
Supplementary Document:
Single-Shot Multi-Person 3D Pose
Estimation From Monocular RGB

1. Read-out Process

An algorithmic description of the read-out process
is provided in Alg. 1.

Algorithm 1 3D Pose Inference

1: Given: P2D, C2D, M
2: for all i ∈ (1..m) do
3: if C2D

i [k] > thresh, k ∈ {pelvis, neck} then
4: Person i is detected
5: for all joints j ∈ (1..n) do
6: rloc = P2D

i [k]
7: Pi[:, j] = ReadLocMap(j, rloc)

8: for all limbs l ∈
{arml, armr, legl, legr, head} do

9: for j = getExtremity(l); j /∈
{pelvis, neck}; j = parent(j) do

10: if isValidReadoutLoc(i, j) then
11: refineLimb(l, P2D

i [j])
12: break
13: else
14: No person detected

15: function getExtremity(limb l)
16: if l = legs then return ankles
17: else
18: if l = arms then return wrists
19: else return head
20: function ReadLocMap(joint j, 2DLocation rloc)
21: rloc = rloc/locMap scale factor
22: return Mj [rloc]

23: function refineLimb(limb l, 2DLocation rloc)
24: for all joints b ∈ limb l do
25: Pi[:, b]=ReadLocMap(b, rloc)

26: function isValidReadoutLoc(person i, joint j)
27: if (C2D

i [j] > 0) then
28: return isIsolated(i,j)
29: else
30: return 0
31: function isIsolated(person i, joint j)
32: isol = 1
33: for all persons ī ∈ (1..m), ī 6= i do
34: for all 2DLocations a ∈ ρī(j) do
35: if ||a−P2D

i [j]||2 < isoThresh then
36: isol = 0
37: break
38: return isol

Figure 1. The network architecture with 2DPose+Affinity
branch predicting the 2D heatmaps HCOCO and part affin-
ity maps ACOCO with a spatial resolution of (W/8, H/8),
and 3DPose branch predicting 2D heatmaps HMPI and
ORPMs MMPI with a spatial resolution of (W/4, H/4),
for an input image with resolution (W,H).

2. Network Details

2.1. Architecture

A visualization if our network architecture using the
web-based visualization tool Netscope can be found
at: http://ethereon.github.io/netscope/#/gist/
069a592125c78fbdd6eb11fd45306fa0.

2.2. Data

We use 12 out of the 14 available camera viewpoints
(using only 1 of the 3 available top down views) in
MPI-INF-3DHP [9] training set, and create 400k com-
posite frames of MuCo-3DHP, of which half are with-
out appearance augmentation. For training, we crop
around the subject closest to the camera, and apply
rotation, scale, and bounding-box jitter augmentation.
Since the data was originally captured in a relatively
restricted space, the likelihood of there being multi-
ple people visible in the crop around the main per-
son is high. The combination of scale augmentation,
bounding-box jitter, and cropping around the subject
closest to the camera results in many examples with
truncation from the frame boundary, in addition to the
inter-person occlusions occurring naturally due to the
compositing.

2.3. Training

We train our network using the Caffe [5] framework.
The core network’s weights were initialized with those
trained for 2D body pose estimation on MPI [1] and
LSP [6, 7] datasets as done in [9]. The core network and
the 2DPose + Affinity branch are trained for multi-
person 2D pose estimation using the framework pro-
vided by Cao et al. [2]. We use the AdaDelta solver,
with a momentum of 0.9 and weight decay multiplier
of 0.005, and a batch size of 8. We train for 640k it-
erations with a cyclical learning rate ranging from 0.1
to 0.000005. The 3DPose branch is trained with the

http://ethereon.github.io/netscope/#/gist/069a592125c78fbdd6eb11fd45306fa0
http://ethereon.github.io/netscope/#/gist/069a592125c78fbdd6eb11fd45306fa0


Figure 2. Joint-wise accuracy comparison of our method
and LCR-net [14] on the single person MPI-INF-3DHP test
set. 3D Percentage of Correct Keypoints (@150mm) as
the vertical axis. LCR-net predictions were mapped to the
ground truth bone lengths for fairness of comparison.

core network and 2DPose + Affinity branch weights
frozen. We use a batch size of 6 and train for 360k it-
erations with a cyclical learning rate ranging from 0.1
to 0.000001. We empirically found that training the
part affinity fields and occlusion-robust pose-maps at
lower resolution (see Fig. 1) leads to better results.

