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Abstract We present a new method for inferring dense
data to model correspondences, focusing on the application
of human pose estimation from depth images. Recent work
proposed the use of regression forests to quickly predict cor-
respondences betweendepth pixels andpoints on a 3Dhuman
mesh model. That work, however, used a proxy forest train-
ing objective based on the classification of depth pixels to
body parts. In contrast, we introduce Metric Space Informa-
tion Gain (MSIG), a new decision forest training objective
designed to directly minimize the entropy of distributions in
a metric space. When applied to a model surface, viewed as
a metric space defined by geodesic distances, MSIG aims
to minimize image-to-model correspondence uncertainty. A
naïve implementation of MSIG would scale quadratically
with the number of training examples. As this is intractable
for large datasets, we propose a method to compute MSIG in
linear time. Our method is a principled generalization of the
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proxy classification objective, and does not require an extrin-
sic isometric embedding of the model surface in Euclidean
space. Our experiments demonstrate that this leads to corre-
spondences that are considerably more accurate than state of
the art, using far fewer training images.

Keywords Human pose estimation · Model based pose
estimation · Correspondence estimation · Depth images ·
Metric regression forests

1 Introduction

A key concern in a number of computer vision problems is
how to establish correspondences between image features
and points on a model. An effective method is to use a
decision forest to discriminatively regress these correspon-
dences (Girshick et al. 2011; Taylor et al. 2012; Shotton et al.
2013). So far, these approaches have ignored the correlation
ofmodel points during training, or have arbitrarily pooled the
model points into large regions (parts) to allow the use of a
classification training objective. The latter, however, can fail
to recognize that a confusion between two nearby points that
lie in different parts is not necessarily severe. Further, it can
fail to recognize that confusion between two distant points,
that belong to the same part can be severe. In this work, we
propose the Metric Space Information Gain (MSIG) training
objective for decision forests (Pons-Moll et al. 2013),1 that,
instead, naturally accounts for target dependencies during
training and does not require the use of artificial parts. Our
MSIG objective assumes that the model points lie in a space

1 Note that this is an extended version of Pons-Moll et al. (2013). Some
portions of Taylor et al. (2012) have been included for clarity.
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in which a metric has been defined to encode correlation
between target points. Among the larger class of problems
where MSIG could apply, we focus on the challenging appli-
cation of general activity human pose estimation from single
depth images.

Human pose estimation has been a very active area of
research for the last two decades. Algorithms can be classi-
fied into two main groups, namely generative (Pons-Moll
and Rosenhahn 2011) and discriminative (Sminchisescu
et al. 2011). Generative approaches model the likelihood of
the observations given a pose estimate. The pose is typi-
cally inferred using local optimization (Bregler et al. 2004;
Brubaker et al. 2010; Stoll et al. 2011; Pons-Moll et al. 2011;
Ganapathi et al. 2012) or stochastic search (Deutscher and
Reid 2005; Gall et al. 2010; Pons-Moll et al. 2011). Regard-
less of the optimization scheme used, such approaches are
susceptible to local minima and thus require good initial pose
estimates.

Discriminative approaches (Urtasun and Darrell 2008; Bo
and Sminchisescu 2010; Lee and Elgammal 2010; Memi-
sevic et al. 2012) learn a direct mapping from image
features to pose space from training data. Unfortunately,
these approaches can struggle to generalize to poses not
present in the training data. The approaches in Shotton et al.
(2011), Girshick et al. (2011) bypass some of these limi-
tations by discriminatively making predictions at the pixel
level. This makes it considerably easier to represent the
possible variation in the training data, but yields a set of inde-
pendent local pose cues that are unlikely to respect kinematic
constraints.

To overcome this, recent work has fit a generative model
to these cues (Ganapathi et al. 2010; Baak et al. 2011; Taylor
et al. 2012). The most relevant example of such a hybrid
system is that of Taylor et al. (2012) who robustly fit a mesh
model to a set of image-to-model correspondences predicted
by a decision forest.

Decision forests are a classic method for inductive infer-
ence that has recently regained popularity by yielding excel-
lent results on a wide range of classification and regression
tasks. The canonical example in pose estimation is Shot-
ton et al. (2011) where a forest is used to segment the
human body into parts. These parts are manually specified
and the segmentation is used to define a per-pixel classifi-
cation task. To train the forest, split functions are evaluated
using a parts objective (‘PARTS’) based on discrete infor-
mation gain. Specifically, the split is chosen to reduce the
Shannon entropy of the resulting body part class distrib-
utions at the left and right child nodes. Motivated by the
success of Hough forests (Gall et al. 2011) for object detec-
tion and localization, a follow-up paper (Girshick et al. 2011)
directly regressed at each pixel an offset to several joint loca-
tions. They showed, surprisingly, that retrofitting a forest
for this task that had been trained using the PARTS objec-

tive (Shotton et al. 2011) outperforms forests that had been
trained using a standard regression objective based on vari-
anceminimization. Thework of Taylor et al. (2012) followed
suit in retrofitting a PARTS trained classification forest to
predict model-image correspondences. Despite these suc-
cesses, the somewhat arbitrary choice to bootstrap using
a PARTS objective, clashes with the experience of several
authors Buntine and Niblett (1992), Liu and White (1994),
Nowozin (2012) who show that the objective function has
a substantial influence on the generalization error of the
forest.

