
DeepCap: Monocular Human Performance Capture Using Weak Supervision
– Supplemental Document –

Marc Habermann1,2 Weipeng Xu1,2 Michael Zollhoefer3 Gerard Pons-Moll1,2 Christian Theobalt1,2

1Max Planck Institute for Informatics, 2Saarland Informatics Campus, 3Stanford University

In the following, we provide more details on the cre-
ation of the character model (Sec. 1) and the training data
(Sec. 2). Further, we explain our two networks, PoseNet
(Sec. 3) and DefNet (Sec. 4) in more detail and provide im-
plementation details (Sec. 5). Finally, we show more quali-
tative and quantitative results and comparisons (Sec. 6).

1. Character Model
Template Mesh. The template acquisition can be fully au-
tomated. To create the textured mesh (see Fig. 1), we cap-
ture the person in a static T-pose with an RGB-based scan-
ner1 which has 134 RGB cameras resulting in 134 images
Irec = {Irec1 , · · · , Irec134}. The textured 3D geometry
is obtained by leveraging a commercial 3D reconstruction
software, called Agisoft Metashape2, that takes as input the
images Irec and reconstructs a textured 3D mesh of the per-
son (see Fig. 1). We apply Metashape’s mesh simplifica-
tion to reduce the number of vertices N and Meshmixer’s3

remeshing to obtain roughly uniform shaped triangular sur-
faces. Similar to [4], we segment the mesh into different
non-rigidity classes resulting in per-vertex rigidity weights
si for each vertex i.
Embedded Deformation Graph To obtain the embedded
graph G = {A,T} where A,T ∈ RK×3 with K graph
nodes, we further decimate the template mesh to around
500 vertices (see Fig. 1). The connections of a node k to
neighboring nodes are given by the vertex connections of
the decimated mesh and are denoted as the set Nn(k). For
each vertex of the decimated mesh we search for the clos-
est vertex on the template mesh in terms of Euclidean dis-
tance. These points then define the position of the graph
nodes G ∈ RK×3 where Gk is the position of node k. To
compute the vertex-to-node weights wi,k, we measure the
geodesic distance between the graph node k and the tem-
plate vertex i and denote the set of nodes that influence ver-

1https://www.treedys.com/
2http://www.agisoft.com
3http://www.meshmixer.com/

Figure 1. Character models. Here, we show the character model
of S1 to S4 (top to bottom) of our new dataset. It consists of
the textured mesh, the underlying embedded deformation graph as
well as the attached skeleton.

tex i as Nvn(i).
Skeleton. Next, we automatically fit the skeleton (see
Fig. 1) to the 3D mesh by fitting the SMPL model [8].
To this end, we first optimize the pose by performing a
sparse non-rigid ICP where we use the head, hands and feet
as feature points since they can be easily detected in a T-
pose. Then, we perform a dense non-rigid ICP on vertex
level to obtain the final pose and shape parameters. For
clothing types that roughly follow the human body shape,
e.g., pants and shirt, we propagate the per-vertex skinning
weights of the naked SMPL model to the template vertices.
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For other types of clothing, like skirts and dresses, we lever-
age Blenders’s4 automated skinning weight computation.
Our skeleton consists of 27 joint angle parameters, 23 joints
and 21 attached landmarks (17 body and 4 face landmarks).
The landmark placement follows the convention of Open-
Pose [3, 2, 11, 12].

2. Training Data Acquisition

To acquire the training data for our method, we ask the
person to perform a large set of different and challenging
motions in a green screen studio. The number of frames
per subject varies between 26000 and 38000 depending on
how fast the person performed all the motions. We used
C calibrated and synchronized cameras with a resolution of
1024 × 1024 for capturing where for all subjects we used
between 11 and 14 cameras. The original image resolution
is too large to transfer all the distance transform images to
the GPU during training. Fortunately, most of the image
information is anyways redundant since we are only inter-
ested in the image region where the person is. Therefore,
we crop the distance transform images using the bounding
box that contains the segmentation mask with a conserva-
tive margin. Finally, we resize it to a resolution of 350×350
without loosing important information.

3. PoseNet – Additional Explanations

Sparse Keypoint Loss. λm is a hierarchical re-weighting
factor that varies during training for better convergence.
More precisely, for the first one third of the training itera-
tions per training stage (see Sec. 5) for PoseNet, we multiply
the keypoint loss with a factor of λm = 3 for all torso mark-
ers and with a factor of λm = 2 for elbow and knee markers.
For all other markers, we set λm = 1. For the remaining it-
erations, we set λm = 3 for all markers. This re-weighting
allows us to let the model first focus on the global rotation
(by weighting torso markers higher than others). We found
that this gives better convergence during training and joint
angles overshoot less often, especially at the beginning of
training.

4. DefNet – Additional Explanations

Non-rigid Silhouette Loss. Bc is the set of vertices that lie
at the boundary when the deformed 3D mesh is projected
into the camera frame c. Those vertices are computed by
rendering a depth map using a custom CUDA-based raster-
izer that can be easily integrated into deep learning archi-
tectures as a separate layer. The vertices that project onto
a depth discontinuity (background vs. foreground) in the
depth map are treated as boundary vertices.

