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Figure 1. TriDi. We present TriDi, the first joint probabilistic model of human pose (H), object (O) and human-object interaction (I). The

joint model unifies these three modalities, capturing mutual dependencies between them, and allows for sampling in seven conditioning

configurations, covering the use cases treated in isolation by previous works. The colors on the image encode prediction and condition.

Abstract

Modeling 3D human-object interaction (HOI) is a prob-
lem of great interest for computer vision and a key enabler

for virtual and mixed-reality applications. Existing methods

work in a one-way direction: some recover plausible human

interactions conditioned on a 3D object; others recover the

object pose conditioned on a human pose. Instead, we pro-

vide the first unified model - TriDi which works in any di-

rection. Concretely, we generate Human, Object, and Inter-

action modalities simultaneously with a new three-way dif-

fusion process, allowing to model seven distributions with

one network. We implement TriDi as a transformer attend-

ing to the various modalities’ tokens, thereby discovering

conditional relations between them. The user can control

the interaction either as a text description of HOI or a con-

tact map. We embed these two representations into a shared

latent space, combining the practicality of text descriptions

with the expressiveness of contact maps. Using a single net-

work, TriDi unifies all the special cases of prior work and

extends to new ones, modeling a family of seven distribu-

tions. Remarkably, despite using a single model, TriDi gen-

erated samples surpass one-way specialized baselines on
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GRAB and BEHAVE in terms of both qualitative and quanti-

tative metrics, and demonstrating better diversity. We show

the applicability of TriDi to scene population, generating

objects for human-contact datasets, and generalization to

unseen object geometry. The project page is available at:

https://virtualhumans.mpi-inf.mpg.de/tridi/.

1. Introduction

Humans constantly interact with objects around them – they

lean on tables, carry backpacks, or touch keyboards. Dif-

ferent objects afford different kinds of human poses, and

vice-versa, different poses support only certain types of ob-

jects. Furthermore, given a human and an object, many in-

teractions are possible. For example, we can sit on a chair,

lift it, push it, or carry it, and each interaction will require

different contacts. We argue that a comprehensive model

should capture such interplay of objects, humans, and inter-

actions, regardless of the modality considered as an input

condition. Such a joint model is much more flexible than

one-way models, giving rise to many applications: gener-

ating humans that fit a given object, objects that fit a hu-

man pose, unconditional generation, or even automatically

annotating the interaction of existing 3D datasets. This ver-

satility is needed in such applications as content creation,

AR/VR, ergonomics, and manufacturing.

However, existing works have modeled human-object

interaction as the posteriors of human given the object

[41, 42, 67, 78, 97] or object given human[58, 88]. Follow-

ing this paradigm requires a tailored model for each condi-

tioning case and, thus, a specialized design choices, training

procedure, and architecture. Such an approach is impracti-

cal and difficult to scale. Instead of modeling each indi-

vidual conditional distribution, we shift this paradigm and

design a single compact architecture that models the joint

and conditional distributions of human, object, and interac-

tions. By design, we can sample from a joint unconditional

distribution of humans, objects, and interactions, as well as

from all possible conditional combinations.

We propose TriDi, a unified 3D human-object interac-

tion model capturing the joint distribution of humans, ob-

jects, and interactions. TriDi produces samples from ev-

ery conditional distribution arising from the combination

of three in addition to the joint distribution, giving rise to

23 − 1 = 7 possible modes of operation, see Fig. 1.

TriDi performs a three-way diffusion building on the

UniDiffuser paradigm [2], implemented through token-wise

attention, enabling to capture fine-grained relations. Since

most interactions imply contact, prior work represents in-

teraction through body contact maps [27, 70]. In contrast to

text prompts, this representation is difficult for users to con-

trol. Hence, we propose to unify textual descriptions and

body contact maps by a joint embedding space. This results

in a novel representation that is useful to guide the model

and intuitive to the user. To double the effective training

data and remove right-handed biases, we augment the HOI

by exploiting the left-right symmetry of the interactions.

We demonstrate the flexibility of TriDi, which nicely

encapsulates uni-directional methods published in different

papers using a single network. Beyond savings in terms of

model size and ease of use, TriDi surpasses uni-directional

baselines tailored to specific conditioning cases. Moreover,

TriDi performs on par or better than the same model trained

on one-way conditional tasks (e.g., generating human and

interactions conditioned on the object), demonstrating the

effectiveness of the joint modeling. TriDi is general and ca-

pable of synthesizing a static 3D HOI starting from differ-

ent inputs, covering all the previous works’ use cases plus

new ones (Fig. 1). We demonstrate how TriDi can populate

scenes with realistic interactions, generalize to novel geom-

etry, and open new applications such as generating objects

that fit observed humans and interactions in images.

In summary, our contributions are:

• We formulate TriDi, the first joint model for P (H,O, I),
modeling it as the three-variable joint distribution and

covering a total of 7 modes of operation, rendering prior

works as special use cases of our model.

• We propose a novel representation of interaction by

jointly embedding body contact maps and textual descrip-

tions, resulting in intuitive control for the user while pro-

viding detailed guidance to the model.

• We will release our code, providing the community with

a tool for scene population, generation from partial obser-

vations, and other tasks that involve 3D HOI.

2. Related Work

From object to human. Modeling 3D HOI from the ob-

jects has been studied from diverse perspectives. At a

macro scale, studying humans in the context of 3D scenes

is prominent [25, 27, 30, 53, 73, 74, 90, 96, 99]. These

works are instrumental for downstream tasks like synthetic

dataset generation [4, 34, 57, 81]. Dynamic motions in

scenes can be conditioned by object’s 3D location [8, 26],

control points [97], milestones [42, 59], physical proper-

ties [98], or text descriptions [43, 65]. Such a high-level

perspective on HOI should be complemented by model-

ing interactions on an object level. Hence, [67, 78] syn-

thesize the motion towards a static object, and [7, 44]

focus on manipulation interactions. These works con-

sider temporal sequences, which are demanding to capture,

thus limiting the scaling beyond the settings seen at train-

ing time. Synthesizing hand-object interactions presents

several challenges [17, 18], which originated specialized

methods [12, 32, 46, 48, 75, 87, 92]. Producing accu-

rate prediction raised the demand for hand-object refine-

ment [52, 68, 101, 102], but those methods are limited by

smaller objects and hand-held interactions. TriDi works
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with single frames, models contact beyond the hands, and

thus supports human synthesis involving diverse objects.