We address this by showing that the image-to-model cor-
respondences used in Taylor et al. (2012), can be predicted
with substantially higher accuracy by training a forest using
the ‘correct’ objective—an objective that chooses splits in
order to minimize the uncertainty in the desired predictive
distributions. When the target outputs lie in a metric space,
minimizing the continuous entropy in that space is the natural
training objective to reduce this uncertainty.

Our main contribution is showing how this continuous
entropy can be computed efficiently at every split function
considered in the training procedure, even when using mil-
lions of training examples. To this end, we estimate the
split distributions using Kernel Density Estimation (KDE)
(Parzen 1962) employing kernels that are functions of the
underlying metric. To make this computationally tractable,
we first finely discretize the output space and pre-compute
a kernel matrix encoding each point’s kernel contribution
to each other point. This matrix can then be used to effi-
ciently ‘upgrade’ any empirical distribution over this space
to a KDE approximation of the true distribution. Although
staple choices exist for the kernel function (e.g. Gaussian), its
underlying metric (e.g. Euclidean distance) and discretiza-
tion (e.g. uniform), they can also be chosen to reflect the
application domain. In our domain of human pose estima-
tion, the targets are points on a 3D mesh model surface.
Interestingly, our MSIG objective can encode the body part
classification objective (Shotton et al. 2011) by employing a
non-uniform discretization. It is, however, much more nat-
ural to have a near uniform discretization over the manifold
and to use the geodesic distance metric to encode target cor-
relation on this manifold, see Fig. 1. As articulated shape
deformations are ε−isometric with respect to the geodesic
distance, all computations in this space are independent of
pose which removes the need to find an extrinsic isometric
embedding in the Euclidean space as used in Taylor et al.
(2012).

Our experiments on the task of human pose estimation
show a substantial improvement in the quality of inferred
correspondences from forests trained with our objective.
Notably, this is achieved with no additional computational
burden since the algorithm remains the same at test time. We
further observe that with orders of magnitude less training
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Fig. 1 We propose a method to quickly estimate the continuous dis-
tributions on the manifold or more generally the metric space induced
by the surface model. This allows us to efficiently train a random forest

to predict image to model correspondences using a continuous entropy
objective. Notation is explained in Sect. 3

data, we can obtain state of the art human pose performance
using the same fitting procedure as Taylor et al. (2012).

2 Forest Training

We employ the standard decision forest training algorithm
and features. A forest is an ensemble of randomly trained
decision trees. Each decision tree consists of split nodes and
leaf nodes. Each split node stores a split function to be applied
to incoming data. At test time, a new input will traverse the
tree branching left or right according to the test function until
a leaf node is reached. Each leaf stores a predictor, computed
from the training data falling into that leaf. At training time,
each split candidate partitions the set of training examples
Q into left and right subsets. Each split function s is chosen
among a pool F in order to reduce the average uncertainty
of the predictions. This is achieved using a training objective
I (s) that assigns a high score if s reduces this uncertainty.
Training proceeds greedily down the tree, locally optimiz-
ing I for each node, until some stopping criterion is met. In
more detail, the forest is trained using the following algo-
rithm (Breiman 1999)

1. At every node of the tree, generate a random set of split
functions out of a pool si ∈ F .

2. For every split function, split the training examples Q
falling into that node into a left subset QL(si ) and a right
subset QR(si ).

3. Choose the split function that maximizes some aproxi-
mate measure Î (s; Q) of information gain I

s∗ = argmax
si

Î (s; Q) (1)

Î (s; Q) = Ĥ(Q) −
∑

i∈{L ,R}

|Qi |
|Q| Ĥ(Qi ), (2)

where Ĥ is some approximation of the entropy computed
from the empirical distribution Q.

4. Iterate until one of these conditions is satisfied (1) the
tree depth is lower than the maximum allowed tree depth,
(2) the information gain is bigger than a suer specified
minimum, (3) the number of training examples in the
node is lower than a chosen minimum.

In all of our experiments, we use the same binary split
functions as Shotton et al. (2011) which consist of fast
depth comparisons executed on a window centered at the
input depth pixel xi which are described in more detail in
Sect. 4.2. For more details, we refer the reader to Criminisi
and Shotton (2013). Notably, we are able to improve results
significantly by changing only the measure of information
gain I .