4https://www.blender.org/

5. Implementation Details

Both network architectures as well as the GPU-based
custom layers are implemented in the Tensorflow frame-
work [1]. We use the Adam optimizer [7] in all our ex-
periments.
Training Strategy for PoseNet. As we are interested in
joint angle regression, one has to note that multiple solu-
tions for the joint angles exist due the fact that every correct
solution can be multiplied by 2π leading to the same loss
value. To this end, training has to be carefully designed. In
general, our strategy first focuses on the torso markers by
giving them more weight (see Sec. 3). By that, the global
rotation will be roughly correct and joint angles are slowly
trained to avoid overshooting of angular values. This is fur-
ther ensured by our limits term. After several epochs, when
the network already learned to fit the poses roughly, we turn
off the regularization and let it refine the angles further.
More precisely, the training of PoseNet proceeds in three
stages. First, we train PoseNet for 120k iterations with a
learning rate of 10−5 and weight Lkp with 0.01. Llimit has
a weight of 1.0 for the first 40k iterations. Between 40k and
60k iterations we re-weight Llimit with a factor of 0.1. Fi-
nally, we set Llimit to zero for the remaining training steps.
Second, we train PoseNet for another 120k iterations with a
learning rate of 10−6 and Lkp is weighted with a factor of
10−4. Third, we train PoseNet again 120k iterations with a
learning rate of 10−6 and Lkp is weighted with a factor of
10−5. We always use a batch size of 90.
Training Strategy for DefNet. We train DefNet for 120k
iterations with a batch size of 50. We used a learning rate of
10−5 and weight Lsil, Lkpg, and Larap with 1k, 0.05, and
1.5k respectively.
Training Strategy for the Domain Adaptation. To fine-
tune the network for in-the-wild monocular test sequences,
we train the pre-trained PoseNet and DefNet for 250 it-
eration, respectively. To this end, we replace the multi-
view losses with a single view loss which can be trivially
achieved. For PoseNet, we disable Llimit and weight Lkp

with 10−6. For DefNet, we weight Lsil, Lkpg, and Larap

with 1k, 0.05, and 1.5k respectively. Further, we use a
learning rate of 10−6 and use the same batch sizes as be-
fore. This fine-tuning in total takes around 5 minutes.

6. More Results

Qualitative Results. In Fig. 2, we show our reconstruc-
tion without applying the non-rigid deformation regressed
by our DefNet, referred to as Pose-only, and our final result.
Our deformed template also looks plausible from a refer-
ence view that was not used for tracking. Further, DefNet
can correctly regress deformations that are along the camera
viewing direction of the input camera (see reference view
in second column) and surface parts that are even occluded

https://www.blender.org/


Figure 2. Our result from the input view and a reference view that
was not used for tracking. Note that our DefNet can even regress
deformations along the camera viewing axis of the input camera
(second column) and it can correctly deform surface parts that are
occluded (fourth column).

(see reference view in fourth column). This implies that our
weak multi-view supervision during training let the network
learn the entire 3D surface deformation of the human body.
For more results, we refer to the supplemental video.
Qualitative Comparison. In Fig. 3 and Fig. 4, we show
more comparisons to related work [5, 4, 10, 13] on our in-
the-wild test sequences. Note that our reconstruction not
only most accurately overlays to the input but also looks
more plausible in 3D compared to previous methods. The
implicit functions cannot preserve the skeletal structure,
e.g., produce missing arms or noise in the reconstruction,
whereas our method recovers space-time coherent geome-
try without missing body parts. Moreover, in contrast to
HMR [5], our methods accounts for clothing deformations.
Finally, we are more robust in 3D compared to LiveCap [4]
which suffers from the monocular setting. Also note that
except LiveCap[4] and our method none of the others can
recover results in a consistent global space, as they recover
geometry or the human body model only up to scale.
Quantitative Evaluations. In Tab. 1, we report the quanti-
tative comparison for the skeletal pose accuracy on the re-
maining subjects, S2 and S3. Again note, that we outper-
form other approaches in all metrics. Further note that even
for S3 we achieve accurate results even though she wears a
long dress such that legs are mostly occluded. On S2, we
found that our results are more accurate than MVBL since
the classical frame-to-frame optimization can get stuck in
local minima, leading to wrong poses.

In Tab. 2, we provide more quantitative comparisons to
other related methods in terms of surface reconstruction ac-
curacy. As in the main document, we report the proposed in-
tersection over union metrics (IoU) of subjects S2 and S3 on
our evaluation sequences. Note that we consistently outper-
form other approaches for the multi-view evaluation. This is
due to our DefNet that can account for non-rigid surface de-

Input HMR [5] LiveCap [4] PIFu [10] DeepHuman [13] Ours
Figure 3. Comparisons to related work [5, 4, 10, 13] on our in-
the-wild sequences showing S1. Our approach can recover the
deformations of clothing in contrast to [5] and gives more stable
and accurate results in 3D compared to [4]. Moreover, note that
in contrast to previous work [10, 13], our method regresses space-
time coherent geometry, which follows the structure of the human
body.

