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1 Architecture Details

In the following we summarize the model architecture we used to train on
AMASS [4], SMAL [9], COMA [5] and MANO [6]. Our model consists of a
shape branch, a pose branch and a decoder. Each model component is a 4-layer
neural network with alternated spiral convolution layers and sampling layers. The
number of filters for convolutional layers and the sampling rates for sampling
layers are listed in Table 1.

Shape Dim Pose Dim Shape Branch Pose Branch Decoder Sampling

AMASS 16 112 4, 8, 16, 32 12, 24, 48, 96 128, 64, 32, 16 4, 4, 4, 4
SMAL 36 60 6, 12, 24, 48 10, 20, 40, 80 128, 64, 32, 16 4, 4, 4, 4
COMA 4 4 4, 8, 16, 32 8, 16, 32, 64 128, 64, 32, 16 4, 4, 4, 4
MANO 4 16 4, 8, 16, 16 8, 16, 32, 64 64, 64, 32, 16 4, 2, 2, 2

Table 1: Model architecture for different datasets.

2 COMA Exprapolation Experiment

We show the detailed comparison of our method to Jiang et al. [1] and FLAME [2]
for all 12 COMA extrapolation experiments in Table 2. Notably, our method
requires no manual processing but outperforms Jiang et al. for all the cross-
validation experiments.

3 Shape Space Exploration

Our method used cross-consistency loss to implicitly enforce that shape codes
of the same subject are consistent under swapping. We believe that imposing
the loss in mesh space gives the network more flexibility to choose the optimal
structure of latent space. It remains an interesting question how far are these
shape codes away from each other. It turns out that on AMASS test set, the
average intra-subject shape code distance is 0.092, while the average inter-subject
shape code distance is 0.218. To qualitatively demonstrate it, we sampled 20
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Ours Jiang et al.’s FLAME

bareteeth 1.472 1.695 2.002
cheeks in 1.425 1.706 2.011
eyebrow 1.151 1.475 1.862
high smile 1.359 1.714 1.960
lips back 1.379 1.752 2.047
lips up 1.256 1.747 1.983
mouth down 1.155 1.655 2.029
mouth extreme 1.473 1.551 2.028
mouth middle 1.128 1.757 2.043
mouth open 1.098 1.393 1.894
mouth side 1.341 1.748 2.090
mouth up 1.174 1.528 2.067
average 1.284 1.643 2.001

Table 2: Mean errors of 12-fold cross-validation for COMA expression extrapola-
tion. All numbers are in millimeters. The results of Jiang et al. and FLAME are
taken from [1].

Fig. 1: Left: four subjects from AMASS test set. Right: t-SNE plot of shape codes
of different deformations of these subjects.

poses for each of the four subjects in AMASS test set. We encoded all meshes
into shape space and visualized with t-SNE plot, as shown in Fig. 1. The shape
codes of every subject clearly form a cluster. This justifies using shape codes for
retrieval.

4 Additional Pose Transfer Results

In Fig. 2 we show additional pose transfer results at a higher resolution. While our
method produces natural pose-transferred reconstructions in general, artefacts
are sometimes incurred at certain difficult parts such as fingers of human body.
It is probably the consequence of using a simple L1 loss, which does not take into
account local curvature and vertex density. A more sophisticated loss function
for geometry reconstruction is however beyond the scope of this paper.
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5 Limitations

Pose transfer or auto-encoding with our model typically fails for two situations:
either the orientation or the pose is uncommon in the training data. Fig. 3 shows
a few such examples. In particular, Fig. 3a, 3c, 3d are bent-over poses, while
Fig. 3b is upside down compared to the template. Augmenting training data
with sufficient meshes of such kinds could alleviate this problem.

Another limitation of our model is that it cannot interpolate between a pair
of meshes involving a nontrivial global rotation, as illustrated in Fig. 4. This
implies that the latent pose space learned by our model is not linear. This is not
a problem in practice, because we can always manually align the meshes before
interpolation. However, a linear pose space is still useful and we leave this to
future work.

6 Discussion

Compared with parametric 3D models such as SMPL [3], our model is trained
on a much larger dataset. This is due to the fact that SMPL is based on
linear blend skinning, which requires limited model capacity, while our model
learns deformations and articulations completely from scratch. Our data-driven
approach is proven to be effective in unsupervised learning of shape-dependent
and pose-dependent deformations. However it is still inferior to the state-of-the-
art parametric models in terms of surface details and reconstruction quality. One
potential remedy is to embed domain prior into deep neural networks, as was
done in [8,7]. Moreover, despite having more training samples, AMASS dataset
lacks the huge variation in subject shape which is present in SMPL’s training
scans. For reproducibility concern, we only train on publicly available datasets.
But we expect our model to learn a richer shape space once we complement the
training data with more extreme body shapes.
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Fig. 2: Pose transfer results on AMASS, COMA and SMAL. From left to right:
subject 1, subject 2, pose of subject 2 transferred to subject 1, pose of subject 1
transferred to subject 2.
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(a) (b) (c) (d)

Fig. 3: Failure cases of pose transfer. It mostly occurred on difficult orientations or
poses.

Fig. 4: Failure case of pose interpolation. Intermediate meshes are squeezed due
to interpolating global rotations.
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