As our main contribution, we proposeMetric Space Infor-
mation Gain (MSIG) as the natural objective to learn to
regress image-to-model correspondences where the target
domain is a metric space. This objective aims to reduce the
continuous entropy of the data on the metric space. In the
case of ametric space induced by a reference 3Dhumanmesh
model with standard body proportions, this translates into the
correspondence uncertainty over the model surface. To train
a forest using MSIG we first need to define the metric for the
target space which determines the correlation between the
targets. Instead of assuming a uni-modal Gaussian distribu-
tion (e.g. Shotton et al. 2013) we useKDE to approximate the
density where the kernels are functions of the metric chosen;
see Fig. 2. Informally, distributions with probability mass at
nearby locations will result in lower entropies than distrib-
utions with probability mass spread to distant locations. As
we will show, MSIG outperforms the PARTS (Shotton et al.
2011; Taylor et al. 2012) and standard regression (Girshick
et al. 2011) objectives, and can be computed efficiently in
linear time.
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(b)(a)

Fig. 2 a On the left we show an example of an empirical distribu-
tion and on the right our estimated continuous distribution. b Examples
of the continuous distributions induced by KDE at different levels of

the tree. The MSIG objective reduces the entropy of the distributions
through each split resulting in increasingly uni-modal and lower entropy
distributions deeper in the tree

3 Metric Space Information Gain

We use the surface of a canonical human body to define the
metric space (U, dU) of our targets. Here,U denotes the con-
tinuous space of locations on this model and dU denotes the
geodesic distance metric on the manifold induced by the sur-
face model. LetU denote a random variable with probability
density pU whose support is a set U and let B(s) be a ran-
dom variable that depends on a split function s and takes the
values L (left) or R (right). The natural objective function
used to evaluate whether a split s reduces uncertainty in this
space is the information gain,

I (s) = H(U ) −
∑

i∈{L ,R}
P(B(s) = i)H(U |B(s) = i) (3)

where H(U ) is the differential entropy of the random vari-
ableU . For a random variableU with distribution pU this is
defined as

H(U )=EpU (u)

[− log pU (u)
]=−

∫

U

pU (u) log pU (u)du.

(4)

In practice the information gain can be approximated
using an empirical distribution Q = {ui } drawn from pU
as

I (s) ≈ Î (s; Q) = Ĥ(Q) −
∑

i∈{L ,R}

|Qi |
|Q| Ĥ(Qi ), (5)

where Ĥ(Q) is some approximation to the differential
entropy and ‖ · ‖ dennotes the cardinality of a set. One way
to approach this is to use a Monte Carlo approximation of
Eq. (4)

H(U ) ≈ − 1

N

∑

ui∈Q
log pU (ui ) . (6)

As the continuous distribution pU is unknown, it must
also be estimated from the empirical distribution Q. One
way to approximate this density pU (u) is using KDE. Let
N = |Q| be the number of datapoints in the sample set. The
approximated density fU (u) is then given by

pU (u) � fU (u) = 1

N

∑

u j∈Q
k(u;u j ), (7)

where k(u;u j ) is a kernel function centered at u j . Plugging
this approximation intoEq. (6),we arrive at theKDEestimate
of entropy:

ĤKDE(Q) = − 1

N

∑

ui∈Q
log

⎛

⎝ 1

N

∑

u j∈Q
k
(
ui ;u j

)
⎞

⎠ . (8)

That is, one evaluates the integral at the datapoint locations
ui ∈ Q in the empirical distribution, a calculation of com-
plexity N 2. To train a tree, the entropy has to be evaluated
at every node of the tree and for every split function s ∈ F .
Thus this calculation could be performed up to 2L × |F |
times, where L is the maximum depth of the tree. Clearly, for
big training datasets one cannot afford to scale quadratically
with the number of samples. For example, the tree struc-
tures used in this paper are trained from 5000 images with
roughly 2000 foreground pixels per image, resulting in 10
million training examples. Therefore, as our main contribu-
tion, we next show how to train a random forest with aMSIG
objective that scales linearly with the number of training
examples.

To this end, we discretize the continuous space into V
points U′ = (u′

1,u
′
2 . . . ,u′

V ) ⊆ U. This discretization sim-

plifies themetric to amatrix of distances DU =
(
dU(u′

i ,u
′
j )

)

that can be precomputed and cached. Even better, the kernel
functions can be cached for all pairs of points (u′

i ,u
′
j ) ∈ U

′.
For our experiments, we choose the kernel function on this
space to be an exponential
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k(u′
i ;u′

j ) = 1

Z
exp

(
−dU(u′

i ,u
′
j )
2

2σ 2

)
(9)

where dU(u′
i ,u

′
j ) is the geodesic distance on the model and

σ is the bandwidth of the kernel. The normalization constant
Z ensures that the total amount of contribution coming from
each point equals one and is thus invariant to the discretiza-
tion. The geodesic distances are pre-computed on a high
resolution triangulated mesh model using Dijkstra’s algo-
rithm (Dijkstra 1959). The discretization would ideally be
uniformly distributed over themodel surface, but we find that
that simply using an appropriate sampling of the vertex loca-
tions of the original mesh sufficient to obtain good results.