From human to object. Reasoning about objects from

humans is a less explored direction, despite the applicability

in AR/VR, where humans often interact with objects with-

out a physical counterpart. [86, 89] generate scenes sat-

isfying the observed human motion. Object Pop-up [58]

regresses an object position from a 3D human point cloud,

disregarding the uncertainty behind this ill-posed task. An

interesting self-supervised approach regresses the heatmap

for plausible object center location [24], while the follow-up

work [38] studies objects’ affordances. TriDi models a joint

distribution of HOI, naturally allowing for the uncertainty in

predictions while retaining downstream applications.

Contacts modeling. Contact is the physical medium of

many human-object interactions. In practice, contact maps

are a good proxy to promote realism [27, 55, 78]; how-

ever, their capture is often complicated by manual annota-

tion [70] or the need for specialized hardware [5]. Contact

is represented in a range of ways, e.g., as distances [15],

proximity [96], or maps on the body [70] and the object

[16]. Contact is often modeled on the hands [5, 6, 21], with

recent works considering the full body [27, 70]. An alterna-

tive is to represent the interaction through text [15, 65, 90].

While more interpretable and controllable, this representa-

tion limits the possibility of spatial reasoning for the meth-

ods. In our work, we combine text and contact maps in a

shared latent space, inheriting the advantage of both.

Joint modeling. A number of works focus on reconstruct-

ing interactions with single objects external data such as

images [9, 47, 55, 70, 76, 77, 79, 81, 85, 95], videos

[80, 88, 100], and multi-view recording setups [35, 93].

These works are backed by recent HOI data collections

[3, 16, 31, 33, 49, 84]. Modeling hand-object interactions

jointly requires tailored methods [37]. FLEX [69] com-

bines grasp with full-body generation to fit HOI samples

in the scene constraints. IMoS [19] and InterDiff [82] start

from past observations to forecast the continuation of a 3D

HOI sequence. CG-HOI [15] synthesizes human and ob-

ject motion from text, training only on one dataset at a time.

These methods rely on strong conditioning: temporal HOI

sequence, deterministic future, and text. Using single-frame

data, although challenging and ambiguous, is more general

and scalable. Finally, we find it exciting to mention recent

works in nascent fields: compositional shape generation in-

cluding human and object [10, 11, 13, 40], and modeling

multiple human and object interactions [39, 54, 63, 91, 94],

suggesting more complex synergies in HOI. TriDi models

HOI jointly, covering all the use cases of previous works

tailored to the specific conditioning.

3. Background

Probabilistic Diffusion. A Diffusion process [28, 64] is

divided into a forward process that progressively noises the

original data sample z0, and a backward process that recov-

ers the sample z0 from the noise using a learned model.

Formally, the forward process follows a Markov chain

of T steps; it produces a series of time-dependent distribu-

tions q(zt|zt−1): q(z1:T |z0) =
∏T
t=1 q(zt|zt−1). At every

timestamp, we inject noise into the distribution until the fi-

nal zT converges to a sample from N (0, I). Let β0 = 0,

and βt ∈ (0, 1):

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI). (1)

We follow the formulation of Denoising Diffusion Prob-

abilistic Model (DDPM) [28] to obtain a closed-form ex-

pression for zt (formulation is provided in the Sup. Mat.).

The inference is then performed by reversing the pro-

cess, starting from zT ∼ N (0, I) and recovering sam-

ples from the original distribution. Instead of recovering

the added noise ϵ for each timestep, we follow the for-

mulation of [61] and recover the original sample z0. To

achieve this, we parametrize the reverse process by a de-

noising neural network Dψ that is trained to recover the

original sample z0 from the noised sample zt at timestep t

given the condition c. Defining for brevity Ep ≡ Ez0∼pdata
,

Et ≡ Et∼U{0,...,T}, and Eq ≡ Ezt∼q(zt|z0) we obtain the

training objective (inference formulation is provided in the

Sup. Mat.):

min
ψ

Ep Et Eq ∥Dψ(zt; c, t)− z0∥). (2)

Multimodal diffusion. While the previous formulation

handles the generation of a single modality, data of-

ten constitutes a composition of multiple modalities, e.g.,

z0 = (x0,y0) ∼ p(x, y). Hence, we are naturally in-

terested in modeling this joint distribution together with

the marginals p(y) and p(x), as well as conditional ones

p(x|y) and p(y|x). UniDiffuser [2] proposes a network

Dψ(xtx ,yty ; tx, ty) dedicated to recovering z0 given a

noisy sample from the joint distribution.

Adapting the definitions from Eq. 2 to two modalities:

Ep ≡ E(x0,y0)∼p(x,y), Et ≡ E(tx,ty)∼U{0,...,T}2 , and Eq ≡
Extx∼q(xtx |x0),yty∼q(yty |y0) we obtain the following train-

ing objective:

min
ψ

Ep Et Eq ∥Dψ(xtx ,yty ; tx, ty)− (x0,y0)∥. (3)

The benefit of minimizing the objective in Eq. 3 is that

the resulting network captures all the desired distributions.

Namely, setting ty = T allows to model the marginal dis-

tribution p(x), on the other hand, ty = 0 corresponds to

conditional distribution p(x|y). we note that in its original

formulation, UniDiffuser is designed to consider text and

images as two diffusion modalities.
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Figure 2. TriDi Overview. TriDi is a Trilateral Diffusion for Human H (pose θH, identity βH, and 6-DoF global pose gH), Object O
(6-DoF global pose gO) and Interaction I (Contact-Text latent zI). In this figure the model is configured to sample p(H, I|O). One of the

seven operating modes is chosen by adjusting the timestamp to be 0 for a given condition (tO above) and T for the desired prediction

(tH and tI above), and supplying an object class condition (“Table” above).

4. Method

Overview. Our goal is to model the three-variable joint

distribution of Human H, Object O, and Interaction I, tak-

ing as input only the object class with a canonical represen-

tation and, optionally, conditions from the three modalities.

Previous works focus on one-way cases, with fixed condi-

tional modality, e.g., human from an object, (P (H|O), [42])

or human and object from a text (P (H,O|I), [15]). In con-

trast, we want to model P (H,O, I), providing a unified

model for Human-Object Interaction. To achieve this, we

introduce TriDi, a transformer based model that operates on

tokenized representations of H, O, and I (an overview is

presented in Fig.2). The following sections define the rep-

resentations for HOI (Sec. 4.1), introduce our trilateral dif-

fusion formulation (Sec. 4.2), and discuss training details

(Sec. 4.3).