Input HMR [5] LiveCap [4] PIFu [10] DeepHuman [13] Ours
Figure 4. Comparisons to related work [5, 4, 10, 13] on our in-
the-wild sequences showing S4.

formations that cannot be captured by skinning alone. This
is in strong contrast to other work that can only capture the
naked body shape and pose [5]. The other reason for the im-
provement is that our multi-view supervision during train-
ing helps to disambiguate the monocular setting whereas
other approaches [4] suffer from these inherent ambigui-
ties. Further, we are again close to our multi-view baseline,
which uses all views whereas our method is monocular.
Ablation Study. In the following, we provide more visual
results to study the impact of 1) the number of cameras used
during training, 2) the number of training frames, and 3) the
domain adaptation step. 1) we evaluate the influence of the
number of cameras used during training. Most of the im-
provement can be obtained by going from the monocular
setting to two cameras. This is not surprising as the ad-
ditional camera helps to resolve depth ambiguity. But also
adding more cameras consistently improves the result, both,
quantitatively as well as qualitatively. An example is shown
in Fig. 5 where the pose and deformations are consistently
improving the more cameras are added to the training. 2)
in Fig. 6, we visualize the influence of different number of



MPJPE/GLE (in mm) and 3DPCK/AUC (in %) on S2
Method GLE↓ PCK↑ AUC↑ MPJPE↓

VNect [9] - 80.50 39.98 66.96
HMR [5] - 80.02 39.24 71.87

HMMR [6] - 82.08 41.00 74.69
LiveCap [4] 142.39 79.17 42.59 69.18

Ours 75.79 94.72 54.61 52.71
MVBL 64.12 89.91 45.58 57.52

MPJPE/GLE (in mm) and 3DPCK/AUC (in %) on S3
Method GLE↓ PCK↑ AUC↑ MPJPE↓

VNect [9] - 78.03 41.95 88.14
HMR [5] - 83.37 42.37 79.02

HMMR [6] - 79.93 36.27 91.62
LiveCap [4] 281.27 66.30 31.44 98.76

Ours 89.54 95.09 54.00 58.77
MVBL 67.82 96.37 54.99 56.08

Table 1. Skeletal pose accuracy. Note that we are consistently
better than other monocular approaches and are even close to the
multi-view baseline which takes all camera views as input whereas
our method only needs a single view.

AMVIoU, RVIoU and SVIoU (in %) on S2
Method AMVIoU↑ RVIoU↑ SVIoU↑
HMR [5] 59.79 59.1 66.78

HMMR [6] 62.64 62.03 68.77
LiveCap [4] 60.52 58.82 77.75

DeepHuman [13] - - 91.57
Ours 83.73 83.49 89.26

MVBL 89.62 89.67 92.02

AMVIoU, RVIoU and SVIoU (in %) on S3
Method AMVIoU↑ RVIoU↑ SVIoU↑
HMR [5] 59.05 58.73 63.12

HMMR [6] 61.73 61.32 67.14
LiveCap [4] 61.55 60.47 75.6

DeepHuman [13] - - 79.66
Ours 85.75 85.55 88.27

MVBL 90.31 90.21 91.53

Table 2. Surface deformation accuracy. Note that we again out-
perform all other monocular methods and are close to the multi-
view baseline. Further note, that for [10, 13] an evaluation of the
multi-view IoU is not possible since their output is always in local
image space that cannot be brought to global space.

frames available during training. The more pose and cloth-
ing deformations were seen during training the better the
network can sample the space of possible poses and defor-
mations. Thus, at test time our results consistently improved
the more frames we used during training, e.g., see the leg
and arm. 3) finally, in Fig. 7, we visually demonstrate the

Figure 5. Ablation for number of cameras used during training.
The most significant improvement happens when adding one ad-
ditional camera to the monocular setting. But also adding further
cameras consistently improves the result as the yellow circles in-
dicate.

Figure 6. Ablation for number of frames used during training. The
more frames we used during training the better the result becomes
as the network can better sample the possible pose and deforma-
tion space.

impact of our domain adaptation step. It becomes obvious
that the refinement drastically improves the pose as well as
the non-rigid deformations so that the input can be matched
at much higher accuracy. Further, we do not require any ad-
ditional input for the refinement as our losses can be directly
adapted to the monocular setting.

7. Further Discussion
Disentanglement of Pose and Deformation. Conceptu-
ally, both representations, pose and the non-rigid defor-
mations, are decoupled. Nevertheless, since the predicted
poses during training are not perfect, our DefNet also de-
forms the graph to account for wrong poses to a certain de-
gree.
Further Limitations. In our supplemental video, we also
tested our method on subjects that were not used for train-
ing but which wear the same clothing as the training sub-
ject. Although, our method still performs reasonable, the
overall accuracy drops as the subjects appearance was never



Figure 7. Impact of the in-the-wild domain adaption step. Note
that after the network refinement, both, the pose as well as the
deformations better match the input.

observed during training. Further, our method can fail for
extreme poses, e.g. a hand stand, that were not observed
during training.
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