In all the experiments shown in this paperwe useσ = 3cm
which roughly corresponds to the average nearest neighbor
distance in the empirical distributions. A detailed discussion
on kernel bandwidth selection can be found in Silverman
(1986). Since the kernels fall off to zero, only a small sub-
set of indices Ni ⊆ {1., ..., V } indicate neighboring points
{u′

j } j∈Ni that contribute to u
′
i . Hence, for efficiency, we only

store the significant kernel contributions for each discretized
point u′

i . For ease of explanation in the following, we assume
here that each point has a constant number of neighbors
|Ni | = M for all i ∈ {1, ..., V }. Let Ji, j denote a look-
up table that contains the node index of the j-th neighbor of
the i-th node. This leads to the following kernel matrix that
is pre-computed before training:

K =

⎡

⎢⎢⎢⎢⎢⎣

k(u′
1;u′

J1,1
) k(u′

1;u′
J1,2

) . . . k(u′
1;u′

J1,M
)

k(u′
2;u′

J2,M
) k(u′

2;u′
J2,2

) . . . k(u′
2;u′

J2,M
)

...
. . .

...

k(u′
V ;u′

JV,1
) k(u′

V ;u′
JV,M

) . . . k(u′
V ;u′

JV,M
)

⎤

⎥⎥⎥⎥⎥⎦
.

(10)

Thus, given a discretization U′ we can smooth the empirical
distribution over this discretization using the kernel contri-
butions as

gU ′(u′
i ; Q) � 1

N

∑

j∈Ni

π j (Q)k(u′
i ;u′

j ) (11)

where the weights π j (Q) are the number of data points in the
set Q that are mapped to the bin center u′

j . In other words,

{π j (Q)}Vj=1 are the unnormalized histogram counts of the
discretization given by U

′. In this way, we can use a simple
histogramas our sufficient statistic to estimate the density, see
Fig. 1. The expression in Eq. (11) can be efficiently computed
using the precomputed kernel matrix K in Eq. (10)

gU ′(u′
i ; Q) = 1

N

M∑

m=1

πJi,m (Q)Ki,m . (12)

We can use this to further approximate the continu-
ous KDE entropy estimate of the underlying density in
Eq. (7) as

pU (u) � fU (u; Q) � gU ′(α(u); Q) (13)

whereα(u)mapsu to a point in our discretization.Using this,
we approximate the differential entropy of pU (u) using the
discrete entropy of gU ′ defined on our discretization. Hence,
our MSIG estimate of the entropy on the metric space for an
empirical sample Q is

ĤMSIG(Q) = −
∑

ui∈U′
gU ′(u′

i ; Q) log gU ′(u′
i ; Q) (14)

where the terms only need to be calculated when
gU ′(u′

i ; Q) 	= 0.
Note that this is also equivalent to approximating the

entropy defined in Eq. (4) by evaluating the integral only
at the V points of the discretized space U

′. Note that in
contrast to Eq. (6) we need to re-weight by gU ′(u′

i ; Q)

because we are sampling uniformly on a grid of points
in the space as opposed to Eq. (6) where the samples are
drawn from the empirical distribution Q. This is equiv-
alent to importance sampling with a uniform proposal
distribution.

The complexity of Eq. (14) is V × M . When training a
tree, each new split s requires a linear pass through the data to
compute the left and right histograms. The total complexity
of evaluating a split using Eq. (5) is thus N + V × M 
 N 2

allowing trees to be trained efficiently. By using our approx-
imation of the continuous entropy we can capture target
correlations, as MSIG encourages distributions with mass
localized in nearby locations which is crucial for obtain-
ing good correspondences. This would be more difficult to
achieve using a parts classification objective or a vertex his-
togram (see Fig. 3).

4 Pose Estimation

We now investigate the ability of MSIG trained forests to
improve the accuracy of model based human-pose estima-
tion. Hence, we follow the procedure of Taylor et al. (2012)
as closely as possible. Our goal is to determine the pose
parameters θ ∈ R

d of a linearly skinned (Pons-Moll and
Rosenhahn 2011; Balan et al. 2007) 3D mesh model so as to
explain a set of image points D = {xi }ni=1.
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Empirical distribution 1 Histogram
Ĥ = 3.55

Density approximation
ĤMSIG = 6.47

Empirical distribution 2 Histogram
Ĥ = 3.55

Density approximation
ĤMSIG = 7.91

Fig. 3 We demonstrate here the result of using different approxima-
tions of the continuous entropy given an empirical distribution. On the
left, show two empirical distributions. The top first distribution is highly
concentrated in a single mode. In the second distribution, the mode
has been split into three smaller modes. In the remaining columns,
we show histograms representing the discretized empirical distribution
before (middle columns) and after (right column) the kernel density
approximation has been applied. What is important to note here is that
the calculation of the Shannon entropy directly on the raw histogram
(middle column), results in nearly the same entropy for both cases. By
contrast, when the calculation is done on the smoothed distributions

(right column), the resulting MSIG entropy is much higher for distri-
bution 2 than 1. This is due to the fact that the kernel smooths the
probability mass so that it accumulates in a localized point for the first
distribution. Informally, distributionswith points located at distant loca-
tions should result in higher entropies. As a result, distribution 2 should
have a higher entropy than distribution 1. Therefore, our objective will
favor splits that cluster points in nearby locations. It is also important
to note that the absolute value of the entropy obtained using a given
approximation is not important, what is important for training is that
the relative entropies can be used to disambiguate peaked distributions
(top) from uninformative distributions (bottom)