4.1. Modalities representations

Human and object. Following SMPL+H body model

[50, 62] we decompose the human as:

H = (θH, βH,gH), (4)

where gH ∈ R
9 is a 6-DoF global pose, and θH ∈ R

51×3

and βH ∈ R
10 are the pose and shape parameters respec-

tively of a template function that maps them to a triangular

mesh. In TriDi we rely on a decimated version of SMPL

with vertices VH ∈ R
690, reducing the computations while

retaining the capability to recover the full template mesh.

For objects, the canonical geometry is given as input by

the user and serves as conditioning for our model. We rep-

resent it as CO = (fO,yO), consisting of fO ∈ R
1024 Point-

NeXt [60] features and a one-hot class encoding vector yO.

Our model diffuses objects’ 6-DoF global pose gO ∈ R
9:

O = (gO). (5)

head and
fingers

in contact 
with mug

CLIP

Figure 3. Architecture of Contact-Text Interactions model. We

train a mapping from the contact map EφI
and CLIP embedding

ETI
to a joint latent space zI that is used to represent the interac-

tion I. Jointly, we train the decoder DφI
that maps the latent back

to the contact map.

Interactions. Representing interaction I is particularly

challenging as we want to combine the intuitiveness of text

descriptions with the expressiveness of contact maps. Our

solution is to learn a compact latent representation that en-

codes both in a joint space. Given a set of pairs (TI , ϕI),
where TI is a text description and ϕI ∈ {0, 1}690 is a

contact map defined on VH, we simultaneously train two

encoders EφI
(ϕI) = zI ∈ R

128 for contact maps and

ETI
(CLIP(TI)) = zI for CLIP embedding of TI , as well

as decoder DφI
mapping the latent space back to the con-

tact map ϕI . We optimize them with the following loss:

LCT (TI , ϕI) =BCE(DφI
(EφI

(ϕI)), ϕI)+

BCE(DφI
(ETI

(TI)), ϕI)+

∥ETI
(TI)− EφI

(ϕI)∥2,
(6)

where BCE is the Binary-Cross Entropy loss, and the loss

terms are auto encoding loss, text-to-contact map encoding

loss, and latent space similarity loss. A sketch of this mod-

ule can be seen in Fig.3. Thus, the interactions are repre-

sented via a compact code from the unified latent space:

I = (zI). (7)
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Figure 4. Comparison with baselines. In the two left-most columns, we show three samples for p(H, I|O) and p(O, I|H) from BEHAVE

and GRAB test sets. TriDi’s generations are better aligned with the condition, causing less interpenetration (e.g., for basketball), respecting

fine-grained details (e.g., for smaller objects), and demonstrating more diversity for limbs not restricted by contacts (e.g., for yoga ball).

On the right, TriDi is the only model that can sample from p(H,O, I).

4.2. TriDi: Trilateral Diffusion for HOI

Diffusion formulation. To model the joint distribution of

Human H, Object O, and Interaction I we formulate a

three-way diffusion. For brevity, we define:

Ep ≡ E(H0,O0,I0)∼p(H,O,I),

Et ≡ E(tH,tO,tI)∼U{0,...,T}3 ,

Eq ≡ EHtH∼q(HtH |H0),OtO∼q(OtO |O0),ItI∼q(ItI |I0)

(8)

Hence, the parameters ψ of a model TriDiψ are optimized

by minimizing the objective (extending Eq. 3):

min
ψ

EpEtEq∥TriDiψ(HtH ,OtO , ItI ; tH, tO, tI ; CO)

− (H0,O0, I0)∥2.
(9)

In practice, we build our method on top of a transformer

[72] architecture with an additional embedding layer for all

the input modalities that maps them into a common token

space. Formally, TriDiψ is defined as:

TriDiψ :(θt
H

H , βt
H

H ,gt
H

H ,gt
O

O , zt
I

I ; tH, tO, tI , CO) 7→
(Ĥ, Ô, Î) ≡ (θ̂H, β̂H, ĝH, ĝO, ẑI).

(10)

We remark that the only required conditioning for TriDi is

the object representation CO, while other inputs are optional

depending on the operating mode. To help the network learn

the relation between the different modalities, the triplet H,

O, I is tokenized, and we use token-level self-attention to

attend fine-grained interaction among the three modalities.

Guidance. Despite explicitly modeling the interaction

modality, the diffusion predictions do not always satisfy

the contact. For 3D HOI, this is a hard constraint to re-

spect in order to avoid floating objects and interpenetra-

tions. In order to enforce contacts through the denoising

process, we adopt a classifier-based guidance [14] that per-

turbs the model’s prediction on every diffusion step follow-

ing the feedback of a supervising function F .

Our idea is to force the human to be in contact with the

object where the contact map is active. The contact map

ϕ̂I = DφI
(ẑI) predicted by TriDi enables such use of self-

supervised guidance at each diffusion step. We formulate

the supervising function as:

F(Ĥ, Ô, Î) =
∑

j∈|VH|

|ϕ̂Ijd̂j |, (11)

where d̂ ∈ R
690 contains for every vertex of the pre-

dicted human V̂H the distance to the closest vertex of the

predicted object V̂O:

d̂j = min
i∈|V̂O|

∥V̂j
H − V̂i

O∥2. (12)

We adopt the reconstruction guidance formulation

of [29], where the predicted sample (Ĥ, Ô, Î) =
TriDiψ(H,O, I; tH, tO, tI , CO) is directly modified on

each denoising step. The reconstruction guidance with scale

λ is thus formulated as:

(Ĥ, Ô, Î) := (Ĥ, Ô, Î)− λ∇HtH ,OtO ,ItIF(Ĥ, Ô, Î).
(13)

4.3. Training

Contact-Text Labeling. To train our method, we must

collect the contact maps ϕI and the text descriptions TI ,

which are unavailable for many 3D HOI datasets. We define

a simple automatic annotation procedure: for every train-

ing sample, we obtain the human-object distances d as de-

scribed in Equation 12 and threshold them to obtain a binary

contact map ϕI . We detect which of the 24 body parts of

the human template contains at least one vertex in contact,
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BEHAVE

Method
H, I|O O, I|H

1-NNA (→ 50) COV↑ MMD↓ 1-NNA (→ 50) COV↑ MMD↓

ObjPOP [58] + cVAE - - - 81.36±0.2 35.02±0.1 0.329±0.003

GNet [67] 80.01±0.4 40.71±0.4 1.789±0.036 - - -

s-TriDi-OI (Ours) - - - 65.06±0.5 50.49±0.1 0.167±0.001

s-TriDi-HI (Ours) 69.51±0.2 46.97±0.4 1.358±0.010 - - -

TriDi (Ours) 67.89±0.3
47.81±0.2

1.352±0.005
63.72±0.3

51.71±0.1
0.166±0.001

GRAB

Method
H, I|O O, I|H

1-NNA (→ 50) COV↑ MMD↓ 1-NNA (→ 50) COV↑ MMD↓

ObjPOP [58] + cVAE - - - 82.09±0.3 37.52±0.8 0.483±0.061

GNet [67] 89.64±0.8 39.33±1.2 1.422±0.087 - - -

s-TriDi-OI (Ours) - - - 66.78±0.8 48.27±0.1
0.252±0.012

s-TriDi-HI (Ours) 82.65±0.1
42.87±0.2

0.917±0.004 - - -

TriDi (Ours) 82.71±0.5 42.76±0.3 0.930±0.012
65.02±0.7

48.84±1.2 0.268±0.011

Table 1. Quality of Generated Distribution. TriDi is the only one operating in all the modalities and shows better capability in covering

data distribution, improving up to 47%.

and we use this information to compose the labels follow-

ing one of the predefined templates, e.g., "[parts] are

in contact with [object]".

