Supplementary Document:
Single-Shot Multi-Person 3D Pose

Estimation From Monocular RGB
1. Read-out Process

An algorithmic description of the read-out process
is provided in Alg.

Algorithm 1 3D Pose Inference

1: Given: PP, C?P, M

2: for all i € (1..m) do

3 if CZP[k] > thresh, k € {pelvis,neck} then
4 Person i is detected

5: for all joints j € (1..n) do

6 rloc = P?P[k]

7 P;[:, j] = READLOCMAP(j, rloc)

8

for all limbs l €

{army, arm,, leg;,leg,, head} do

9: for j = GETEXTREMITY(I);] ¢
{pelvis,neck};j = parent(j) do

10 if 1ISVALIDREADOUTLOC(], j) then

11: REFINELIMB(1, P2P[5])

12: break

13: else

14: No person detected

15: function GETEXTREMITY (limb 1)

16: if | = legs then return ankleg

17: else

18: if [ = armg then return wrist,

19: else return head

20: function READLOCMAP(joint j, 2DLocation rloc)

21: rloc = rloc/locMap_scale_factor

22: return M;[rloc]

23: function REFINELIMB(limb 1, 2DLocation rloc)
24: for all joints b € limb [ do

25: P,[:,))J=READLOCMAP(b, rloc)

26: function 1ISVALIDREADOUTLOC(person i, joint j)
27:  if (C?P[j] > 0) then

28: return ISISOLATED(i,j)
29: else
30: return 0

31: function 1SISOLATED(person i, joint j)
32: isol =1 B B
33: for all persons i € (1..m),i # i do

34: for all 2DLocations a € p;(j) do

35: if ||a — P?P[j]||2 < isoThresh then
36: isol =0

37: break

38: return ¢sol
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Figure 1. The network architecture with 2DPose+Affinity
branch predicting the 2D heatmaps Hcoco and part affin-
ity maps Acoco with a spatial resolution of (W/8, H/8),
and 3DPose branch predicting 2D heatmaps Hyrpr and
ORPMs Mrpr with a spatial resolution of (W/4, H/4),
for an input image with resolution (W, H).

2. Network Details
2.1. Architecture

A visualization if our network architecture using the
web-based visualization tool Netscope can be found
at: http://ethereon.github.io/netscope/#/gist/
069a592125c78fbdd6eb11£d45306fa0.

2.2. Data

We use 12 out of the 14 available camera viewpoints
(using only 1 of the 3 available top down views) in
MPI-INF-3DHP [9] training set, and create 400k com-
posite frames of MuCo-3DHP, of which half are with-
out appearance augmentation. For training, we crop
around the subject closest to the camera, and apply
rotation, scale, and bounding-box jitter augmentation.
Since the data was originally captured in a relatively
restricted space, the likelihood of there being multi-
ple people visible in the crop around the main per-
son is high. The combination of scale augmentation,
bounding-box jitter, and cropping around the subject
closest to the camera results in many examples with
truncation from the frame boundary, in addition to the
inter-person occlusions occurring naturally due to the
compositing.

2.3. Training

We train our network using the Caffe [5] framework.
The core network’s weights were initialized with those
trained for 2D body pose estimation on MPI [I] and
LSP [6,[7] datasets as done in [9]. The core network and
the 2DPose + Affinity branch are trained for multi-
person 2D pose estimation using the framework pro-
vided by Cao et al. [2]. We use the AdaDelta solver,
with a momentum of 0.9 and weight decay multiplier
of 0.005, and a batch size of 8. We train for 640k it-
erations with a cyclical learning rate ranging from 0.1
to 0.000005. The 3DPose branch is trained with the
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Figure 2. Joint-wise accuracy comparison of our method
and LCR-net [14] on the single person MPI-INF-3DHP test
set. 3D Percentage of Correct Keypoints (@150mm) as
the vertical axis. LCR-net predictions were mapped to the
ground truth bone lengths for fairness of comparison.

core network and 2DPose + Affinity branch weights
frozen. We use a batch size of 6 and train for 360k it-
erations with a cyclical learning rate ranging from 0.1
to 0.000001. We empirically found that training the
part affinity fields and occlusion-robust pose-maps at
lower resolution (see Fig. [1]) leads to better results.

