Learning 3D Digital Humans from Images, Videos and Scans

Emmy Noether-Programm

orschungsgemeinschaf

max planck institut informatik

Max Planck (1858 – 1947)

- German theoretical physicist considered to be the *founder* of <u>quantum theory</u>
- Light and electromagnetic waves emitted in discrete "packets" of energy (quanta) → Nobel prize in 1918
- President of the Kaiser-Wilhelm society → in 1938 resigned to protest when nazis took over
- At age 85 still fit enough to climb 3000m peaks 😳

Max Planck Society

rooted in Kaiser Wilhelm Society 1911- 1945 and re-founded 1948

Research Establishments SCHLESWIG HOLSTEIN Greifs WESTERN POMERANIA Institute / research center Hambu Sub-institute / external branch Other research establishments Associated research organizations Bremen LOWER SAXONY The Netherland Berlin Nijmeger Italy Hanover Potsdam • Rom Florence Magdebur Münster USA SAXONY-ANHALT Jupiter, Florida NORTH RHINE-WESTPHALIA Dortmund • Brazil Halle 🐽 Mülheim Manaus Göttinge 💑 Leipzig Luxembourg Düsseldorf Luxembourg Cologne 💦 Jena 🎝 Bonn 👥 Marburg THURINGIA Bad Münstereifel HESSE RHINELAND Bad Nauhei Erlangen 💦 Heidelberg BAVARIA Stuttgart 💦 Tübingen **Garching** BADEN-Munich 器 WÜRTTEMBERG Martinsried MAX-PLANCK-GESELLSCHAFT Freiburg Seewiesen Radolfzell

85 institutes (MPIs)ca. 300 directorsca. 6500 scientistsincl. 5000 doct. students

33 Nobel prizes (Planck, Hahn, Heisenberg, ..., Hell)

MPI for Informatics (founded in 1990)

D1: Algorithms and Complexity (Kurt Mehlhorn, 1990-2019)

D2: Computer Vision and Machine Learning (Bernt Schiele, 2010-2035)

D3: Internet Architecture (Anja Feldmann, 2018-2033)

D4: Computer Graphics (Hans-Peter Seidel, 1999-2026)

D5: Databases and Information Systems (Gerhard Weikum, 2003-2023)

RG1: Automation of Logics (Christoph Weidenbach, 2005-2033)

- 5 Scientific directors,
- 1 Emeritus,
- 27 Senior researchers (3 tenured)
- *30 Postdocs,*
- 96 Doctoral students

BIO: Computational Biology (Thomas Lengauer)

Publications

CSRankings: Computer Science Rankings

CSRankings is a metrics-based ranking of top computer science institutions around the world. Click on a triangle (>) to expand areas or institutions. Click on a name to go to a faculty member's home page. Click on a pie (the 🔕 after a name or institution) to see their publication profile as a pie chart. Click on a Google Scholar icon (🔅) to see publications, and click on the DBLP logo () to go to a DBLP entry.

Rank institutions in Europe ♦ by publications from 2009 ♦ to 2019 ♦

 \checkmark

All Areas [off | on]

Al [off | on]

Artificial intelligence	\checkmark
Computer vision	\checkmark
Machine learning & data mining	
Natural language processing	\checkmark
The Web & information retrieval	 ✓

Systems [off | on]

Computer architecture	 Image: A start of the start of
Computer networks	
Computer security	<
Databases	 Image: A start of the start of
Design automation	 Image: A start of the start of
Embedded & real-time systems	 Image: A start of the start of
High-performance computing	
Mobile computing	<
Macouroment 9 nort enclusio	

#	Institution	Count Fac	culty	
1	ETH Zurich O	7.7	35	
2	Max Planck Institute O	5.2	31	_
3	Technion Q	5.0	77	-
4	EPFL O	4.7	46	
5	University of Edinburgh O	4.4	69	
6	Tel Aviv University O	4.1	42	
7	University College London O	3.7	55	
8	University of Oxford	3.6	50	
9	TU Munich Q	3.4	40	
10	TU Darmstadt O	3.3	27	
11	Hebrew University of Jerusalem O	3.0	35	
12	Imperial College London O	2.9	39	
13	University of Cambridge Q	2.8	38	

Publications

CSRankings: Computer Science Rankings

CSRankings is a metrics-based ranking of top computer science institutions around the world. Click on a triangle (>) to expand areas or institutions. Click on a name to go to a faculty member's home page. Click on a pie (the O after a name or institution) to see their publication profile as a pie chart. Click on a Google Scholar icon ((R)) to see publications, and click on the DBLP logo ((*)) to go to a DBLP entry.