Augmentation. The lack of interaction variability in the

datasets has been one of the main challenges for us. Of-

ten, interactions are performed by a single person, statis-

tically introducing a bias toward right-handed interactions.

Surprisingly, no previous human-object interaction model-

ing method addresses this problem. Hence, we mirror every

sample through the ZY plane, doubling the training data.

While the lack of perfect symmetry causes small artifacts,

we demonstrate that these are negligible, and the augmen-

tation is highly beneficial for generalization.

Losses. During training, TriDiψ takes as input the object

class condition CO, three timesteps (tH, tO, tI), and a noisy

version of the tokenized representation of human θt
H

H , βt
H

H

and gt
H

H , object gt
O

O , and interaction zt
I

I , generating the

predictions θ̂H, β̂H, ĝH, ĝO, ẑI . The learning is supervised

by the ground truth representations θH, βH,gH,gO, zI and

templates vertex positions VH,VO. We also incorporate

the supervision on distances d, fostering spatial alignment.

We report the loss details in Sup. Mat.

5. Experiments

In this section, we compare with one-way methods, assess-

ing the quality of our generation in terms of distribution

and spatial consistency. Comparing with specialized ap-

proaches in Section 5.1 is challenging for TriDi since it is

designed as a unified framework, not privileging any partic-

ular modality. We also demonstrate the utility of our rep-

resentation formulation and the usability of our interaction

representation. In Section 5.2, we ablate the components

of our method, providing insights into their specific contri-

bution. Finally, we demonstrate applications arising from

TriDi in Section 5.3. In the Sup. Mat., we also include an

analysis of the running time, experiments with unseen ge-

ometries, and a user study to validate the generation quality.

Datasets For our comparisons, we train TriDi and base-

lines on the union of BEHAVE [3] and GRAB [66], follow-

ing the train-test split provided by Object Pop-up[58]. We

also explore the scalability of TriDi by extending the train-

ing to InterCap [31] and OMOMO [42]. We provide de-

scriptions of these datasets and their sampling in Sup. Mat.

5.1. Comparison to one­way methods

Metrics. We evaluate the quality of the generated distri-

butions by comparing the generated samples g ∈ Sg with

the reference ones r ∈ Sr coming from the test sets (with

|Sg| = |Sr|), reporting the statistics across three sampling

runs. We report three measures: The Coverage (COV) [1]

matches every sample of Sg with the closest sample of

Sr and counts the percentage of samples in Sr that are

associated with at least one generated sample (100 indi-

cates perfect overlap). The Minimum Matching Distance

(MMD) [1] measures the average distance of samples in

the reference set to their closest neighbors in the gener-

ated set, quantifying the misalignment of the distributions.

The 1-nearest neighbor accuracy (1-NNA) [83] measures

the leave-one-out accuracy over the union of Sr∪Sg; the op-

timal value is 50. To evaluate the Geometrical Consistency

of Generation of humans, we report the Mean Per Joint Po-

sition Error (MPJPE) that measures in mm. the error in

predicting body joints. We also report its value after apply-

ing Procustes Analysis (MPJPE-PA) [20], alleviating the

effect of rotation and scale. For the object we employ the

vertex-to-vertex (Ev2v) and the object center (Ec) errors,

together with contact accuracy (Acccont). For TriDi, we

measure the error for the contact predicted directly by the

method and the one calculated from the generated 3D HOI.

We refer to Sup. Mat. for metrics’ rigorous definitions.
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Baselines. TriDi is the first approach trained only once

and addressing all the seven human-object interaction com-

binations. We compare with single-frame methods special-

ized in different modalities, posing a challenge to our gen-

eral setup. For P (H, I|O) we rely on GNet [67], while

for P (O, I|H) we choose Object Pop-up [58] (ObjPOP).

Since this latter is a regressive method, we provide a fur-

ther baseline by substituting its object’s center MLP with

a cVAE (ObjPOP [58]+cVAE). As in [58], we integrate a

Nearest-Neighbor baseline (NN), which uses the input con-

dition modality to query the training set and return the out-

put associated with the most similar frame. For objects, the

similarity is in terms of gO, and for humans, it is the dis-

tance of body joints after centering the root. Additionally, to

evaluate the benefits of the joint model, we train two vari-

ants of TriDi that work only in a single configuration: s-

TriDi-OI for P (O, I|H) and s-TriDi-HI for P (H, I|O).

Comparison: Quality of Generated Distribution. For

every method, we generate as many samples as the one con-

tained in the test sets of BEHAVE [3] and GRAB [66], and

we compare the generated and the test distributions relying

on the metrics described above. We consider cases when

the condition modality is the object H, I|O or the human

O, I|H. We exclude NN and ObjPOP from this comparison

since they do not have variance in prediction. In Tab.1, we

report the mean and the variance along three sampling runs.

Despite being more general, TriDi outperforms the special-

ized baselines on all the metrics, obtaining improvement up

to 47%. The consistently higher COV and lower MMD in-

dicate we better cover the real data distribution, while a 1-

NNA close to 50 suggests this is not due to memorizing.

We report a qualitative comparison in Fig.4. Notably, TriDi

performs better or on par with s-TriDi-HI and s-TriDi-OI ,

indicating that joint training benefits the generalization ca-

pabilities of the model. To compare the methods further, we

conducted a user study that collected 40 responses. In sum-

mary, our method’s output is frequently preferred w.r.t. the

baselines’ ones (∼ 80% of the cases) and on par with the GT

samples(∼ 46% of the cases); further details are provided in

Sup. Mat.

Comparison: Geometrical Consistency of Generation.