3. Joint-wise Analysis

Figure 2 shows joint-wise accuracy comparison of
our approach with LCR-net [14] on the single person
MPI-INF-3DHP test set. For limb joints (elbow, wrist,
knee, ankle) LCR-net performs comparably or better
than our torso-only readout, but our full readout per-
forms significantly better. See Figure 3.

Figure 5 shows joint-wise accuracy comparison of
our approach with LCR-net on our proposed multi-
person 3D pose test set. We see that our approach
obtains a better accuracy for all joint types for most
sequences, only performing worse than LCR-net for
a select few joint types on certain sequences (Test-
Seq18,19,20).

4. Evaluation on Single-person Test Sets

Here we provide a detailed comparison against other
methods for single-person 3D pose estimation. Evalu-
ation on Human3.6m is in Table 3, and on MPI-INF-
3DHP test set in Table 4. We additionally provide
comparisons with the VNect location-maps trained on
our training setup, which includes the 2D pretraining,
and the 3D pose samples.

Table 4 provides a sequencewise breakdown for the
synthetic occlusion experiment on MPI-INF-3DHP test
set wherein through randomly placed occlusions ≈14%

Figure 3. Qualitative comparison of LCR-net [14] and our
method. LCR-net predictions are limited in terms of the ex-
tent of articulation of limbs, tending towards neutral poses.
For our method, the base pose read out at the torso is simi-
larly limited in terms of degree of articulation of limbs, and
our full read-out addresses the issue.

Figure 4. Examples from our MuPoTS-3D evaluation set.
Ground truth 3D pose reference and joint occlusion annota-
tions are available for up to 3 subjects in the scene (shown
here for the frame on the top right). The set covers a variety
of scene settings, activities and clothing.

of the joints are occluded. This doesn’t account for
self-occlusions.



Table 1. Comparison of results on Human3.6m [4], for single un-occluded person. Human3.6m, subjects 1,5,6,7,8 used for
training. Subjects 9 and 11, all cameras used for testing. Mean Per Joint Postion Error reported in mm

Direct Disc. Eat Greet Phone Pose Purch. Sit.

Pavlakos et al [13] 60.9 67.1 61.8 62.8 67.5 58.8 64.4 79.8
Mehta et al [9] 52.5 63.8 55.4 62.3 71.8 52.6 72.2 86.2
Tome et al [16] 65.0 73.5 76.8 86.4 86.3 69.0 74.8 110.2
Chen et al [3] 89.9 97.6 90.0 107.9 107.3 93.6 136.1 133.1
Moreno et al [11] 67.5 79.0 76.5 83.1 97.4 74.6 72.0 102.4
Zhou et al [17] 54.8 60.7 58.2 71.4 62.0 53.8 55.6 75.2
Martinez et al [8] 51.8 56.2 58.1 59.0 69.5 55.2 58.1 74.0
Tekin et al [15] 53.9 62.2 61.5 66.2 80.1 64.6 83.2 70.9
Nie et al [12] 62.8 69.2 79.6 78.8 80.8 72.5 73.9 96.1

VNect [10] 62.6 78.1 63.4 72.5 88.3 63.1 74.8 106.6
LCR-net [14] 76.2 80.2 75.8 83.3 92.2 79.9 71.7 105.9

VNect (with our setup) 65.52 78.8 64.8 75.0 85.2 66.4 88.1 110.2

Our Single-Person 58.2 67.3 61.2 65.7 75.82 62.2 64.6 82.0

Sit Walk Walk
Down Smk. Photo Wait Walk Dog Pair Avg.

Pavlakos et al [13] 92.9 67.0 72.3 70.0 54.0 71.0 57.6 67.1
Mehta et al [9] 120.6 66.0 79.8 64.0 48.9 76.8 53.7 68.6
Tome et al [16] 173.9 84.9 110.7 85.8 71.4 86.3 73.1 88.4
Chen et al [3] 240.1 106.6 139.2 106.2 87.0 114.0 90.5 114.2
Moreno et al [11] 116.7 87.7 100.4 94.6 75.2 87.8 74.9 85.6
Zhou et al [17] 111.6 64.1 65.5 66.0 63.2 51.4 55.3 64.9
Martinez et al [8] 94.6 62.3 78.4 59.1 49.5 65.1 52.4 62.9
Tekin et al [15] 107.9 70.4 79.4 68.0 52.8 77.8 63.1 70.8
Nie et al [12] 106.9 88.0 86.9 70.7 71.9 76.5 73.2 79.5

