantly improves the performance of existing methods
on such tasks.

• We show the general applicability of ART spanning
both rigid and non-rigid objects, and different input
modalities such as meshes and point clouds.

2. Related Work
Existing methods lose performance for a wide range of

3D tasks when the data is not aligned to a canonical orienta-
tion. In this section we first discuss works that address this
issue by learning model features invariant or equivariant to
global orientation. Next, we discuss works that explicitly
align 3D data to a canonical orientation. Our method is re-
lated to both categories as ART can be added to existing
methods and can align 3D shapes using self-supervision,
thus making the downstream task more robust to varying
global orientations.

2.1. Rotation invariance/equivariance

An interesting research direction to achieve rotation in-
variance is to handcraft descriptors that are invariant to
rotation by design. These works are typically based on
PCA [49] and geometric properties such as distances be-
tween pairs of points [31] (in 2D) or spherical harmon-
ics [4] (in 3D). A major limitation with the image-based de-
scriptors is that they need to be manually designed per task
which is non-trivial and difficult to scale and generalise to
3D tasks. Another approach for learning rotation invariant
representation is to bake rotation invariance into the net-
work filters. Rotation invariance within a deep network can
be obtained by explicitly rotating the feature maps or con-
volutional filters [58, 18, 16, 52, 53, 45]. Recently, Sun et
al. [46] proposed to learn a canonical frame by training with
pairs of randomly rotated shapes. Our work follows a sim-
ilar strategy, but we directly predict the canonical transfor-
mation from input shapes instead of using a capsule-based



architecture. Hence ART can be seamlessly integrated into
different shape representations and backbone models

Spatial Transformers Jaderberg et al. [25] designed Spa-
tial Transformer Network (STN), a differentiable module
that manipulates the input image and feature maps by
learned geometric transformations. Since it was first pro-
posed, STN and its variants achieved promising results on
image recognition [5], image morphing [21] and image
alignment [8, 29].

More related to our approach are works that apply STN
to point clouds. PointNet [39] inserted STN to both the
input layer and feature maps as part of its architecture.
ITN [55] constrained the predicted transformations to be
rotations and took an iterative procedure to gradually trans-
form the input point clouds in small steps. Wang et al. [50]
learned a combination of affine, projective and deformable
transformations to dynamically update local patches for fea-
ture aggregation. Recently, Fang et al. [20] encoded spatial
direction information of points using spatial transformers
and defined an anisotropic filter for point clouds.

STN freely predicts affine transformations to warp the
input and the feature maps. Although rotation is a subset of
affine transformations, STN takes no measure to ensure that
the network maps all the input data to a canonical orienta-
tion, which is crucial for many 3D tasks. ART on the other
hand predicts rotations and explicitly encourages data to be
aligned in a canonical orientation, hence promoting better
performance of downstream tasks.

2.2. 3D data alignment

Aligning data to a consistent frame of reference is a cru-
cial preprocessing step for many applications [48]. When
the correspondences between two shapes are available,
the rigid transformation relating them can be analytically
computed [6]. But in real world scenarios where cor-
respondences are often unknown, Iterative Closest Points
(ICP) [15, 9] and its variants [38] are more widely used.
Since the iterative procedure of ICP starts from an initial
guess of transformation, it can easily get trapped in lo-
cal minima due to bad initialization. Recently, Liu et al.
[30] proposed an approach to learn unsupervised correspon-
dences which can be used as an alternative to ICP.

For aligning a collection of shapes, Principal Compo-
nent Analysis (PCA) offers a naı̈ve solution by matching
the principal axes of every shape to those of the reference
shape. Although aligning with PCA alone is error-prone,
PCA is the basis for many alignment algorithms [42, 27].
For symmetric objects, reflection symmetry can also be
used to further improve the alignment [37, 14, 34]. Huang
et al. [24] discretized the transformation sampling space
for each shape and formulated joint alignment as a Markov
Random Field optimization problem. Averkiou et al. [7]

Figure 3: Equivariance constraint for ART. Given an input shape
X ∈ R3×N , we sample a random rotation R̃ and obtain the rotated
shape X̃ = R̃X. Our equivariance constraint forces the network
RA to map X and X̃ to the same canonical space.

observed that ambiguities in alignment often arise in only a
few candidate orientations. They reduced the search space
and evaluated candidate alignments by analyzing the auto-
correlation descriptors of shapes. We compare ART with
a PCA baseline and Averkiou et al. [7]. We show that our
method outperforms them both.