Comparing generations’ spatial consistency with ground

truth is not straightforward since a condition may lead to

multiple solutions. Hence, in Tab 2, we report the error con-

sidering the best out of three samples (in the case of NN, we

consider 3-NN). The improvement over all the errors indi-

cates that our better distribution representation comes with

high precision and an understanding of spatial relations. For

GRAB, we notice a drastic improvement in object center

and orientation, even over the regressive ObjPOP. Consid-

ering that our contact is always more accurate, we conclude

BEHAVE

Method
H, I|O O, I|H

MPJPE↓ MPJPE-PA↓ Acccont ↑ Ev2v ↓ Ec ↓ Acccont ↑
NN 30.5 14.2 95.0/NA 33.2 22.0 95.4/NA

ObjPOP [58] - - - 27.5 22.6 95.2/NA

ObjPOP [58] + cVAE - - - 35.2 23.5 93.6/NA

GNet [67] 35.6 14.6 94.6/NA - - -

s-TriDi-OI (Ours) - - - 27.9 15.6 95.8/96.2

s-TriDi-HI (Ours) 21.0 12.5 95.6/96.5 - - -

TriDi (Ours) 20.8 12.3 95.5/96.5 28.0 15.3 95.9/96.1

GRAB

Method
H, I|O O, I|H

MPJPE↓ MPJPE-PA↓ Acccont ↑ Ev2v ↓ Ec ↓ Acccont ↑
NN 18.9 13.0 97.1/NA 13.1 11.8 97.8/NA

ObjPOP [58] - - - 9.4 7.7 98.1/NA

ObjPOP [58] + cVAE - - - 13.6 12.3 97.4/NA

GNet [67] 26.7 15.5 96.6/NA - - -

s-TriDi-OI (Ours) - - - 6.9 4.9 99.0/98.7

s-TriDi-HI (Ours) 16.0 11.6 98.0/98.1 - - -

TriDi (Ours) 15.3 11.1 98.0/98.3 6.9 5.0 99.0/98.2

Table 2. Geometrical Consistency of Generation. TriDi shows

a high level of consistency both for human and object predictions.

Our contact prediction indicates the networks have also learned to

reason based on the interaction modality. For contacts, we show

both the accuracy of contacts inferred from H and O meshes, as

well as diffused contacts I (when available).

that our predictions produce more realistic samples. We no-

tice that the predicted contact is better or on par with the

contact inferred from meshes, suggesting the network has

developed an understanding of the I modality. We show

in Fig. 5 the flexibility of our I representation using varied

text descriptions. In Sup. Mat. we show the qualitative ex-

amples of our method adapting to object geometries unseen

at training time.

5.2. Ablations
buttocks and spine
are on the chair

chairblack touches
buttocks and thighs

O,H|I
TriDi (Ours)

Figure 5. Text Interaction.

TriDi supports text condition-

ing for I modality, providing

user control on the contact.

We perform an ablation

to analyze the role of the

augmentation, I modality

modeling, and the guid-

ance (we report quanti-

tative evaluation in Sup.

Mat. First, our full model

obtains the best perfor-

mance in most metrics.

Our augmentation has a

valuable effect in improv-

ing the 1-NNA, suggesting a better distribution. The guid-

ance and I modality plays a crucial role in geometrical con-

sistency, both for the human and the object. The complex-

ity of considering three modalities instead of two seems, in

general, beneficial.

5.3. Applications

In this section, we describe applications in populating

scenes, interaction reconstructions, and sequences with

keyframing. The results are obtained by the same TriDi

model evaluated in Section 5.1. We show generalization to
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Figure 6. Scene populating. Using 3D scans from HPS [22], we validate the practicality of TriDi for scene population in various

conditioning cases. On the left, we demonstrate conditional synthesis of human-object interactions. On the right, TriDi is used for the joint

generation of humans and objects.

Reference RGB
(not used)

TriDi (Ours) TriDi (Ours) TriDi (Ours)Reference RGB
(not used)

Reference RGB
(not used)

Figure 7. Interaction reconstruction. DECO [70] annotates hu-

man H and contact I for the RGB image, while our TriDi recovers

the object O, showing generalization on unseen data distributions.

unseen geometries and report samples from a more power-

ful model trained on more datasets in the Sup. Mat., show-

ing scalability to a variety of objects (e.g., vacuum, um-

brella, skateboard) and interactions (e.g., feet).

Populating scenes. Populating scenes is interesting for

several downstream tasks like those from AR/VR, or for

synthetic data generations. Here, we demonstrate one pos-

sible way to populate scenes with TriDi. We first place a

virtual object or a human on the ground of a scene, the pub-

licly available HPS dataset[22], and then run TriDi to gen-

erate the complementary modality. Also, we can directly

sample p(H,O, I) and populate with both humans and ob-

jects. Results are shown in Fig. 6.

Interaction reconstruction. Our method can also be used

to reconstruct interactions from images indirectly. In Fig.7,

we provide an example from the DAMON dataset of DECO

[70]. DAMON provides contact annotations for images

from the HOT [9] dataset along with SMPL parameters es-

timated by CLIFF [45]. Remarkably, TriDi generalizes to

such cases despite not being trained on the DECO dataset.

More examples are included in Sup. Mat.

Sequences with keyframing. Perhaps the most

widespread mechanism to generate sequences in ani-

mation is via keyframing. Here, we can use TriDi to

automatically generate the keyframes of interaction and

use an off-the-shelf in-betweener to generate a sequence.

Given a 4D human sequence at 30 fps, we sample at 1 fps,

generating the object and interpolate frames in between

using slerp for angles and linear for translations. We

provide an example in our Sup. Mat. video.

6. Conclusions

In this work, we proposed TriDi, the first joint model for

Human, Object, and Interaction, modeling it as a three-

variable joint distribution and handling a total of seven dif-

ferent operation modes. Such versatility of TriDi renders

prior works as special use cases of the proposed method.

TriDi employs an original Contact-Text Interaction rep-

resentation that combines the interpretability of text with

the guidance from the contact information. Quantitative

comparisons demonstrated the superiority of the proposed

method both in terms of distribution quality and spatial con-

sistency, with an improvement up to 47% over the base-

line methods. Finally, we demonstrated the applicability of

the proposed method to scene population, interaction recon-

struction from partial data, and generalization to novel ob-

ject geometry. This paves the way for unified HOI usage in

content creation, data generation, and AR/VR in the future.