4.1 Human Body Model

The surface of our human body model, denoted as S(θ)

to indicate its dependence on θ , is a triangulated mesh
supported by V vertices V = {v j }Vj=1. The model is parame-
terized using a kinematic tree, or skeleton, consisting of L
limbs. Each limb l has a rigid transformation Rl(θ) encoding
the transformation from that limbs coordinate system to its
parents. The rotational component of that transformation is
parameterized by a 4D quaternion encoded in θ . In addition,
a final global similarity transform Rglob(θ) scales the model
and places it in world space. This transformation is para-
meterized by an additional 4D quaternion, 3D translation

and isotropic scaling encoded in θ . The transform Tl(θ) then
encodes the transformation from limb l’s coordinate system
to the world and is defined by simply combining the trans-
forms one encounters while walking up the tree to the root
with Rglob(θ).

Each vertex v j in the mesh is defined as

v j = (
p j , {(α jk, l jk)}Kk=1

)
, (15)

where: base vertex p j is the homogenous coordinates of
the 3D vertex position in a canonical pose θ0; the α jk are
positive limb weights such that ∀ j

∑
k α jk = 1; and the

l jk ∈ {1, . . . , L} are limb links. In our model, the number

123



Int J Comput Vis (2015) 113:163–175 169

of nonzero limb weights per vertex is at most K = 4. The
position of the vertex given a pose θ is then output by a
global transform G which linearly combines the associated
limb transformations:

G(v j ; θ) = �

(
K∑

k=1

α jkTl jk (θ)T−1
l jk

(θ0)p j

)
(16)

where� is the standard conversion from 4Dhomogeneous to
3D Euclidean coordinates. By applying this transformation
to all the vertices in our mesh we obtain the human surface
S(θ) in a given pose θ .

4.2 Correspondence based Energy

For our main results we use image points that have a known
3D position, i.e., xi ∈ R

3, obtained using a calibrated depth
camera. Following standard practice, we assume reliable
background subtraction. The goal, restated, is then to find
the pose θ that induces a surface S(θ) that best explains the
observed depth image data. A standard way to approach this
is to introduce a set of correspondences between image pixels
and mesh points C = {ui }ni=1, such that each correspondence
ui ∈ U . One then minimizes

Edata(θ, C) =
n∑

i=1

wi · d(
xi ,G(ui ; θ)

)
(17)

where wi weights data point i and d(·, ·), is some distance
measure in R

3. The energy defined in Eq. (17) is quite stan-
dard, and because it sums over the data, it avoids some
common pathologies such as an energy minimum when the
model is scaled to zero size. To deal with mislabelled corre-
spondences, it is sensible to specify d(x, x ′) = ρ(‖x − x ′‖)
where ρ(·) is a robust error function. We use the Geman-
McClure (Black and Rangarajan 1996) function ρ(e) =

e2

e2+η2
due to its high tolerance to outliers.We choosewi = z2i

as the pixel weighting, derived from the point’s depth via
zi = [ 0 0 1 ] xi to compensate for proportionately fewer pix-
els and therefore contributions to the energy function as depth
increases.

Unfortunately, deficiencies remain with (17), particularly
with self-occlusion. In the following, we build up further
terms to form our full energy in Eq. (22).

4.2.1 Visibility Term

For given parameters θ , the data term in Eq. (17) allows either
visible or invisible model points to explain any observed
image point. A more realistic model might include hidden-
surface removal inside the energy, and allowcorrespondences
only to visible model points. However, a key to our approach,

described below in Sect. 4.4, is to use fast derivative-based
local optimizers rather than expensive global optimizers, and
thus an efficient energy function with well-behaved deriv-
atives is required. We thus adopt a useful approximation
which is nevertheless effective over a very large part of the
surface: we define visibility simply by marking back-facing
surface normals. To do so, we define the function n̂(u; θ)

to return the surface normal of the model transformed into
pose θ atG(u; θ). Then u is marked visible if the dot product
between n̂(u; θ) and the camera’s viewing axis A (typically
A = [0, 0, 1], the positive Z axis) is negative. One might
then write

Evis =
n∑

i=1

wi

{
d(xi ,G(ui ; θ)) n̂(ui ; θ)�A < 0

τ otherwise
(18)

with τ a constant that must be paid by backfacing vertices.
In practice, using a logistic function σβ(t) = 1

1+e−βt with
‘sharpness’ parameter β is preferable to a hard cutoff:

E ′
vis =

n∑

i=1

wi
[
Vi (θ) ·d(xi ,G(ui ; θ))+(1−Vi (θ)) ·τ ]

(19)

where the visibility weight is set according to a logistic func-
tion Vi (θ) = σβ(−n̂(ui ; θ)�A).

4.2.2 Pose Prior

To further constrain the model, particularly in the presence
of heavy occlusion, we use a conventional prior, the negative
log of a Gaussian on the pose vector:

Eprior = (θ − μ)��(θ − μ) (20)

where μ and �, the mean and inverse covariance of the
Gaussian, are learned from a set of training poses.