3. Adjoint Rigid Transform Network
In this section, we describe the general formulation of

Adjoint Rigid Transform (ART) Network and how it inte-
grates with the target task. We also introduce the equivari-
ance loss which encourages the learned canonical orienta-
tion to be unique.

3.1. Canonical Rotation Prediction

Consider a function g : X 7→ Y which takes a matrix of
points X ∈ X as input, and let R ∈ SO(3) be a rotation
matrix. It is often useful to obtain g as a composition of
functions

g(X) = RT g′(RX). (1)

The idea is to rotate the input shape to a canonical orienta-
tion where processing g′(·) is more natural, and then rotate
the output back with RT . This is what we refer to as an
adjoint transform, as is popularly used in robotics [35].

The adjoint transform in Eq. 1 inspires the design of
ART. In perception tasks however, objects can appear in
multiple orientations, and the canonical coordinate frame is
not defined a priori. Our task thus boils down to predicting a
rotation R which aligns object X to a canonical view with-
out using any pose labeling. Suppose we have X ∈ R3×N

as input. X contains unordered point coordinates for point
cloud input or ordered vertex coordinates for mesh input.
We confine the predicted transformation to rotation for the
following considerations: i) Orientation is often the most



notable factor of variation in unprocessed 3D data. ii) Ro-
tation preserves the intrinsic geometry of the shape which
is desirable for a number of tasks. iii) Unlike general affine
transformations, rotation is guaranteed to be invertible. Ro-
tations can be conveniently inverted by taking the transpose.
This choice ensures the well-definedness and efficiency of
adjoint transformations.

Hence, we learn a mapping RA(X) : X 7→ SO(3) from
the input shape X to the canonical rotation R. We denote
the downstream 3D network by g′ and denote the network
with ART module as a whole by g. With the predicted rota-
tion RA(X), Eq. 1 can be formulated as:

g(X) = RT
A(X)g′(RA(X)X) (2)

which replaces the known rotation in Eq. 1 with a learned
one. Note that when the predicted rotation is identity RA =
I3×3, we are left with a standard downstream network.

ART can be trained end-to-end with downstream tasks
where the expected output orientation is the same as in-
put (see Fig. 2). Shape auto-encoding is a typical use case
for ART. In this case, the desired output is the input shape
itself, which can be imposed with the following modified
self-reconstruction loss

Lrecon = d
(
X, RT

A(X)g′(RA(X)X)
)
, (3)

where the loss function d : R3×N × R3×M 7→ R can be
Chamfer distance for point clouds or vertex-to-vertex dis-
tance for meshes.

3.2. Rotation Equivariance

Predicting rotations as in Eq. 2 with an objective func-
tion from Eq. 3 does not ensure alignment. ART can learn
multiple canonical orientations for a shape collection and
easily get trapped in local minima. This is undesirable for
both shape alignment and the target task. A necessary con-
dition for learning unique canonical orientation is that the
same shape in different input orientations should be trans-
formed to the same canonical orientation, mathematically
RA(X)X = RA(RX)RX ∀R ∈ SO(3). From this it fol-
lows that the rotation predictor RA should be equivariant to
input orientations, i.e. RA(RX) = RA(X)RT . We enforce
this constraint using a rotation equivariance loss (Fig. 3).

During training, given an input X ∈ R3×N , we uni-
formly sample a rotation R̃ ∈ SO(3) and obtain a dif-
ferent orientation of X, X̃ = R̃X. Suppose we have
R1 = RA(X) and R2 = RA(X̃). Then from the unique
orientation constraint R1X = R2X̃ we can derive

R̃ = RT
2 R1. (4)

Since R̃ is known, we can turn Eq. 4 into a loss term

Lrot matrix =
∥∥∥R̃−RT

2 R1

∥∥∥2
2
. (5)

Note that Lrot matrix is imposed on rotation matrices. How-
ever, objects such as tables can have rotational symme-
try. Suppose the rotation symmetry group of X is of or-
der n. Then there are n possible rotation matrices that will
leave shape X unchanged, so there is not a well-defined
groundtruth. To handle the potential ambiguity in rotational
symmetry, we add another loss term:

Lrot chamfer = dCD

(
X̃,R2

TR1X
)
, (6)

where dCD is the symmetric Chamfer distance. The intu-
ition behind this loss term is that shapes remain invariant to
distinct elements of their symmetry groups.