Limitations and future work. There are several exciting

avenues for future work. We consider scaling beyond sin-

gle human and object interaction a promising direction to

enable the modeling of realistic social situations with in-

creasing complexity. The recent advancements in data cap-

turing [34, 39, 94] open up a possibility of blending scene

and object conditioning, laying the foundation for advanced

HOI models. As a data-driven method, TriDi is sensitive to

the skewness of the data distribution, expressing more vari-

ety towards frequent objects. Although TriDi shows gener-

alization to unseen geometries (e.g., chairs and stools), we

do not expect it to support objects with significantly novel

functionality (e.g., wheelchairs, bicycles, bowling balls).
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TriDi: Trilateral Diffusion of 3D Humans, Objects, and Interactions

Supplementary Material

Abstract

This supplementary material provides summary of notation

used in the text in Sec. 7. We report further implementa-

tion details of TriDi, description of text labels annotation,

insights on symmetry augmentation, and training losses in

Sec. 8. In Sec. 9, we include details on the conducted user

study, qualitative results on unseen data, ablation results,

qualitative results on GRAB, BEHAVE, OMOMO, and In-

terCap, as well as extended qualitative comparison with

the baselines. In Sec. 10, we include a discussion on the

broader impacts of our work. Details on all four datasets

used in the experiments are summarized in Sec. 11. Sec. 12

introduces an optional post-processing refinement proce-

dure that increases the realism of the generated interac-

tions. Finally, in Sec. 13, we provide full definition of the

error metrics. In the attached video, we show results of the

keyframing animation discussed in the main text, as well

as additional qualitative examples, and we encourage the

reader to look at the video.

7. Background and Notation

Background. We follow the formulation of Denoising

Diffusion Probabilistic Model (DDPM) [28] to obtain a

closed-form expression for zt given the original sample z0.

Let αi = 1− βi, ᾱt =
∏t
i=1 αi, and ϵ ∼ N (0, I):

q(zt|z0) = N (zt;
√
ᾱtz0, (1− ᾱt)I),

zt =
√
ᾱtz0 +

√
1− ᾱtϵ.

(14)

An iterative denoising process with denoising network

Dψ is defined by the following:

zt−1 =
√
ᾱt−1Dψ(zt; c, t) +

√

1− ᾱt−1ϵ, (15)

where ẑ0 = Dψ(zt; c, t).

Notation. Tab. 3 defines symbols used in our work.

8. Implementation details

The denoising network has a total of 15M parameters, and it

is trained end-to-end. We use a batch size of 1024, a learn-

ing rate of 1e − 4 with a cosine scheduler, and warm up

the training during the first 50k steps. The parameters are

optimized with AdamW [51]. We train for a total of 300k

steps. All the experiments are performed on a machine with

RTX4090 GPU. The training of the model takes approx-

imately 20 hours. The contact encoder-decoder network

Symbol Description Domain

H Human Modality (θH, βH,gH)
θH Human Pose R

51×3

βH Human Identity R
10

VH Human Template’s Vertices R
690

gH Human Global Pose in 6-DoF R
9

d Human to Object vertex distance R
690

O Object Modality (gO)
gO Object Global Pose in 6-DoF R

9

CO Object Information for conditioning (fO,yO)
fO PointNext features object R

1024

yO one-hot encoding of the class {0, 1}40
VO Object Template’s Vertices R

1500

I Interaction (zI)
TI Interaction Textual Label text

zI Interaction latent representation R
128

ϕI Interaction contact map {0, 1}690
EφI

Interaction Encoder (Contact Map) ϕI 7→ zI
DφI

Interaction Decoder (Contact Map) zI 7→ ϕI
ETI

Interaction Encoder (Textual Label) TI 7→ zI

Table 3. Notation Table. The main notation used in our paper.

with 1.7M parameters is trained separately for 70 epochs,

converging on the same machine in ∼ 1 hour. The inference

for one example with diffusion guidance takes around 3.07
seconds. Since TriDi works per-frame the inference can

be majorly sped up using batching, e.g. inference time for

1024 examples in one batch is 38.79 s. All models are im-

plemented in PyTorch [56] framework. Following [103] we

convert all rotations (θH,gH,gO) to 6-d representations be-

fore passing them to the network. We rely on blendify [23]

for visualization.

We implement diffusion reconstruction guidance within

DDPM pipeline and apply it for the last 200 out of 1000
iterations of the denoising process with weight λ = 2.0.

Text labels annotation. During training, we use a set of

predefined templates to generate text labels on the fly, mak-

ing the encoder ETI
more robust to diverse text inputs. The

template is selected randomly from a pool (provided in List-

ing 1) based on which body parts are in contact with the ob-

ject and the object’s class. For example, if a person sits on a

chair, then the text label is selected from a set of 1. Generic

templates and 2.2 Sitting templates.

1



a yogamat
is in the 
right arm

CLIP 

left hand
is in contact with

large box
CLIP 

a human
holds flashlight with

right hand
CLIP 

person
is dribbling
basketball

CLIP 

a person
is sitting on

chairwood
CLIP 

buttocks on yogaball CLIP 

a person
is touching 

table
CLIP 

Figure 8. Contact maps. Examples of contact maps decoded from

text queries.

Augmentation. During training, we apply the symme-

try augmentation randomly mirroring samples through ZY

plane. As a result, the model exhibits less bias towards

right-handed interactions. Qualitative examples in Fig. 9

for both cases of sampling from p(H, I|O) and p(O, I|H)
demonstrate how TriDi generates left- and right-handed in-

teractions given the same condition.

Losses The objective function used to train our network

is the weighted combination of the following losses:

LH
n = ∥θH − θ̂H∥1 + ∥βH − β̂H∥1 + ∥gH − ĝH∥1

LO
n = ∥gO − ĝH∥1
LI
n = ∥zI − ẑI∥2

LH
v = ∥VH − V̂H∥2

LO
v = ∥VO − V̂O∥2
LI
v = ∥d− d̂∥2

(16)

The resulting loss function is:

LTriDi =λ
H
n L

H
n + λOn L

O
n + λInL

I
n+

λHv L
H
v + λOv L

O
v + λIvL

I
v

(17)

with weighting coefficients set to: λHn = λOv = 2, λOn =
λIn = 1, λHv = 6, λIv = 4.

1. Generic templates:

- <body parts> <is / are> in contact

with <object class>

- <object class> is in contact

with <body parts>

- <body parts> touch(-es) <object class>

- <object class> <touches> <body parts>

2. Interaction specific templates:

2.1 Basketball template

- a person is dribbling basketball

2.2 Sitting templates

- <body parts> <is / are> on <object class>

- a person <is / sits> on <object class>

2.3 Hands-only templates

- <object class> is in <body parts>

- <body parts> <hold(-s) / grab(-s)>

<object class>

- a person is <holding / grabbing / carrying>

<object class>

Listing 1. Text labels. All templates used during training.