3. Joint-wise Analysis

Figure [2| shows joint-wise accuracy comparison of
our approach with LCR-net [I4] on the single person
MPI-INF-3DHP test set. For limb joints (elbow, wrist,
knee, ankle) LCR-net performs comparably or better
than our torso-only readout, but our full readout per-
forms significantly better. See Figure

Figure [5] shows joint-wise accuracy comparison of
our approach with LCR-net on our proposed multi-
person 3D pose test set. We see that our approach
obtains a better accuracy for all joint types for most
sequences, only performing worse than LCR-net for
a select few joint types on certain sequences (Test-
Seq18,19,20).

4. Evaluation on Single-person Test Sets

Here we provide a detailed comparison against other
methods for single-person 3D pose estimation. Evalu-
ation on Human3.6m is in Table |3| and on MPI-INF-
3DHP test set in Table We additionally provide
comparisons with the VNect location-maps trained on
our training setup, which includes the 2D pretraining,
and the 3D pose samples.

Table [4 provides a sequencewise breakdown for the
synthetic occlusion experiment on MPI-INF-3DHP test
set wherein through randomly placed occlusions ~14%
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Figure 3. Qualitative comparison of LCR-net [14] and our
method. LCR-net predictions are limited in terms of the ex-
tent of articulation of limbs, tending towards neutral poses.
For our method, the base pose read out at the torso is simi-
larly limited in terms of degree of articulation of limbs, and
our full read-out addresses the issue.

Figure 4. Examples from our MuPoTS-3D evaluation set.
Ground truth 3D pose reference and joint occlusion annota-
tions are available for up to 3 subjects in the scene (shown
here for the frame on the top right). The set covers a variety
of scene settings, activities and clothing.

of the joints are occluded. This doesn’t account for
self-occlusions.



Table 1. Comparison of results on Human3.6m [4], for single un-occluded person. Human3.6m, subjects 1,5,6,7,8 used for
training. Subjects 9 and 11, all cameras used for testing. Mean Per Joint Postion Error reported in mm
H Direct Disc. Eat Greet Phone Pose Purch. Sit.

Pavlakos et al [13] 60.9 67.1 61.8 62.8 67.5 58.8 64.4 79.8
Mehta et al [9] 52.5 63.8 55.4 62.3 71.8 52.6 72.2 86.2
Tome et al [16] 65.0 73.5 76.8 86.4 86.3 69.0 74.8 110.2
Chen et al [3] 89.9 97.6 90.0 107.9 107.3 93.6 136.1 133.1
Moreno et al [11] 67.5 79.0 76.5 83.1 97.4 74.6 72.0 102.4
Zhou et al [17] 54.8 60.7 58.2 71.4 62.0 53.8 55.6 75.2
Martinez et al [8] 51.8 56.2 58.1 59.0 69.5 55.2 58.1 74.0
Tekin et al [15] 53.9 62.2 61.5 66.2 80.1 64.6 83.2 70.9
Nie et al [12] 62.8 69.2 79.6 78.8 80.8 72.5 73.9 96.1
VNect [10] 62.6 78.1 63.4 72.5 88.3 63.1 74.8 106.6
LCR-net [14] 76.2 80.2 75.8 83.3 92.2 79.9 717 105.9
VNect (with our setup) 65.52 78.8 64.8 75.0 85.2 66.4 88.1 110.2
Our Single-Person 58.2 67.3 61.2 65.7 75.82 62.2 64.6 82.0
Sit Walk Walk

Down Smk. Photo Wait Walk Dog Pair Avg.
Pavlakos et al [13] 92.9 67.0 72.3 70.0 54.0 71.0 57.6 67.1
Mehta et al [9] 120.6 66.0 79.8 64.0 48.9 76.8 53.7 68.6
Tome et al [16] 173.9 84.9 110.7 85.8 71.4 86.3 73.1 88.4
Chen et al [3] 240.1 106.6 139.2 106.2 87.0 114.0 90.5 114.2
Moreno et al [I1] 116.7 87.7 100.4 94.6 75.2 87.8 74.9 85.6
Zhou et al [I7] 111.6 64.1 65.5 66.0 63.2 51.4 55.3 64.9
Martinez et al [8] 94.6 62.3 78.4 59.1 49.5 65.1 52.4 62.9
Tekin et al [15] 107.9 70.4 79.4 68.0 52.8 77.8 63.1 70.8
Nie et al [12] 106.9 88.0 86.9 70.7 71.9 76.5 73.2 79.5
VNect [10] 138.7 78.8 93.8 73.9 55.8 82.0 59.6 80.5
LCR-net [14] 127.1 88.0 105.7 83.7 64.9 86.6 84.0 87.7
VNect (with our setup) 155.9 82.0 95.2 76.8 59.7 94.1 64.3 84.3
Our Single-Person 93.0 68.8 84.5 65.1 57.6 72.0 63.6 69.9