Combining these two terms, we have

LART = λ1Lrot matrix + λ2Lrot chamfer. (7)

3.3. Implementation Details

When the input shapes reside on the same plane, sam-
pling one rotation R̃ per iteration suffices for Eq. 5. For
general SO(3) rotations, we sample three R̃ instead. We
also took the approach of [55] and iteratively apply ART to
refine rotation predictions.

We adopt different architectures for Adjoint Rigid Trans-
form Network according to different types of input. For
point clouds, we use PointNet [39] as backbone. PointNet
is more efficient in both training and inference compared
with more sophisticated architectures for point cloud pro-
cessing such as PointNet++ [40], adding minimal overhead
to the downstream network. For meshes, we simply use
mesh down-sampling layers [41] and fully-connected lay-
ers. We use the continuous rotation representation proposed
in [57] for rotation prediction. Details about the architecture
are in the supplementary.

We need to ensure that ART does not disturb training
when the dataset is already in alignment, so we initialize it
to predict the identity matrix. In the following experiments,
we set λ1 = 0.02, and set λ2 = 0.05 for table category and
λ2 = 0 otherwise. Inputs are centered and normalized to fit
within a unit ball.

4. Experiments
In this section, we evaluate the effectiveness of ART

through extensive experiments. We demonstrate the use-
fulness of ART on several tasks for 3D data involving rigid
(ShapeNet [13]) and non-rigid (humans [33]) objects. We
also show that ART works seamlessly across different shape
representations such as point clouds and meshes.

4.1. Point Cloud Auto-encoding

Shape auto-encoding is a fundamental task in unsuper-
vised feature learning of point clouds. Prior works typically
report performance on datasets consisting of axis-aligned
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Figure 4: ART can align 3D shapes with just self-supervision. Given input shapes in arbitrary orientations (left), ART can align them to a
common orientation (right).
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Figure 5: ART can establish correspondences between different objects within a ShapeNet category even when the shapes are not aligned.
In A, we show that baseline [3] does not assign same colours to the corresponding parts. In B, we show that [3] gets confused between the
left and the right wing whereas ART does not. In C, we can see that [3] cannot find consistent correspondences as the front of the car is
mapped to the rear and side of the car respectively. ART on the other hand can establish correct correspondences.

shapes such as ShapeNet [13]. But in the real world, shapes
are often collected from diverse sources and are therefore
unaligned. To assess the capability of ART to handle un-
aligned data, we perturb shapes in ShapeNetCore [13] by
applying random 2D rotations around the gravity axis as
well as random 3D rotations. We evaluate auto-encoding
in both single-category and multi-category settings. For
single-category auto-encoding, we use plane, car, chair, ta-
ble and sofa categories. For multi-category auto-encoding,
we jointly train on these categories. For each shape, we uni-
formly sample 8000 points. The training/validation/testing
splits are kept as 85%/5%/10%. We use symmetric Chamfer
distance as both training loss and evaluation metric.

We use the network from Achlioptas et al. [3] as the
auto-encoder backbone. It also serves as one of our base-
lines. On top of it, we add ITN [55] and ART to assess
gains in performance brought by each module. Moreover,
we designed a PCA baseline, where we naı̈vely align shapes
by matching their principal axes and train the plain auto-
encoder on PCA-aligned data.

Table 1 reports the numerical results for point cloud
auto-reconstruction on both aligned and unaligned data.
We can observe a significant increase in reconstruction er-
ror when the auto-encoder trains on unaligned data. Pre-

aligning shapes with PCA alleviates the problem, but there
is still a performance gap. ITN performs on par with PCA,
while ART outperforms all baselines on unaligned data.
When the training data is perturbed by a 2D azimuthal ro-
tation, ART matches or even beats the performance on pre-
aligned data for most categories. This performance gain
drops slightly for the case of 3D rotations. Qualitative ex-
amples are shown in Fig. 10.