4.2.3 Intersection Penalty

Lastly, we add a term to discourage self intersection by build-
ing a coarse approximation to the interior volume of S(θ)

with a set of spheres  = {(ps, rs, ls)}Ss=1.
2 Each sphere s

has radius rs and homogeneous coordinates ps in the canon-
ical coordinate system of θ0. The center of the sphere can be
seen as a virtual vertex attached to exactly one limb, and thus
transforms via cs(θ) = �

(
G(ps, θ)

)
.

Intersection between spheres s and t occurswhen ‖cs(θ)−
ct (θ)‖ < rs + rt = Kst . We thus define a softened penalty
as

2 Distinct subscripts indicate whether p and l refer to vertices or
spheres.
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Fig. 4 Model based human pose estimation with correspondences
inferred using a regression forest. From left to right: every pixel in
the depth image is pushed through each tree in the forest. A series of
split functions are applied to every pixel until a leaf node is reached.
The correspondence distributions in different trees are aggregated and

the correspondence for that pixel is taken as the top mode of the distri-
butions. The inferred dense correspondences are then used to optimize
the model parameters θ , i.e., the pose and scale of the person. We show
at the right most image, the result obtained for the test images shown
on the left

Eint =
∑

(s,t)∈P

σγ (Kst − ‖cs(θ) − ct (θ)‖)
‖cs(θ) − ct (θ)‖ (21)

whereP is a set of pairs of spheres, and σγ is again a logistic
function with constant ‘sharpness’ parameter γ .

The sphere parameters are chosen so that the centers cs(θ0)
are distributed along the skeleton and the radii rs are small
enough so that the spheres lie within the interior of S(θ0). In
practice, only leg self-intersections have caused problems,
and thus we place 15 spheres equally spaced along each leg,
withP containing all pairs containing one sphere in each leg.

4.2.4 Full Energy

Combining the above terms, we optimize an energy of the
form

E(θ, C) = λvisE
′
vis(θ, C) + λpriorEprior(θ)

+λintEint(θ) (22)

where the various weights λ• along with any other parame-
ters are set on a validation set. Further energy terms, such
as silhouette overlap or motion priors, are straightforward to
incorporate and remain as future work. An alternating min-
imization (or block coordinate descent) over θ and C would
yield a standard articulated ICP algorithm (Besl and McKay
1992).Unfortunately, convergence is unlikelywithout a good
initial estimate of either θ or C. Therefore, we will use our
proposed metric regression forest to estimate a set of image
to model correspondences discriminatively. The key to the
success of our pose estimation method is the use of a dis-
criminative appearance model to estimate C directly instead
of the more common approach of initializing θ .

4.3 Predicting Correspondences

Weuse ametric regression forest to predict a set of correspon-
dences C to initialize the optimization of Eq. (22), see Fig. 4.
To accomplish this, every foreground pixel x will be pushed
down each tree in the forest in the following manner. When
a non-terminal node is encountered, a binary split function
will determine whether the left or right branch is taken. Let
x = (u, v) denote the image coordinates of the depth pixel x.
The value of the split function is then computed on an image
window centered at image coordinates (u, v), for which we
employ the fast depth comparison split functions of Shotton
et al. (2011)

fφ = dI

(
x + m

dI (x)

)
− dI

(
x + n

dI (x)

)
(23)

where φ = (m,n) are a pair of 2D displacement vectors,
see Fig. 5. A path is traversed from the root down to a leaf,
branching left or right according to the evaluation of the split
functions. In more detail, if fφ < τ the left branch will be
taken and the right otherwise. Each leaf terminal leaf node
contains a regression model.

At training time, we employ the MSIG objective and split
functions defined above to construct the tree. The regression
model stored in each terminal leaf node is built from the
training data falling into the leaf in the following way. For
further efficiency, we represent the leaf distributions as a
small set of confidence-weightedmodes S = {(û, ω)}, where
û ∈ R

3 is the position of the mode in the embedding space,
and ω is the scalar weighting. This set S can be seen as an
approximation to a Gaussian mixture model. To aggregate
the regression models across the different trees, we simply
take the union of the various leaf node modes G.

We are left with the task of predicting pixel i’s corre-
spondence ui ∈ U from these aggregated distributions. To
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Fig. 5 Split functions: we use the depth offset features used in Shot-
ton et al. (2011). The feature consists on comparing the depths of two
pixels. If the difference is bigger than a chosen threshold the function
takes value 1 and 0 otherwise. Every feature in itself is too simple to
discriminate but many features combined together can be very descrip-
tive: local appearance will be captured by small displacements whereas
context will be captured by larger displacements. This is ilustrated in
the right image with green squares

do this, we take the mode û with largest confidence value
ω. We also explored more sophisticated strategies such (i)
minimizing expected loss with resepect the leaf distributions
or (ii) predicting a set of confidence weighted correspon-
dences for every image pixel or (iii) randomly sampling
correspondences from the leave distributions. Unfortunately,
these alternative strategies resulted in no improvement with
respect to just retrieving the correspondence with highest
confidence weight. For efficiency, one can thus store at each
leaf only the single vertex index j and confidence weight ω

resulting from projecting the mode with largest confidence
in advance.

