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Max Planck (1858 – 1947)
• German theoretical physicist considered to be 

the founder of quantum theory

• Light and electromagnetic waves emitted in 
discrete “packets” of energy (quanta) à Nobel 
prize in 1918

• President of the Kaiser-Wilhelm society à in 
1938 resigned to protest when nazis took over

• At age 85 still fit enough to climb 3000m peaks J



Max Planck Society

rooted in Kaiser Wilhelm Society  1911- 1945

and re-founded 1948         

33 Nobel prizes (Planck, Hahn, Heisenberg, …, Hell)            

85 institutes (MPIs)

ca. 300 directors

ca.  6500 scientists

incl. 5000 doct. students



D1: Algorithms and Complexity
(Kurt Mehlhorn, 1990-2019)

D2: Computer Vision and Machine Learning
(Bernt Schiele, 2010-2035)

D3: Internet Architecture 
(Anja Feldmann, 2018-2033)

D4: Computer Graphics 
(Hans-Peter Seidel, 1999-2026)

D5: Databases and Information Systems
(Gerhard Weikum, 2003-2023)

RG1: Automation of Logics
(Christoph Weidenbach, 2005-2033)

5 Scientific directors,
1 Emeritus,
27 Senior researchers (3 tenured)
30 Postdocs,
96 Doctoral students

BIO: Computational Biology
(Thomas Lengauer)

MPI for Informatics (founded in 1990)
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Goal: Realistic virtual humans
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3D world

Capture and Analysis

+

Realistic 3D people models: 
- Move and look like real people
- Easy to control and animate
- Easy to fit to data

Reconstruction from images:
- Accurate
- Efficient
- Robust

GenerationGeneration (+ clothing)



SMPL: Pose and Shape

VIRTUAL HUMANS - MENTAL MODEL

DYNA/DMPL: Soft-tissue ClothCap: Clothing
Loper et al. 
SiggAsia’15 

Pons-Moll et al. 
Siggraph’15 

Pons-Moll et al. 
Siggraph’17



“You need 3 things to win a war”

- Money
- Money
- And more Money

Gian Giacomo Trivulzio

Slide adapted from Vladlen Koltun



You need 3 things to solve an AI problem

- Data
- Data
- And more Data

Geoff Hinton



Idea: Collect 3D scans from

thousands of people…



and thousands of poses

1000’s of high-resolution scans of different shapes and poses



SMPL: A model of pose and shape

M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, M. Black SIGGRAPH Asia‘1514

Latent parameters 7! vertices

M(✓,�;w) : R|✓|+|�| 7! R3N
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Model Training

w = argmin
w

X

j

kM(~✓, ~�;w)� k2



Dyna: A model of how we jiggle

G. Pons-Moll,
J. Romero, 

N. Mahmood, 
M. Black

SIGGRAPH‘15



Pons-Moll et al. SIGGRAPH’15

DYNA: A model soft-tissue
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4D scanner
- 66 cameras, projectors, LED, …
- No clothing
- Single person

DOES NOT SCALE TO THE REAL 
WORLD



Vision

3D 
Model

3D world

pose

shape
CNN

✓

�

2D Input: images, video Model 
Parameters

2D Input

clothingc M(✓,�, c)

Render

3D data
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Mental ModelPerception

Training data hard to 
obtain (or impossible)

Computer Vision + Computer Graphics + Learning



Neural Body Fitting:
Body Pose and Shape from a Single Image

M. Omran C. Lassner G. Pons-Moll       P. Gehler B. Schiele

3DV 2018 
Best Student Paper Award



SMPL

3D world

M(✓,�)

Neural Body Fitting
Body Pose and Shape from 1 Image

Omran et al.
3DV 2018 Best student paper award

pose

shape
CNN ✓

�

Input Output 2D keypoints

P (·)

Training data hard to 
obtain!

z
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Code is available at: 
https://github.com/mohomran/neural_body_fitting



Input Representation
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Would an intermediate representation help?
If yes, which?

Input (2D) Output (3D)Proxy representation



Input representation
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3D ERROR (IN MM) UniteThePeople Human3.6M



How much 3D data is needed?
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Clothing



Video-Based Reconstruction of 3D People 
Models

CVPR’18 
[spotlight]

T. Alldieck M. Magnor W. Xu C. Theobalt G. Pons-Moll



Previous Work

[Bogo et al. ’16] [Lassner et al. ’17] [Popa et al. ’17]

[Pavlakos et al. ’18] [Kanazawa et al. ’18] [Bogo et al. ’15]

No clothing, no personalization!



Goal: 3D Reconstruction of People from 
a Single Video



Key Idea: Extend Visual Hulls to Dynamic 
Human Motion

Problem: standard visual hull requires a static object captured by multiple views



How Can We Generalize It to Dynamic 
Human Motion ? 

Person is 
moving!



How Can We Generalize It to Dynamic 
Human Motion ? 