4.2. Shape Alignment

One of the key advantages of our method is alignment of
shapes to a canonical orientation (see Fig. 4). We evaluate
alignment on ShapeNet [13] plane category, which we per-
turbed by applying random azimuthal rotations. The plane
category has a well-defined criteria for exact alignment. It
also doesn’t suffer from ambiguities of rotational symme-
try, making it suitable for benchmarking alignment accu-
racy. We add results on other categories in supplementary.

Here, we use the alignment evaluation metric proposed
by Averkiou et al. [7]. We compute the angular distance be-
tween every pair of shapes using ShapeNet groundtruth ori-
entation as reference. We compare ART to PCA, ITN [55],
and the alignment method proposed by Averkiou et al. [7]
which assumes consistent up vectors among shapes.
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Figure 6: ART improves 3D human registration as compared to 3D-CODED [23] (single init.). In each set we show, (A) input point cloud,
(B) registration with [23], (C) registration with [23]+ART (Our) and (D) GT mesh. Adding ART improves the performance of [23].
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Figure 7: Percentage of shape pairs with an
angular distance less than the given thresh-
olds. ART outperforms the other three base-
lines by a large margin, with around 80% of
shape pairs differing by less than 10◦.
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Figure 8: Reconstruction error (mean Cham-
fer distance) vs. size of latent code for ART
and [3]. It can be seen that with a latent
code of size 32, ART already outperforms
[3] with a latent code of size 128.
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Figure 9: ART w/o equivariance constraint
can learn multiple canonical orientations.
Notice the sharp rise of the blue curve at 90◦

and 180◦ thresholds. It indicates the four
modes of orientations on the plane category.
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Figure 10: Shape auto-reconstruction. ART improves reconstruc-
tion quality when ShapeNet [13] objects are not aligned.

The cumulative distribution curve for pairwise errors is
shown in Fig. 7. For completeness we also include the ini-
tial pairwise error for unaligned shapes. We can see that
Averkiou et al. [7] perform on par with PCA on this dataset
while ITN underperforms, with over half of the shape pairs
differing by more than 30◦. This is because all these meth-
ods get confused by the near-symmetries of planes (e.g.
matching plane tip to tail, or wings to fuselage). ART
has two advantages in this regard, i) the downstream auto-
encoding task allows ART to learn semantically meaning-
ful features to better disambiguate parts of the plane, and ii)
our equivariance constraint forces ART to chose a unique
canonical orientation for all planes. More qualitative results

on 2D and 3D alignment will be shown in supplementary.

4.3. Shape Interpolation

Shape interpolation is a challenging task for unaligned
shapes as linear interpolation in feature space cannot han-
dle the highly nonlinear global orientation. In Fig. 12, we
show that interpolation with [3] severely distorts the shape
when the source and target shapes have different orienta-
tions. Notably, ART does not suffer from this as it brings
both the source shape and target shape to the same orienta-
tion where interpolation becomes meaningful.

4.4. Shape Correspondence Prediction

We show that our method can be used to predict dense
correspondences between objects within a ShapeNet [13]
category. The input to our shape auto-encoder is an un-
ordered point cloud of an object in arbitrary orientation. It
predicts a fixed number of points as output, which approx-
imates the input point cloud. This allows us to establish
correspondences across shapes as each shape is represented
as deformations of the same fixed set of points. We com-
pare the correspondences predicted by [3] with and without
ART. Notice that the model doesn’t have access to super-



Method Data Single-category Multi-categoriesPlane Chair Car Table Sofa
a) AE [3] pre-aligned 1.16 2.20 1.81 2.37 2.21 2.02
b) AE unaligned 2D 1.86 3.20 2.39 2.96 3.14 2.54
c) +PCA unaligned 2D 1.34 2.42 1.91 3.14 2.41 2.26
d) +ITN [55] unaligned 2D 1.37 2.29 1.89 2.38 2.20 2.10
e) +ART (Our) unaligned 2D 1.16 2.15 1.87 2.32 2.13 2.03
f) AE unaligned 3D 3.31 3.83 3.37 5.18 3.84 3.53
g) +PCA unaligned 3D 1.38 2.44 1.97 3.46 2.61 2.41
h) +ITN unaligned 3D 1.37 2.55 1.89 2.85 2.46 2.43
i) +ART (Our) unaligned 3D 1.22 2.41 1.88 2.38 2.16 2.26