4.4 Local Optimization Over θ

Although there are many terms, optimization of our energy
function in Eq. (22) is relatively standard. For fixed corre-
spondences C inferred by the forest, optimization of (22)
over θ is a nonlinear optimization problem. Derivatives of
θ are straightforward to efficiently compute using the chain
rule. The parameterization means that E is somewhat poorly
conditioned, so that a second order optimizer is required.
However, a full Hessian computation has not appeared nec-
essary in our tests, as we find that a Quasi-Newton method
(L-BFGS) produces good results with relatively few func-
tion evaluations (considerably fewer than gradient descent).
To maintain reasonable speed, in our experiments below we
let the optimization run for a maximum of 300 iterations,
which proved sufficient in most cases.

4.4.1 Initialization

We initialize the optimization as follows. For the pose com-
ponents of θ , we start at the mean of the prior. For the global

scale, we scale the model to the size of the observed point
cloud. Finally we use theKabsch algorithm (Kabsch 1976) to
find the global rotation and translation that best rigidly aligns
the model. Our experience has been that this initialization is
helful to obtain faster convergence and improved accuracy.
However, the accuracy of the initialization is not crucial in
obtaining good results, i.e., the energy minimum found does
not depend on initialization as long as the surface model is
reasonably close to the observed data in the image.

4.4.2 Alternation Between θ and C

In contrast to Taylor et al. (2012), we also consider a further
ICP optimization to achieve additional gains. After optimiz-
ing θ , we hold θ fixed and update C by finding the closest
visiblemodel point to each depth pixel, instead ofminimizing
Eq. (22) keeping the C fixed to the forest predictions. This
allows C to be updated efficiently using a k-D tree (Bent-
ley 1975). To update θ , the non-linear optimizer is simply
restarted with the new correspondences.

5 Experiments

We evaluate our approach using the same test set of 5000
synthetic depth images as used in Taylor et al. (2012). We
examine both the accuracy of the inferred correspondences
and their usefulness for single frame human pose estimation
from depth images.

5.1 Setup

5.1.1 Forests

We use two forests in our experiments: MSIG and PARTS,
indicating respectively that they were trained with our pro-
posedMSIGobjective or the standardPARTSbasedobjective
of Shotton et al. (2011), see Fig. 6.

Both forests contain three trees and were trained to depth
20. To learn the structure and split functions of each tree we
use 5000 synthetic images per tree. The extra complexity in
training a MSIG tree resulted in them taking roughly three
times as long as the PARTS trees. This complexity does not
exist at test time and thus speeds reported in Taylor et al.
(2012) are obtainable using either type of tree.

To train the random forests we use the data from Shot-
ton et al. (2011). This is a set of synthetic images, each
rendered using computer graphics, to produce a depth or sil-
houette image. The parameters of the renders (pose, body
size and shape, cropping, clothing, etc.) are randomly cho-
sen such that we can aim to learn invariance to those factors.
Alongside each depth or silhouette image is rendered a cor-
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respondence image, where colors are used to represent the
ground truth correspondences that we aim to predict using
the forest. Examples of the training images are given in
Fig. 7.

Crucially, the ground truth correspondences must align
across different body shapes and sizes. For example, the cor-
respondence for the tip of the right thumb should be the same,
no matter the length of the arm. This was accomplished by
deforming a base mesh model, by shrinking and stretching
limbs, into a set of 15 models ranging from small child to
tall adult. The vertices in these models therefore exactly cor-
respond to those in the base model, as desired. This allows
us to render the required correspondence image using a sim-
ple vertex lookup, no matter which body model is randomly
chosen. This can also be seen in Fig. 7. Given this data, we
can now train the trees MSIG and PARTS using the corre-
sponding training objectives.

Fig. 6 Difference between PARTS and MSIG forest output domains.
Left The outputs of a PARTS based forest is a body part label. The
PARTS forest is trained using an objective that minimizes the Shannon
entropy of a discrete distribution over the body part labels. This corre-
sponds to a classification task, where a label has to be assigned to every
depth pixel.Right The output of theMSIG forest are points on themani-
fold defined by the human surfacemodel. TheMSIGattempts to directly
minimize the continuous entropy of the distribution of correspondences
over the human surface model. This corresponds to a regression task,
where every depth pixel is mapped to a point on the human surface
model. The left image is courtesy of Shotton et al. (2011) and the right
image of Taylor et al. (2012)

To populate the leaf distributions in both types of trees,
we replicate the strategy of Taylor et al. (2012): we push the
training data from 20000 (depth, correspondences) image
pairs through the trees and find the mode of the distribution
in the extrinsic isometric embedding of a human shape (the
‘Vitruvian’ pose) using mean-shift.

5.1.2 Pose Estimation

For human pose estimation we parametrize a model using
a skeleton. We predict the following 19 body joints: head,
neck, shoulders, elbows, wrists, hands, knees, ankles, feet,
and hips (left, right, center).