Estimate the 
3D human 
pose and 
shape per 
frame



Silhouette rays with 
correspondences on 

the surface



Key idea: transform the silhouette cones according to 
the inverse of non-rigid motion



Inverse of Articulated Motion RayRay in Canonical Frame



Optimize a Single Shape to Fit all 
Unposed Silhouette Cones

argmin
�,d

Econs(�,d)

Prior Terms:
- Symmetry
- Prior on Shape
- Surface 

SmoothnessSum of point to line distances





Alldieck et al. 3DV ‘18





Code and data:
https://graphics.tu-bs.de/people-snapshot



Limitations
• Need to optimize the 3D pose at each frame –

slow process 

• Requires multiple frames ~100

• Optimization susceptible to local minima



Learning to Reconstruct People in Clothing 
from a Single RGB Camera

CVPR’19 

T. Alldieck M. Magnor B. Bhatnagar C. Theobalt G. Pons-Moll



Shape

CNN

Octopus

+

‘render & compare’regress

Render

Poses

[Cao et al. 2017]

3D Loss

2D Loss



Dataset and Training



Synthetic training data



Results





Amount of 3D vs 2D supervision

Small Gap



Remaining Problems (with the Representation) 

• Lack of geometric detail
• Un-sharp clothing boundaries
• Can not retarget to new bodies
• Limited to clothing with “body topology”



Tex2Shape: Detailed Full Human Body 
Geometry from a Single Image
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displacements

Alldieck et al. ICCV’19





Results
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Comparisons

BodyNet
Gül et al. ECCV’18

HMR
Kanazawa et al. 
CVPR’18

Our CVPR18
(120 frames)

Tex2ShapeSciCloPe
Natsume et al.   

CVPR’19



Remaining Problems (with the Representation) 

• Lack of geometric detail
• Un-sharp clothing boundaries
• Can not retarget to new bodies
• Limited to clothing with “body topology”



Capture and Dress People Digitally

Pons-Moll et al. 
SIGGRAPH 2017

Just a scan! 
- Un-ordered point cloud
- No control: can not change shape, 

motion, clothing
- Useless without further processing 



Capture and Dress People Digitally

Pons-Moll et al. 
SIGGRAPH 2017



Pons-Moll et al. 
SIGGRAPH 2017

Capture and Dress People Digitally



Pons-Moll et al. 
SIGGRAPH 2017

Capture and Dress People Digitally



Pons-Moll et al. 
SIGGRAPH 2017

Capture and Dress People Digitally



STILL CLOTHCAP USES 
4D SCANS AS INPUT



Partial Surface! (hollow on the occluded part)

CVPR’18 [Oral]





Performance capture with multi-
layer and physics simulation

Tao et al. CVPR’19



Different topologies



Orientation

Acceleration

IMU = Inertial Measurement Unit
(Xsens)



T. Marcard, B. Rosenhahn, M. Black, G. Pons-Moll. Eurographics ’17 Best Paper Award





Recovering Accurate 3D Human Pose in the 
Wild Using IMUs and a Moving Camera

T. von Marcard R. Henschel M. Black B. Rosenhahn G. Pons-Moll

ECCV’18



3DPW: 3D Poses in the Wild



A single moving camera and IMUs on the 
person



Person Identification



3D Pose Estimation



Full dataset available: 
http://virtualhumans.mpi-inf.mpg.de/3DPW/



3DPW
• 60 video sequences.

• 2D pose annotations.

• 3D reference poses.

• Camera poses for every frame in the sequences.

• 3D body scans and 3D people models (re-poseable and re-
shapeable). Each sequence contains its corresponding models.

• 18 3D models in different clothing variations.



Multiple People (3DV’18 )
D. Mehta, O. Sotnychenko, F. Mueller, 
Weipeng Xu, S.Sridha, G.Pons-Moll, C. 

Theobalt

Detailed Human Avatars from 
Monocular Video

T. Alldieck, M. Magnor, W. Xu,C. 
Theobalt, G.Pons-Moll

Recovering accurate 3D human 
pose in the wild using IMUs and a 

single camera (ECCV’18)
Marcard, Henschel, Black, 

Rosenhahn, Pons-Moll

Shape and Motion from Markers
N. Mahmood, G. Pons-Moll,
N. Riza,  N. Troje, M. Black

Generating People with GANs
C.Lassner, G. Pons-Moll, P. Gehler ICCV’17

Real-Time Monocular Performance Capture
M. Habermann, W. Xu, M. Zollhoefer, 

G.Pons-Moll, C. Theobalt



CONCLUSIONS

• To achieve realism we need to learn digital humans by 
capturing real ones

• Clothing is one of the main missing components in 
current statistical body models

• We need perception algorithms that reason about the 
3D world, not about pixels

86



Real Virtual Humans

Open positions: Postdoc, PhD, Master

DATA & CODE: 
https://virtualhumans.mpi-inf.mpg.de/software.html



Body and Garments Separately?



Multiple People (3DV’18 )
D. Mehta, O. Sotnychenko, F. Mueller, 
Weipeng Xu, S.Sridha, G.Pons-Moll, C. 

Theobalt

Shape and Motion from Markers
N. Mahmood, G. Pons-Moll,
N. Riza,  N. Troje, M. Black

Generating People with GANs
C.Lassner, G. Pons-Moll, P. Gehler ICCV’17

Real-Time Monocular Performance Capture
M. Habermann, W. Xu, M. Zollhoefer, 

G.Pons-Moll, C. Theobalt
Clothing Preferences
Shape Evasion
H. Sattar, G.Pons-Moll, M. Fritz





A generative model of people in clothing
Christoph Lassner, Gerard Pons-Moll and Peter Gehler

ICCV 2017 - Spotlight



Variational auto-encoder and image 
translation network 



Generate people in random fashion styles



Condition on color



SMPL: A model of pose and shape

M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, M. Black SIGGRAPH Asia‘15101

Latent parameters 7! vertices

M(✓,�;w) : R|✓|+|�| 7! R3N



Pons-Moll et al. SIGGRAPH’15

DYNA: A model soft-tissue