Table 1: We evaluate our approach on point cloud auto-encoding by comparing to multiple baselines in different settings. Numbers
are reported in Chamfer distances (×10−3). We show that performance of existing method [3] drops significantly between aligned and
unaligned data. Aligning shapes with PCA and ITN [55] improves performance but our method clearly outperforms all the baselines, often
even matching the oracle performance on pre-aligned data. We highlight the lowest error in each training setting with boldface.

vision of correspondence, but point-wise correspondences
naturally arise when adding ART since the output space of
the auto-encoder now has a consistent global orientation.
The qualitative results are shown in Fig. 5.

4.5. Human Body Registration

3D-CODED, proposed by Groueix et al. [23], is a
popular learning-based human mesh registration approach.
Given an unordered point cloud as input, 3D-CODED
learns to deform a pre-defined human body template mesh
to match the point cloud. Since 3D-CODED was trained
on synthetic shapes with consistent global orientations, it
can only reconstruct shapes in that particular orientation.
When dealing with real world scans without alignment, 3D-
CODED applies multiple initializations to find the optimal
orientation – it rotates the scan with ∼100 uniformly sam-
pled rotations around the gravity axis.

We show that adding ART to their method solves this
problem. ART learns a canonical orientation for humans
during training. At inference time, it only takes a single
forward pass to transform the input to the canonical orien-
tation, which is both faster and more accurate than sam-
pling rotations. We compare the performance of ART with
3D-CODED [23] in both single-initialization and multiple-
initialization cases. We test on registered meshes from Ren-
derpeople [1] and AMASS [33]. We can see from Table 2
that ART consistently outperforms 3D-CODED by a large
margin, even though we do not require 100 initializations.
The qualitative results are shown in Fig. 6.

4.6. Human Pose Transfer

We use the SotA unsupervised model proposed by Zhou
et al. [56] for the task of pose transfer. The input to their
method is a registered 3D human mesh and they decompose
the mesh deformations into shape and pose components.
Like [56], we train on AMASS [33], a human motion cap-

Method
Dataset

Renderpeople AMASS

3D-CODED Single Init. 193.0 50.0
3D-CODED Multi Init. 23.8 33.9
ART (Our) 16.9 16.8

Table 2: Human mesh registration. We report vertex-to-vertex er-
ror in mm. 3D-CODED+ART with single initialization outper-
forms 3D-CODED [23] with multiple (∼100) initializations.

Method Supervised Unsupervised
Zhou et al. [56] 15.44 19.43

ART (Our) 9.16 17.98
Table 3: ART for human pose transfer. ART improves the perfor-
mance of [56] in both supervised and unsupervised setups. We
report vertex-to-vertex error in mm.

ture dataset parametrized by SMPL model [32]. We evalu-
ate model performance on the task of pose transfer, where
we reconstruct a human body from the shape of one subject
and the pose from another subject. Since we have access to
the underlying SMPL parameters, we utilize SMPL model
to generate pseudo-groundtruth for evaluation. Following
the practice of [56], we also trained a supervised model
from SMPL pseudo-groundtruth. Table 3 summarizes pose
transfer errors. ART significantly lowers the pose transfer
error in both supervised and unsupervised setups.

4.7. Human Pose Interpolation

Another limitation of [56] is that it cannot interpolate
poses between two humans with very different global orien-
tations. Fig. 11 shows pose interpolation results when there
is a large global rotation between source and target. In [56],
pose interpolation is done by linearly interpolating between
source and target pose codes. However, the intermediate
pose codes do not always lie on the pose manifold, caus-



Source shape Target shape

Figure 11: Pose interpolation without ART (blue) leads to squeezing artifacts whereas +ART (brown) handles global rotations well. We
use Zhou et al. [56] for pose interpolation and compare performance with and without adding ART to the method.

Source shape Target shape 

Figure 12: Shape interpolation without ART (top) leads to severe distortions due to different orientations between source and target shapes.
+ART (bottom) on the other hand aligns the source and the target shape to a canonical orientation, resulting in smooth interpolation.

ing the squeezing artifact. Since ART can explicitly factor
global rotations out, pose codes in our approach only rep-
resent articulation and not global rotation. To interpolate
pose, we simply apply linear interpolation to pose codes,
and spherical linear interpolation [44] to global rotations
predicted by ART. Fig. 11 clearly demonstrates the strength
of our method. See supplementary for more results.