Ours LCR-net Difference
Head Neck Shoul Elbow Wrist Hip Knee Ankle Total Head Neck Shoul Elbow Wrist Hip Knee Ankle Total

Testseql [[96/8NE000M061 780 5098818 81.0 623  81.0|TestSeql | 731 81.8 744 613 419670 74.9 47.1 67.7(TestSeql Head Neck Shoul Elbow Wrist Hip Knee Ankle Total
TestSeq2? 63.9 859 683 549 47.6 75.6 553 42.8 59.9|TestSeq2 546 69.3 539 43.5 317 69.3 48.6 39.3 49.8[Testseqz |23 18200333 167 90 27 61 152 133
TestSeq3  79.9| 91.9 905 565 46.8 420 302 64.4|TestSeq3 712 810 564 358 296 491 317 53.4|Testseq3 =~ 94 165 144 114 159 63 67 35 102
TestSeqd 73.1 827 765 56.6 49.3 50.7 314 62.8|TestSeq4 57.6, 80.7 63.2 551 483 52.0 313 59.1|TestSeq4 87 108 172 37 -70 -15 110
TestSeqS 56.5 82.0 79.7 66.2 657 855 67.3 42.0 680 |TestSeqS 68.0, 849 72.1 70.5 60.5 847 65.1 432 67.5|TestSeqs = 154 200 133 15 05 23 -13 01 36
TestSeq6 |65 321 355 23311108 30.3 | Testseq6 |63 268 186 17.1 12.8 848/ 760028 22.8|Testseqs 15 29 76 -43 52 09 22 -11 05
TestSeq7  66.6[0%8 815 47.0) 21.0 63.0 619 65.0|TestSeq7 344 66.8 388 315 229 B87.6 49.1 256 43.7|Testseq7 02 53 169 44 -18 146 157 85 7.5

TestSeq8 552 71.6 658 57.2 452 444 428 59.2|Testseq8 563 700 521 44.6 354 757 468 317 49.9 [Testseqs ﬂ 155 18 111 13800868 213

Testseqd 67.2| 841 815 301 257 627 73.1 641 Testseqd | 345 sio 3ailNBODINNSE es1 528 314 SLA| Testsend pey
TestSeq10 632 521 77.8  83.9) TestSeq10 | 80.5/97601880 53.1 31.9 87.0 78.1 | TestSeq10

177 24 20 2 00 85 102 58
TestSeqll 66.0 841 560 441 892 73.8 439 67.2|TestSeqll| 233 430 394 615 441 57.4 274 50.2|TestSeqll ol o2 16T
TestSeql2 461 731 762 73.4 66.8[9%1| 644 408 68.3|TestSeql2 242 415 392 611 65. 412 206 51.0TestSeql2 oo IEENERE 175
TestSeql3 585 77.9 745 486 385 840 689 413 60.6|TestSeqls 420 622 515 482 37.4 785 571 365 516Testseql3 | 1o, g0 oM asl 85

TestSeql4 47.5 733 697 438 384 798 621 410 565|TestSeqld 366 632 507 39.9 29.2 807 57.5 37.4 493|TestSeald 100 105 190 38 93 09 46 36 71

TestSeql5 62.3| 91.2 847 583 426 77.4 523 69.9|TestSeql5 39.4 728 59.1 44.6 34.4 736 346 56.2TestSeqls 183 138 82 57 370178 136
TestSeql6 72.9. 87.8 86.1 823 80.1 81.9 519 79.4|TestSeqlé 48.1 67.8 650 786 683 67.0 354 66.5|TestSeq16 200 37 118 -02/ 149 165 129
TestSeql7 74.4 73.8 780 781 613 78.6 79.6|TestSeql7 44.1 77.7 757 68.8 589 854 59.7 46.8 65.2|TestSeql? 39 22 93 23 1110318 317 145
TestSeq18 54.8 73.8 77.1 73.1 442 87.6 746 415 66.1|TestSeql8 53.7| 89.9 835 636 42.5 60.8 284 62.9|TestSeql8 11 161 -63 95 17 -24 138 131 3.1

TestSeq19 449 784 794 552 54.1 844 77.7 379 64.3]|TestSeql9 69.6 80.0 672 624 530 811 739 502 66.1|TestSeql9 -1.5 12 72 10 32 38 -124 -1.8
TestSeq20 50.8 73.5 71.7 62.5 58.6 73.0 69.0 47.5 63.5|TestSeq20 70.5 48.8 495 673 619 726 644 380 59.1 TestSeq20‘-19.6 49 33 04 46 95 44

Figure 5. Comparison of our method and LCR-net [I4] on our proposed multi-person test set, here visualized as joint-wise
breakdown of PCK for all 20 sequences, as well as the difference in accuracy between our method and LCR-net. LCR-net
predictions were mapped to the ground truth bone lengths for fairness of comparison.