5.1.3 Metrics

To evaluate the accuracy of the inferred correspondences,
we use the correspondence error defined as the geodesic
distance between the prediction and the ground truth model
location. We use a model with standard proportions and thus
a correspondence error of 25 cm is roughly the length of the
lower arm. Tomeasure pose accuracy we use the challenging
worst joint error metric introduced in Taylor et al. (2012): the
proportion of test scenes that have all predicted joints within
a certain Euclidean distance from their ground truth locations
(Figs. 9, 10).

5.2 Results

We evaluate the performance of our forest regressors to pre-
dict dense image to model correspondences. We quantify the
proportion of predicted correspondences with an error less
than a certain distance. We find that correspondences with an
error of less than 15 cm tend to be useful for pose estimation
whereas those with higher errors are usually treated as out-
liers. In Fig. 8 we show the correspondence accuracy for both
the MSIG forest and PARTS forest at depths of 17, 18, 19
and 20. As it can be seen, the MSIG forest produces cor-

Fig. 7 Training data used to train the PARTS and MSIG forests. We
show here three example training images in triplets. For every triplet,
we show left to right: (1) the synthetic depth image, (2) the body PARTS
output label and (3) theMSIGoutput. Because the synthetic images have
been generated using the model, every pixel can be annotated with the

ground truth correspondence on the the human surface model. Training
images are randomly generated varying different factors: pose, shape
and image cropping. The forest will have to learn invariances to all these
factors
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Fig. 8 Correspondence error comparison of PARTS forest with the proposed MSIG forest. We evaluate the accuracy for forests of depths
17, 18, 19, 20. It can be observed that our proposed method consistently produces considerably more accurate correspondences

Fig. 9 Pose accuracy comparison using correspondences from both PARTS and proposed MSIG forests at depths 17, 18, 19 and 20. For both
forests, we use the pose estimation algorithm of Taylor et al. (2012) as explained in Sect. 4.2 and evaluate using the worst joint error metric
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Fig. 10 Left Pose accuracy of our MSIG forest trained with 5000
images per tree compared to accuracy reported by Taylor et al. (2012)
which used 300,000 training images. Right Pose accuracy for both

PARTS and MSIG forests after 10 iterations of ICP. Note that the curve
labelled MSIG in both the left (solid red) and right (dashed red) plots
are the same

respondences that are consistently more accurate than those
produced from the PARTS forest. This is very encouraging
since forests trained using a PARTS objective had previously
shown state of the art performance, far superior to those
using other objectives such as the Hough-regression (Gir-
shick et al. 2011). We attribute the better performance of
our approach to the fact that MSIG favors distributions with
mass concentrated (in the sense of the definedmetric) in close
locations.

Although the inferred dense correspondences can be used
for a large number of tasks, we consider the task of single
frame pose estimation as a motivational example. Therefore,
we also show the impact in the pose accuracy again for forests
of depth 17, 18, 19 and 20. As one would expect, better cor-
respondences translate into more accurate pose estimates.
As can be seen in Fig. 9, the MSIG forest produces a small
but significant improvement w.r.t. to the PARTS forest. The
smaller gains in pose accuracy are expected as the energy of
Taylor et al. (2012) is designed to be robust to outliers from
their forest. We also compare in Fig. 10 directly to the results
provided by Taylor et al. (2012), which appears to be the
state of the art for single frame pose estimation from depth
images. Despite our MSIG forest using orders of magnitude
less training images (300K images vs. 5K images per tree),
we achieve equivalent performance.

We further demonstrate that our correspondences can be
used to initialize classical registration methods such as artic-
ulated ICP as explained in Sect. 4.2. Contrary to what was
alluded to in Taylor et al. (2012) we find that using just 10
such ICP alternations provides an additional performance
gain of up to 10% with both PARTS and MSIG correspon-
dences as demonstrated inFig. 10. Furthermore, it can be seen
that the gap between the MSIG and PARTS is not washed
out by this downstream ICP processing. The resulting MSIG
poses after ICP refinement, thus represent the state of the art
on this dataset.

6 Conclusion

We have introduced MSIG, an objective function that eval-
uates a split function’s ability to reduce the uncertainty over
an arbitrary metric space using KDE. Using a discretiza-
tion of this space, an efficient approximation to MSIG was
developed as to facilitate its use in training random forests.
Although the general framework can be tuned through the
specification of an appropriate metric space, kernel function
and discretization, natural choices existmaking this approach
widely applicable.

We employed MSIG in the context of human pose
estimation to both simplify and enhance the inference of
dense data to model correspondences by avoiding two
arbitrary requisites of previous work: (i) our work does
not require a segmentation of the human body into parts,
and (ii) it does not require an extrinsic isometric embed-
ding of the human shape. A number of experiments show
that the more principled MSIG objective allows the infer-
ence of superior correspondences compared to those pro-
vided by standard training objectives. Additionally, these
results translate into state of the art accuracy for sin-
gle frame human pose estimation using far fewer training
images.
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