Rank institutions in Europe 📀 by publications from 2009 😋 to 2019 📀

All Areas [off | on]

Al [off | on]

- Artificial intelligence
 Computer vision
- Machine learning & data mining
- Natural language processing
- The Web & information retrieval

Systems [off | on]

Computer architecture
Computer networks
Computer security
Databases
Design automation
Embedded & real-time systems
High-performance computing
Mobile computing
Measurement & perf analysis

# Institution	Count Faculty		n Count Facu
1 🕨 Max Planck Institute 🔾	52.6	7	
2 🕨 ETH Zurich 🥥	43.1	5	
3 ► University of Surrey O	41.6	12	
4 🕨 TU Munich 🥥	37.3	9	
5 🕨 EPFL 🔕	36.2	7	
6 🕨 Graz University of Technology 🥥	34.4	5	
7 🕨 Ecole Normale Superieure 🧿	30.1	5	
8 🕨 Imperial College London 🥥	29.4	10	
9 🕨 Technion 🧿	25.7	12	
10 10 University of Edinburgh	23.5	4	
11 🕨 TU Darmstadt 🧿	15.4	4	
12 Queen Mary University of London	14.6	4	
13 🕨 University College London 🧿	14.0	9	

Goal: Realistic virtual humans

Realistic 3D people models:

- Move and look like real people
- Easy to control and animate
- Easy to fit to data

<u>Reconstruction</u> from images:

- Accurate
- Efficient
- Robust

VIRTUAL HUMANS - MENTAL MODEL

SMPL: Pose and Shape

Loper et al. SiggAsia'15 **DYNA/DMPL**: Soft-tissue

Pons-Moll et al. Siggraph'15

ClothCap: Clothing Pons-Moll et al. Siggraph'17

"You need 3 things to win a war"

- Money
- Money
- And more Money

Gian Giacomo Trivulzio

You need 3 things to solve an AI problem

- Data
- Data
- And more Data

Geoff Hinton

Idea: Collect 3D scans from

and thousands of poses

1000's of high-resolution scans of different shapes and poses

SMPL: A model of pose and shape

 $M(\theta, \beta; \mathbf{w}) : \mathbb{R}^{|\theta| + |\beta|} \mapsto \mathbb{R}^{3N}$

Latent parameters \mapsto vertices SMPL Model

M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, M. Black SIGGRAPH Asia 145

Template Mesh

Template Mesh

Shape Blend Shapes

Template Mesh

Shape Blend Shapes Pose Blend Shapes

Given Pose

Template Mesh

Shape Blend Shapes Pose Blend Shapes

Final Mesh

Model Training

Dyna: A model of how we jiggle

DYNA: A model soft-tissue

Pose Blend Shapes

Dynamic Blend Shapes

DMPL Pons-Moll et al. SIGGRAPH'15

DOES NOT SCALE TO THE REAL WORLD

Vision

Computer Vision + Computer Graphics + Learning

Neural Body Fitting: Body Pose and Shape from a Single Image

M. Omran

C. Lassner

G. Pons-Moll

P. Gehler

B. Schiele

3DV 2018 Best Student Paper Award

Code is available at: https://github.com/mohomran/neural_body_fitting

Input Representation

Would an intermediate representation help? If yes, which?

Input representation

98.5

RGB

3D ERROR (IN MM) Unite

UniteThePeople

How much 3D data is needed?

% of training data with 3D ground truth (besides 2D)

Clothing

Video-Based Reconstruction of 3D People Models

T. Alldieck

M. Magnor

W. Xu

C. Theobalt G. Pons-Moll

CVPR'18 [spotlight]

Previous Work

No clothing, no personalization!

[Pavlakos et al. '18]

[Kanazawa et al. '18]

[Bogo et al. '15]

Goal: 3D Reconstruction of People from a Single Video

Key Idea: Extend Visual Hulls to Dynamic Human Motion

Problem: standard visual hull requires a **static** object captured by multiple views

How Can We Generalize It to Dynamic Human Motion ?

Person is moving!

How Can We Generalize It to Dynamic Human Motion ?

Estimate the 3D human pose and shape per frame

Optimize a Single Shape to Fit all Unposed Silhouette Cones

Smoothness

Sum of **point to line** distances

Alldieck et al. 3DV '18

Code and data:

https://graphics.tu-bs.de/people-snapshot

Limitations

 Need to optimize the 3D pose at each frame – slow process

• Requires multiple frames ~100

• Optimization susceptible to local minima

Learning to Reconstruct People in Clothing from a Single RGB Camera

T. Alldieck

M. Magnor

B. Bhatnagar

C. Theobalt

Dataset and Training

Amount of 3D vs 2D supervision

	Before optimization	After optimization
100%	4.47 ± 4.41	3.17 ±3.41 ⊾
50%	4.57 ± 4.52	3.19 ±3.43
20%	4.74 ± 4.65	3.29 ± 3.53
10%	4.73 ± 4.56	3.46 ± 3.62

Small Gap

Remaining Problems (with the Representation)

• Lack of geometric detail

- Un-sharp clothing boundaries
- Can not retarget to new bodies
- Limited to clothing with "body topology"

Tex2Shape: Detailed Full Human Body Geometry from a Single Image

Alldieck et al. ICCV'19

Results

2

Comparisons

Remaining Problems (with the Representation)

- Lack of geometric detail
- Un-sharp clothing boundaries
- Can not retarget to new bodies
- Limited to clothing with "body topology"

Just a scan!