Figure 6. More qualitative results of our approach on MPI 2D pose dataset [I] and our proposed MuPoTS-3D test set.



Table 2. Comparison of our method against the state of the art on single person MPI-INF-3DHP test set. All evaluations
use ground-truth bounding box crops around the subject. We report the Percentage of Correct Keypoints measure in 3D
(@150mm), and the Area Under the Curve for the same, as proposed by MPI-INF-3DHP. We additionally report the Mean
Per Joint Position Error in mm. Higher PCK and AUC is better, and lower MPJPE is better.

Stand/ Sit On|Crouch/|On the
Network Walk |Exercise| Chair | Reach | Floor |Sports|Misc. Total
PCK | PCK | PCK | PCK | PCK | PCK |PCK|PCK|AUC|MPJPE(mm)
VNect [10] 87.7 | 77.4 | 74.7 72.9 51.3 | 83.3 |80.1| 76.6 | 40.4 124.7
LCR-net [14] 70.5 56.3 | 58.5 69.4 39.6 | 57.7 | 57.6 || 59.7|27.6 158.4
Zhou et al.[17] 85.4 71.0 | 60.7 71.4 37.8 | 70.9 | 74.4]69.2|32.5 137.1
Mehta et al.[9] 86.6 75.3 74.8 73.7 52.2 | 821 |77.5||75.7|39.3 117.6

Ours Single-Person (Torso) || 75.0 | 64.8 | 69.1 | 68.7 | 48.6 | 70.0 |60.6 || 65.6 | 32.6 142.8
Ours Single-Person (Full) || 83.8 | 750 | 77.8 | 77.5 | 55.1 | 80.4 |72.575.2|37.8 122.2
Ours Multi-Person (Torso) || 73.7 | 63.7 | 64.6 | 65.8 | 44.7 | 69.5 | 60.2 || 63.6|31.1 146.8
Ours Multi-Person (Full) 82.0 74.5 75.9 73.9 51.6 | 79.0 | 71.8|73.4|36.2 126.3
VNect (our train. setup) 85.7 75.4 | 78.6 | T72.3 60.2 | 81.8 | 73.4|75.8|38.9 120.1

Table 3. Testing occlusion robustness of our method through synthetic occlusions on MPI-INF-3DHP single person test set.
The synthetic occlusions cover about 14% of the evaluated joints overall. We report the Percentage of Correct Keypoints
measure in 8D (@150mm) overall, as well as split by occlusion. Higher PCK.

Seql | Seq2 | Seq3 | Seq4 | Seqd | Seq6 || Total
PCK | PCK | PCK | PCK | PCK | PCK || PCK

Overall
Ours Multi-Person 78.7 | 70.0 | 719 | 65.2 | 61.4 | 60.7 69.0
Ours Single-Person 809 | 728 | 72.6 | 65.7 | 62.5 | 65.8 71.1
VNect [10] 80.1 | 724 | 724 | 61.5 | 50.2 | 69.8 69.4

VNect (our train. setup) || 79.3 | 74.4 | 72.2 | 67.2 | 55.7 | 64.6 || 70.4
Occluded Subset of Joints

Ours Multi-Person 73.3 | 66.5 | 55.0 | 56.5 | 45.1 | 64.9 62.8
Ours Single-Person 749 | 63.2 | 59.0 | 54.2 | 48.0 | 68.4 64.0
VNect [10] 61.4 | 54.5 | 47.6 | 36.4 | 30.5 | 66.2 53.2

VNect (our train. setup) || 69.6 | 61.9 | 49.0 | 50.8 | 43.5 | 63.4 | 59.2
Un-occluded Subset of Joints

Ours Multi-Person 79.9 | 70.5 | 73.7 | 66.2 | 64.6 | 59.5 70.0
Ours Single-Person 82.1 | 740 | 74.1 | 67.0 | 65.3 | 65.1 72.2
VNect [10] 83.9 | 746 | 75.0 | 64.4 | 54.0 | 70.9 72.1

VNect (our train. setup) || 81.3 | 76.0 | 74.6 | 69.0 | 58.1 | 64.8 72.2
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