4.8. Analysis and Ablation

Size of latent code vs. performance We show that a
point cloud auto-encoder [3] cannot learn to encode shape
orientation despite using a large latent dimension. In this
experiment, we gradually increase the size of the latent
code and study the performance improvement in the task
of multi-category point cloud reconstruction. It can be seen
from Fig. 8 that while the error drops with an increasing
latent dimension, the gap between the baseline and ART
remains. ART with 32 latent dimensions already outper-
forms [3] with 128 latent dimensions.

Importance of the equivariance constraint We imple-
ment a baseline where ART is free to predict arbitrary rota-
tions, i.e. we do not enforce equivariance constraint. It can
be seen from Fig. 9 that the quality of alignment without the
equivariance constraint is poor as the network is free to pick
multiple canonical orientations without the constraint.

5. Conclusion

Learning 3D representations is a challenging task and
methods across a wide range of tasks rely on aligned data.
Obtaining this alignment in real world scenarios is not triv-
ial and often requires a lot of manual effort. We propose
a simple module, Adjoint Rigid Transform (ART) Network
that can automatically align 3D data conditioned on a set
of target tasks. What makes ART effective is the semantic
features learned by the auto-encoder coupled with a rotation
equivariance constraint which results in a canonical orien-
tation for input shapes. ART can be easily integrated into
existing systems, can work with point clouds and meshes,
and can be trained with self-supervision. We experimen-
tally show that ART significantly boosts the performance of
existing methods for shape auto-encoding, alignment, and
interpolation on rigid objects, and human registration, pose
transfer, and interpolation on non-rigid humans.
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(BMBF): Tübingen AI Center, FKZ: 01IS18039A. This
work is funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) - 409792180 (Emmy
Noether Programme, project: Real Virtual Humans). Ger-
ard Pons-Moll is a member of the Machine Learning Clus-
ter of Excellence, EXC number 2064/1 – Project number
390727645. The project was made possible by funding



from the Carl Zeiss Foundation.

References
[1] Renderpeople. https://renderpeople.com/. 7
[2] https://virtualhumans.mpi-inf.mpg.de/

art/. 1
[3] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative
models for 3d point clouds. In International conference on
machine learning, pages 40–49. PMLR, 2018. 5, 6, 7, 8

[4] Yasseen Almakady, Sasan Mahmoodi, Joy Conway, and
Michael Bennett. Rotation invariant features based on three
dimensional gaussian markov random fields for volumetric
texture classification. Computer Vision and Image Under-
standing, 194:102931, 2020. 2

[5] Roberto Annunziata, Christos Sagonas, and Jacques Calı̀.
Destnet: Densely fused spatial transformer networks. arXiv
preprint arXiv:1807.04050, 2018. 3

[6] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares
fitting of two 3-d point sets. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, PAMI-9(5):698–
700, 1987. 3

[7] Melinos Averkiou, Vladimir G Kim, and Niloy J Mitra.
Autocorrelation descriptor for efficient co-alignment of 3d
shape collections. In Computer Graphics Forum, volume 35,
pages 261–271. Wiley Online Library, 2016. 3, 5, 6

[8] Anil Bas, Patrik Huber, William AP Smith, Muhammad
Awais, and Josef Kittler. 3d morphable models as spatial
transformer networks. In Proceedings of the IEEE Inter-
national Conference on Computer Vision Workshops, pages
904–912, 2017. 3

[9] P. J. Besl and N. D. McKay. A method for registration of 3-d
shapes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(2):239–256, 1992. 3

[10] Bharat Lal Bhatnagar, Cristian Sminchisescu, Christian
Theobalt, and Gerard Pons-Moll. Combining implicit func-
tion learning and parametric models for 3d human recon-
struction. In European Conference on Computer Vision
(ECCV). Springer, August 2020. 1

[11] Bharat Lal Bhatnagar, Cristian Sminchisescu, Christian
Theobalt, and Gerard Pons-Moll. Loopreg: Self-supervised
learning of implicit surface correspondences, pose and shape
for 3d human mesh registration. In Advances in Neural In-
formation Processing Systems (NeurIPS), December 2020. 1