- Un-ordered point cloud
- No control: can not change shape, motion, clothing
- Useless without further processing

CAESAR Dataset [Robinette, et al. 2002] Male Subjects

STILL CLOTHCAP USES 4D SCANS AS INPUT

Double-Layer Surface Reconstruction

Tao et al. CVPR'19

Results: Front View

Results: Back View

Results: Front View

Results: Back View

Motion Capture from Sparse IMUs

Sparse Inertial Poser

Automatic 3D Human Pose Estimation from Sparse IMUs

Supplementary material

Eurographics'17 Paper ID 1112

T. Marcard, B. Rosenhahn, M. Black, G. Pons-Moll. Eurographics '17 Best Paper Award

Climbing

Recovering Accurate 3D Human Pose in the Wild Using IMUs and a Moving Camera

T. von Marcard

R. Henschel

M. Black

B. Rosenhahn

G. Pons-Moll

ECCV'18

3DPW: 3D Poses in the Wild

A single moving camera and IMUs on the person

Person Identification

All 2D Poses

Assigned 2D Poses

3D Pose Estimation

Full dataset available: http://virtualhumans.mpi-inf.mpg.de/3DPW/

3DPW

- 60 video sequences.
- 2D pose annotations.
- 3D reference poses.
- Camera poses for every frame in the sequences.
- 3D body scans and 3D people models (re-poseable and reshapeable). Each sequence contains its corresponding models.
- 18 3D models in different clothing variations.

Multiple People (3DV'18) D. Mehta, O. Sotnychenko, F. Mueller, Weipeng Xu, S.Sridha, G.Pons-Moll, C. Theobalt

Detailed Human Avatars from Real-Time Monocular Performance CaptureMonocular VideoM. Habermann, W. Xu, M. Zollhoefer,T. Alldieck, M. Magnor, W. Xu,C.G.Pons-Moll, C. TheobaltTheobalt, G.Pons-MollC. Theobalt

Shape and Motion from Markers

N. Mahmood, G. Pons-Moll, N. Riza, N. Troje, M. Black Recovering accurate 3D human pose in the wild using IMUs and a single camera (ECCV'18) Marcard, Henschel, Black, Rosenhahn, Pons-Moll

Generating People with GANs

C.Lassner, G. Pons-Moll, P. Gehler ICCV'17

CONCLUSIONS

- To achieve realism we need to learn digital humans by capturing real ones
- Clothing is one of the main missing components in current statistical body models
- We need perception algorithms that reason about the 3D world, not about pixels

Real Virtual Humans

DATA & CODE:

https://virtualhumans.mpi-inf.mpg.de/software.html

Open positions: Postdoc, PhD, Master

Body and Garments Separately?

Multiple People (3DV'18) D. Mehta, O. Sotnychenko, F. Mueller, Weipeng Xu, S.Sridha, G.Pons-Moll, C. Theobalt

Clothing Preferences Shape Evasion H. Sattar, G.Pons-Moll, M. Fritz Real-Time Monocular Performance Capture M. Habermann, W. Xu, M. Zollhoefer, G.Pons-Moll, C. Theobalt

Shape and Motion from Markers

N. Mahmood, G. Pons-Moll, N. Riza, N. Troje, M. Black

Generating People with GANs C.Lassner, G. Pons-Moll, P. Gehler ICCV'17 CAESAR Dataset [Robinette, et al. 2002] Male Subjects

A generative model of people in clothing

Christoph Lassner, Gerard Pons-Moll and Peter Gehler

ICCV 2017 - Spotlight

Variational auto-encoder and image translation network

Generate people in random fashion styles

Condition on color

SMPL: A model of pose and shape

 $M(\theta, \beta; \mathbf{w}) : \mathbb{R}^{|\theta| + |\beta|} \mapsto \mathbb{R}^{3N}$

Latent parameters \mapsto vertices SMPL Model

M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, M. Black SIGGRAPH Asia 15

DYNA: A model soft-tissue

Pose Blend Shapes

Dynamic Blend Shapes

DMPL Pons-Moll et al. SIGGRAPH'15