9. Additional Experiments

User study This section introduces details on the user

study that was used to evaluate TriDi. We have designed

and run a user study, asking participants to rate the quality

of the generated interactions. We compared TriDi against

one baseline method and ground-truth data in two genera-

tion modes: p(H, I|O) and p(O, I|H). We used GNet and

ObjPOP+cVAE as the baselines, and randomly selected 10

queries for the generation (5 from each of BEHAVE and

GRAB) for each mode. In every question we show users

three randomly shuffled samples: ground-truth data, TriDi,

and corresponding baseline. The participants were asked

to rate the quality of each sample based on the realism of

human-object interaction, and the amount of interpenetra-

tion between human and object. The rating scale consisted

of three options: Worst, Moderate, and Best, with ratings

being non-exclusive (i.e., more than one sample can have a

similar rating). Example interface of the user study is pro-

vided in the Fig. 10. As a result, we have collected 40 re-

sponses. We summarize the results in the Tab. 4, comparing

the ratings assigned to the samples by users. On average,

results of TriDi were preferred to the baselines in 81.4%
of the cases and preferred to the ground-truth examples in

46.65% of the cases. This suggests that the results of TriDi

are more appreciable than the baselines and produce a real-

ism comparable to captured data.

Generalization to unseen data . We provide qualitative

examples of TriDi on eight unseen objects in two sampling

2



Figure 9. Qualitative examples. Results demonstrating the

effectiveness of the symmetry augmentation. TriDi generates

left- and right-handed interactions given the same condition.

Figure 10. User study. The interface of the user study.

Mode Rating comparison Result in %

p(H, I|O)
TriDi > GNet 82.0%
TriDi > GT data 50.3%

p(O, I|H)
TriDi > ObjPOP+cVAE 80.8%
TriDi > GT data 43.0%

Table 4. User study. Summary of the user study results.

modes in Fig. 11. The model is able to generate realistic

interactions for objects with known functionality. We also

include more examples for interaction reconstruction on the

DAMON dataset in Figure 12.

Ablations Here, we report the quantitative evaluations of

our ablations described in the main paper. Table 5 covers the

quality of the generated distributions, while Table 6 covers

geometrical consistency of the generation.

Qualitative results This section includes additional qual-

itative results on BEHAVE (Figure 16) and GRAB (Figure

17), and introduces examples from InterCap (Figure 14) and

OMOMO (Figure 15).

Comparison with baselines In Fig. 18 we provide an

extended comparison with baselines, showing 3 generated

samples per same input.

10. Broader Impacts

Our method provides an invaluable tool for general con-

tent creation and supports analysis of different disciplines

like behavioral sciences or ergonomic studies. Since our

method studies human interaction, analysis of subjects’ be-

havior may be included in surveillance applications, leading

to privacy issues. However, at the present date, acquiring

the 3D data used in our method cannot be easily done with-

out the consensus of the target subject.

11. Datasets

BEHAVE. BEHAVE [3] captures 8 subjects interacting

with 20 different objects, represented as SMPL+H meshes

and global configuration, respectively. We downsample the

30fps train sequences to 10fps and consider the official

1fps test subset.

GRAB. We use the subset of GRAB [66] introduced in

[58]. This subset includes 10 subjects interacting with 20

objects. The 120fps train and test sequences are downsam-

pled to 1fps. The test set consists of interactions performed

by subjects 9 and 10.

InterCap. We downsample the original 30fps sequences

to 10fps and follow the train-test split provided by Vis-

Tracker [80]: Data from subjects 1-8 is used for training,

and sequences from subjects 9 and 10 are used for evalua-

tion.

OMOMO. This dataset captures 17 humans interacting

with 15 objects. We employ the official split, using the first

15 subjects for training and subjects 16,17 for testing, and

downsample all the sequences to 10fps.

12. Post-processing refinement

Motivation. In some cases, TriDi’s samples may miss

perfect plausibility of fine grained details, especially for

smaller objects. Such behavior is naturally caused by a

lack of detailed hand modeling in the majority of the train-

ing data. To counter this problem, we introduce a post-

processing refinement. We demonstrate qualitative exam-

3



Figure 11. Generalization to unseen geometry. TriDi samples from p(H, I|O) and p(O, I|H) with unseen objects.

Reference RGB
(not used)

TriDi (Ours) Reference RGB
(not used)

TriDi (Ours) Reference RGB
(not used)

TriDi (Ours) Reference RGB
(not used)

TriDi (Ours) Reference RGB
(not used)

TriDi (Ours) Reference RGB
(not used)

TriDi (Ours)

Figure 12. Interaction reconstruction. DECO [70] annotates human H and contact I for the RGB image, while our TriDi recovers the

object O, showing generalization on unseen data distributions.
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BEHAVE

Method
H, I|O O, I|H

1-NNA (→ 50) COV↑ MMD↓ 1-NNA (→ 50) COV↑ MMD↓

TriDi 67.89±0.3 47.81±0.2
1.352±0.005

63.72±0.3
51.71±0.1

0.166±0.001

NoGuide 68.04±0.5
48.87±0.2 1.355±0.002 63.80±0.4 51.62±0.3 0.167±0.001

(H,O) 68.19±0.4 48.57±0.1 1.373±0.006 65.18±0.5 50.85±0.2
0.166±0.001

NoAug 69.74±0.3 46.21±0.3 1.409±0.009 69.39±0.3 46.20±0.3 0.184±0.002

GRAB

Method
H, I|O O, I|H

1-NNA (→ 50) COV↑ MMD↓ 1-NNA (→ 50) COV↑ MMD↓

TriDi 82.71±0.5 42.76±0.3 0.930±0.012
65.02±0.7 48.84±1.2 0.268±0.011

NoGuide 82.99±0.5 41.74±1.0 0.957±0.007 65.64±0.4 47.98±1.3 0.269±0.012

(H,O) 82.40±1.0 42.53±1.2 0.996±0.014 66.58±1.7
49.23±0.4

0.262±0.002

NoAug 83.05±1.0
43.78±0.6

0.878±0.012 67.38±0.3 46.11±0.3 0.275±0.006

Table 5. Ablation - Quality of Generated Distribution. Impact of augmentation, I diffusion, and guidance.