VNect [10] 138.7 78.8 93.8 73.9 55.8 82.0 59.6 80.5
LCR-net [14] 127.1 88.0 105.7 83.7 64.9 86.6 84.0 87.7

VNect (with our setup) 155.9 82.0 95.2 76.8 59.7 94.1 64.3 84.3

Our Single-Person 93.0 68.8 84.5 65.1 57.6 72.0 63.6 69.9

Figure 5. Comparison of our method and LCR-net [14] on our proposed multi-person test set, here visualized as joint-wise
breakdown of PCK for all 20 sequences, as well as the difference in accuracy between our method and LCR-net. LCR-net
predictions were mapped to the ground truth bone lengths for fairness of comparison.



Figure 6. More qualitative results of our approach on MPI 2D pose dataset [1] and our proposed MuPoTS-3D test set.



Table 2. Comparison of our method against the state of the art on single person MPI-INF-3DHP test set. All evaluations
use ground-truth bounding box crops around the subject. We report the Percentage of Correct Keypoints measure in 3D
(@150mm), and the Area Under the Curve for the same, as proposed by MPI-INF-3DHP. We additionally report the Mean
Per Joint Position Error in mm. Higher PCK and AUC is better, and lower MPJPE is better.

Stand/ Sit On Crouch/ On the
Network Walk Exercise Chair Reach Floor Sports Misc. Total

PCK PCK PCK PCK PCK PCK PCK PCK AUC MPJPE(mm)

VNect [10] 87.7 77.4 74.7 72.9 51.3 83.3 80.1 76.6 40.4 124.7

LCR-net [14] 70.5 56.3 58.5 69.4 39.6 57.7 57.6 59.7 27.6 158.4

Zhou et al.[17] 85.4 71.0 60.7 71.4 37.8 70.9 74.4 69.2 32.5 137.1

Mehta et al.[9] 86.6 75.3 74.8 73.7 52.2 82.1 77.5 75.7 39.3 117.6

Ours Single-Person (Torso) 75.0 64.8 69.1 68.7 48.6 70.0 60.6 65.6 32.6 142.8

Ours Single-Person (Full) 83.8 75.0 77.8 77.5 55.1 80.4 72.5 75.2 37.8 122.2

Ours Multi-Person (Torso) 73.7 63.7 64.6 65.8 44.7 69.5 60.2 63.6 31.1 146.8

Ours Multi-Person (Full) 82.0 74.5 75.9 73.9 51.6 79.0 71.8 73.4 36.2 126.3

VNect (our train. setup) 85.7 75.4 78.6 72.3 60.2 81.8 73.4 75.8 38.9 120.1

Table 3. Testing occlusion robustness of our method through synthetic occlusions on MPI-INF-3DHP single person test set.
The synthetic occlusions cover about 14% of the evaluated joints overall. We report the Percentage of Correct Keypoints
measure in 3D (@150mm) overall, as well as split by occlusion. Higher PCK.

Seq1 Seq2 Seq3 Seq4 Seq5 Seq6 Total

PCK PCK PCK PCK PCK PCK PCK

Overall

Ours Multi-Person 78.7 70.0 71.9 65.2 61.4 60.7 69.0
Ours Single-Person 80.9 72.8 72.6 65.7 62.5 65.8 71.1

VNect [10] 80.1 72.4 72.4 61.5 50.2 69.8 69.4
VNect (our train. setup) 79.3 74.4 72.2 67.2 55.7 64.6 70.4

Occluded Subset of Joints

Ours Multi-Person 73.3 66.5 55.0 56.5 45.1 64.9 62.8
Ours Single-Person 74.9 63.2 59.0 54.2 48.0 68.4 64.0

VNect [10] 61.4 54.5 47.6 36.4 30.5 66.2 53.2
VNect (our train. setup) 69.6 61.9 49.0 50.8 43.5 63.4 59.2

Un-occluded Subset of Joints

Ours Multi-Person 79.9 70.5 73.7 66.2 64.6 59.5 70.0
Ours Single-Person 82.1 74.0 74.1 67.0 65.3 65.1 72.2

VNect [10] 83.9 74.6 75.0 64.4 54.0 70.9 72.1
VNect (our train. setup) 81.3 76.0 74.6 69.0 58.1 64.8 72.2
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