[12] Giorgos Bouritsas, Sergiy Bokhnyak, Stylianos Ploumpis,
Michael Bronstein, and Stefanos Zafeiriou. Neural 3d mor-
phable models: Spiral convolutional networks for 3d shape
representation learning and generation. In The IEEE Inter-
national Conference on Computer Vision (ICCV), 2019. 1

[13] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Tech-
nological Institute at Chicago, 2015. 1, 4, 5, 6

[14] M. Chaouch and A. Verroust-Blondet. A novel method for
alignment of 3d models. In 2008 IEEE International Confer-
ence on Shape Modeling and Applications, pages 187–195,
2008. 3

[15] Yang Chen and Gérard Medioni. Object modelling by regis-
tration of multiple range images. Image and vision comput-
ing, 10(3):145–155, 1992. 3

[16] Taco S. Cohen and Max Welling. Steerable cnns. Interna-
tional Conference on Learning Representations ICLR, 2017.
2

[17] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5828–5839, 2017. 1

[18] Sander Dieleman, Jeffrey De Fauw, and Koray Kavukcuoglu.
Exploiting cyclic symmetry in convolutional neural net-
works. volume 48 of Proceedings of Machine Learning Re-
search, pages 1889–1898, New York, New York, USA, 20–
22 Jun 2016. PMLR. 2

[19] Carlos Esteves, Christine Allen-Blanchette, Ameesh Maka-
dia, and Kostas Daniilidis. Learning so (3) equivariant repre-
sentations with spherical cnns. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 52–68,
2018. 2

[20] Yuan Fang, Chunyan Xu, Zhen Cui, Yuan Zong, and Jian
Yang. Spatial transformer point convolution. arXiv preprint
arXiv:2009.01427, 2020. 3

[21] N. Fish, R. Zhang, L. Perry, D. Cohen-Or, E. Shechtman, and
C. Barnes. Image morphing with perceptual constraints and
stn alignment. Computer Graphics Forum, 39(6):303–313,
2020. 3

[22] Shunwang Gong, Lei Chen, Michael Bronstein, and Stefanos
Zafeiriou. Spiralnet++: A fast and highly efficient mesh
convolution operator. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision Workshops, pages 0–
0, 2019. 1

[23] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan
Russell, and Mathieu Aubry. 3d-coded : 3d correspondences
by deep deformation. In ECCV, 2018. 1, 6, 7

[24] Qi-Xing Huang, Hao Su, and Leonidas Guibas. Fine-grained
semi-supervised labeling of large shape collections. ACM
Transactions on Graphics (TOG), 32(6):1–10, 2013. 3

[25] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.
Spatial transformer networks. In Advances in neural infor-
mation processing systems, pages 2017–2025, 2015. 3

[26] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and
Koray Kavukcuoglu. Spatial transformer networks. In Pro-
ceedings of the 28th International Conference on Neural In-
formation Processing Systems - Volume 2, NIPS’15, page
2017–2025, 2015. 1

[27] Michael M Kazhdan. Shape representations and algorithms
for 3D model retrieval. PhD thesis, Princeton University
Princeton, 2004. 3

[28] Thomas N. Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. In International
Conference on Learning Representations (ICLR), 2017. 1

https://renderpeople.com/
https://virtualhumans.mpi-inf.mpg.de/art/
https://virtualhumans.mpi-inf.mpg.de/art/


[29] Chen-Hsuan Lin and Simon Lucey. Inverse compositional
spatial transformer networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2568–2576, 2017. 3

[30] Feng Liu and Xiaoming Liu. Learning implicit functions
for topology-varying dense 3d shape correspondence. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
December 2020. 3

[31] Yinlong Liu, Chen Wang, Zhijian Song, and Manning Wang.
Efficient global point cloud registration by matching rotation
invariant features through translation search. In Computer
Vision – ECCV 2018, pages 460–474, Cham, 2018. Springer
International Publishing. 2

[32] Matthew Loper, Naureen Mahmood, Javier Romero, Ger-
ard Pons-Moll, and Michael J. Black. SMPL: A skinned
multi-person linear model. ACM Trans. Graphics (Proc.
SIGGRAPH Asia), 34(6):248:1–248:16, Oct. 2015. 1, 7