BEHAVE

Method
H, I|O O, I|H

MPJPE↓ MPJPE-PA↓ Acccont ↑ Ev2v ↓ Ecenter ↓ Acccont ↑

TriDi 20.8 12.3 95.5/96.5 28.0 15.3 95.9/96.1
NoGuide 21.5 12.4 96.0/96.5 28.1 15.4 96.2/96.2
(H,O) 21.9 12.7 96.0 / NA 28.4 15.6 96.1 / NA

NoAug 23.2 12.9 95.4 / 96.2 31.0 17.8 95.5 / 96.0

GRAB

Method
H, I|O O, I|H

MPJPE↓ MPJPE-PA↓ Acccont ↑ Ev2v ↓ Ecenter ↓ Acccont ↑

TriDi 15.3 11.1 98.0/98.3 6.9 5.0 99.0/98.2
NoGuide 16.2 11.3 97.5 / 98.3 9.0 7.5 98.2 / 98.3
(H,O) 17.3 11.8 97.3 / NA 9.5 7.9 98.0 / NA

NoAug 14.1 10.4 98.2/98.4 7.2 5.2 98.9 / 98.5

Table 6. Ablation - Geometrical Consistency of Generation. Impact of augmentation, I diffusion, and guidance.

ples of post-processing refinement in Fig. 13 to show ex-

tended capabilities of TriDi. The proposed refinement pro-

cedure is able to correct mistakes in fine-grained grasps

leading to increased realism of predictions. In the following

paragraphs we provide details on the post-processing refine-

ment. We remark that all the qualitative and quantitative

results in the main paper and supplementary are obtained

without the refinement for a fairer comparison.

Refinement implementation. We take inspiration from

DexGraspNet [75] to design an optimization procedure re-

fining the generated hands. The original refinement mini-

mizes the error term:

Efc+wdisEdis+wpenEpen+wspenEspen+wpriorEprior
(18)

where Efc is a force closure term proposed in [48] that en-

courages the closed grasp, Edis and Epen are, respectively,

attraction and repulsion terms, enforcing contact and penal-

izing penetration, Espen is a self-penetration term, Eprior

is a hand prior term penalizing unrealistic pose configura-

tions. We refer to [75] for detailed definition of the energies.

We add two more terms to the original energy to adapt the

method to our use case. Firstly, we want the final result to

don’t deviate too much from the initial prediction of TriDi,

thus we introduce regularization:

Ereg = ∥θ̂H − θ̃H∥2 (19)

where θ̂H is human pose predicted by TriDi and θ̃H is the

refined human pose. Secondly, we want to explicitly pe-

nalize intersections between hands and objects. To achieve

this we introduce a term inspired by [36, 71] that detects

the collision between hand and object meshes, penalizing

the quantity:

Eisect =
∑

(fH,fO)∈C

[

∑

vH∈fH

∥ −ΨfO (vH)∥2 +

∑

vO∈fO

∥ −ΨfH(vO)∥2
]

(20)
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Refinement

Refinement

Figure 13. Post-processing refinement result. Example results

demonstrating the effectiveness of the post-processing refinement.

Optionally, TriDi results can be refined using an optimization pro-

cedure that improves fine hand details.

where vH ∈ VH and fH ∈ FH are vertices and faces of

the human mesh, vO ∈ VO and fO ∈ FO are vertices and

faces of the object mesh, C is a set of pairs of collided faces,

Ψf : R
3 → R+ is a cone distance field from the face ℧ (full

definition can be found in [71]).

Since TriDi deals with full bodies, the optimization pro-

cedure is split into two stages: first, to fix the global posi-

tioning of the hand (optimization w.r.t. shoulder, elbow, and

wrist joints), next to fix the fine details (optimization w.r.t.

fingers). Therefore, we obtain the following energy terms:

Estage 1 =wdisEdis + wpenEpen+

wregEreg + wisectEisect

Estage 2 =Efc + wdisEdis + wpenEpen+

wspenEspen + wpriorEprior+

wregEreg + wisectEisect

(21)

where weights are wdis = 0.2, wpen = 100, wreg = 20,

wisect = 400 for the first stage, and wdis = wpen =
wisect = 100, wspen = 10, wprior = 0.5, wreg = 10
for the second stage. Optimization setup follows [75] with

1000 iterations for the first stage and 2000 iterations for the

second stage.

13. Error Metrics

Quality of Generated Distribution. To evaluate our fit-

ting to the target distribution, we use three metrics. The

Coverage (COV)[1]:

COV (Sg, Sr) =
|{arg min

r∈Sr

D(g, r)|g ∈ Sg}|
|Sr|

, (22)

where D(g, r) is L2 distance between corresponding fea-

ture vectors, namely, root-centered body joints for humans

and concatenated global position and orientation for ob-

jects.

Minimum Matching Distance (MMD)[1]:

MMD(Sg, Sr) =
1

|Sr|
∑

r∈Sr

min
g∈Sg

D(g, r) (23)

We employ the same definition of D(·, ·) as for COV.

1-Nearest Neighbor Accuracy (1-NNA) [83]. Given a

generated sample g, The idea is to evaluate how a 1-NN

classifier trained on S−g = Sr ∪ Sg − {g} would classify

the sample g. Namely, 1-NNA evaluates the leave-one-out

accuracy over the union dataset:

1-NNA(Sg, Sr) =
∑

X∈Sg
1[NX ∈ Sg] +

∑

Y ∈Sr
1[NY ∈ Sr]

|Sg|+ |Sr|
,

(24)

where NX is the nearest neighbor of X in S−X , 1[·] is the

indicator function. We define nearest neighbors according

to the aforementioned distance metrics D(·, ·).

Geometrical Consistency of Generation. The Ev2v er-

ror measures the average L2 distance between the position

of the predicted object vertices and the ones of the ground

truth:

Ev2v =
1

|VO|
∑

i∈|VO|

∥Vi
O − V̂i

O∥2 (25)

The Ec error measures the average L2 distance between

the position of the predicted object center and the one of the

ground truth:

Ec =

∥

∥

∥

∥

∥

∥

1

|VO|
∑

i∈|VO|

Vi
O − 1

|V̂O|
∑

i∈|V̂O|

V̂i
O

∥

∥

∥

∥

∥

∥

2

. (26)

We complement the reconstruction metrics with the con-

tact accuracy metric Acccont:

Acccont =
1

|VH|
∑

i∈|VH|

1[ϕ̂iI = ϕiI ], (27)

where 1 is an indicator function.
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Figure 14. Qualitative results of TriDi on InterCap.
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Figure 15. Qualitative results of TriDi on OMOMO.
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Figure 16. Qualitative results of TriDi on BEHAVE.
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Figure 17. Qualitative results of TriDi on GRAB.
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Figure 18. Comparison with baselines. In each group we show three samples (colored in different shades of green) for the same input, as

well as one image with the same samples combined. The conditioning is taken from BEHAVE and GRAB test sets.
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