[33] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Ger-
ard Pons-Moll, and Michael J. Black. AMASS: Archive of
motion capture as surface shapes. In International Confer-
ence on Computer Vision, pages 5442–5451, Oct. 2019. 4,
7

[34] P. Minovic, S. Ishikawa, and K. Kato. Symmetry identifica-
tion of a 3-d object represented by octree. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 15(5):507–
514, 1993. 3

[35] Richard M Murray, Zexiang Li, S Shankar Sastry, and
S Shankara Sastry. A mathematical introduction to robotic
manipulation. CRC press, 1994. 3

[36] Leonid Pishchulin, Stefanie Wuhrer, Thomas Helten, Chris-
tian Theobalt, and Bernt Schiele. Building statistical
shape spaces for 3d human modeling. Pattern Recognition,
67:276–286, 2017. 1

[37] Joshua Podolak, Philip Shilane, Aleksey Golovinskiy, Szy-
mon Rusinkiewicz, and Thomas Funkhouser. A planar-
reflective symmetry transform for 3d shapes. ACM Trans-
actions on Graphics (TOG), 25(3):549–559, July 2006. 3

[38] François Pomerleau, Francis Colas, and Roland Siegwart.
A review of point cloud registration algorithms for mobile
robotics. Foundations and Trends® in Robotics, 4(1):1–104,
2015. 3

[39] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 1, 3, 4

[40] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in neural informa-
tion processing systems, pages 5099–5108, 2017. 1, 4

[41] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and
Michael J Black. Generating 3d faces using convolutional
mesh autoencoders. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 704–720, 2018. 1,
4

[42] Konstantinos Sfikas, Theoharis Theoharis, and Ioannis
Pratikakis. Rosy+: 3d object pose normalization based on

pca and reflective object symmetry with application in 3d
object retrieval. International Journal of Computer Vision,
91(3):262–279, 2011. 3

[43] Wen Shen, Binbin Zhang, Shikun Huang, Zhihua Wei, and
Quanshi Zhang. 3d-rotation-equivariant quaternion neural
networks. arXiv preprint arXiv:1911.09040, 2019. 2

[44] Ken Shoemake. Animating rotation with quaternion curves.
In Proceedings of the 12th annual conference on Computer
graphics and interactive techniques, pages 245–254, 1985. 8

[45] Riccardo Spezialetti, Federico Stella, Marlon Marcon, Lu-
ciano Silva, Samuele Salti, and Luigi Di Stefano. Learning to
orient surfaces by self-supervised spherical cnns. Advances
in Neural Information Processing Systems, 33:5381–5392,
2020. 2

[46] Weiwei Sun, Andrea Tagliasacchi, Boyang Deng, Sara
Sabour, Soroosh Yazdani, Geoffrey E Hinton, and
Kwang Moo Yi. Canonical capsules: Self-supervised cap-
sules in canonical pose. Advances in Neural Information
Processing Systems, 34, 2021. 2

[47] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann
Yang, Li Li, Kai Kohlhoff, and Patrick Riley. Tensor field
networks: Rotation-and translation-equivariant neural net-
works for 3d point clouds. arXiv preprint arXiv:1802.08219,
2018. 2

[48] Victor Villena-Martinez, Sergiu Oprea, Marcelo Saval-
Calvo, Jorge Azorin-Lopez, Andres Fuster-Guillo, and
Robert B Fisher. When deep learning meets data align-
ment: A review on deep registration networks (drns). arXiv
preprint arXiv:2003.03167, 2020. 3

[49] D. V. Vranic. An improvement of rotation invariant 3d-shape
based on functions on concentric spheres. In Proceedings
2003 International Conference on Image Processing (Cat.
No.03CH37429), volume 3, pages III–757, 2003. 2

[50] Jiayun Wang, Rudrasis Chakraborty, and Stella X Yu. Spatial
transformer for 3d points. arXiv preprint arXiv:1906.10887,
2019. 3

[51] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019. 1

[52] Maurice Weiler and Gabriele Cesa. General e(2)-equivariant
steerable cnns. In H. Wallach, H. Larochelle, A. Beygelz-
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