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Figure 1. Interaction Replica (iReplica). iReplica estimates location and full 3d pose of a subject within a large 3D scene and dynamically
tracks changes made to the scene by the subject - using only wearable sensors (left). We obtain an approximate 3D human pose sequence
using IMU sensors and use head camera self-localization to localize the subject in the prescanned 3d interactive environment scene.
iReplica predicts human-scene contacts and updates the scene in case of interaction.

Abstract
Our world is not static and humans naturally cause

changes in their environments through interactions, e.g.,
opening doors or moving furniture. Modeling changes
caused by humans is essential for building digital twins,
e.g., in the context of shared physical-virtual spaces (meta-
verses) and robotics. In order for widespread adoption of
such emerging applications, the sensor setup used to cap-
ture the interactions needs to be inexpensive and easy-to-
use for non-expert users. I.e., interactions should be cap-
tured and modeled by simple ego-centric sensors such as a
combination of cameras and IMU sensors. Yet, to the best
of our knowledge, no work tackling the challenging prob-
lem of modeling human-object interactions via such an ego-
centric sensor setup exists. This paper closes this gap in the
literature by developing a novel approach that combines vi-
sual localization of humans in the scene with contact-based
reasoning about human-object interactions from IMU data.
Interestingly, we are able to show that even without visual
observations of the interactions, human-object contacts and

interactions can be realistically predicted from human mo-
tion. Our method, iReplica (Interaction Replica), is an es-
sential first step towards the egocentric capture of human
interactions and modeling of dynamic scenes, which is re-
quired for future AR/VR applications in immersive virtual
universes and for training machines to behave like humans.
To encourage the community to work on this challenging
and important problem, we will make our new datasets and
our code available.

1. Introduction

Current augmented and virtual reality (AR/VR) applica-
tions show promising potential: interesting applications in-
clude collaborative developments, virtual meeting rooms,
and personal assistants that help users navigate the world.
While it is clear that for an immersive experience blend-
ing real and digital worlds is crucial, the current AR/VR
experience is restricted to small spaces, i.e., in general, a
few square meters, possibly free from objects. But consider
daily actions like moving across rooms, opening and clos-
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ing doors, or gathering chairs around a table. Even these
simple actions is not easy to capture with present technol-
ogy, which limits the scope of AR/VR applications.
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Figure 2. Problem subdivision. We demonstrate that joint in-
tegration of different sub-research problem improves and support
each other. We show this is fundamental to achieve our goal of
estimating human-object interaction from wearable sensors only.

The predominant approach for 3D human motion estima-
tion relies on external cameras [14, 21, 26, 27, 29, 34, 40,
67]. Yet, asking non-technical users to mount and calibrate
complex multi-camera systems is clearly infeasible. Body-
mounted sensors, e.g., cameras and IMU sensors, seem
much more ready for mass adoption.

Prior ego-centric trackers such as HPS [15], EgoLo-
cate [62] or HSC4D [9] estimate human movement and po-
sition the person by combining head camera visual localiza-
tion with IMU-based pose estimation. Methods like HPS,
however, do not track scene changes. For example, if a per-
son opens and walks through a door, such methods will only
localize the person but can not infer the door movement,
creating implausible reconstructions; see Figure 7, HPS.

In this work, we address, for the first time, the problem
of human-object interaction capture from wearable sensors
only. Localizing the person with sufficient precision to track
scene changes is hard, let alone estimating object motion. A
major challenge is that the object is often not visible or is
only partially visible in the camera; see Figure 3. In addi-
tion, since the head camera is in motion, the object’s motion
relative to the static world can not be directly inferred.

Since no external sensors can measure the scene changes
directly, how can we predict them? Our key observations
and findings are that 1) contact poses are distinctive and
can be detected without visual clues, 2) knowing contact
time stamps can regularize human localization, 3) objects
move when the human contacts them 1. This together has
not been fully exploited in the literature. Motivated by this,
we propose iReplica - Interaction Replica, a novel human-
centric method which automatically localizes the human in
the scene (1. egocentric human visual localization), detects

1In this work we only consider static objects moved by the captured
human.

the time of contact and release with the object (2. contact
time detection), and infers object motion based on contacts
and human motion (3. interaction modelling). While there
exist works in each of these three sub-areas of research, no
work integrates them simultaneously.

To successfully integrate the aforementioned three sub-
areas of research, we needed several scientific innova-
tions. First, we improve upon human visual localization
(HPS [15]) by an optimization which smoothly deforms
the human trajectory to match reliable head camera poses
and detected spatio-temporal contacts. Second, we train
a transformer-based contact time detection approach based
solely on the human pose, which achieves a remarkable ac-
curacy of 0.91 and average precision of 0.81. Third, based
on the refined human visual localization in the scene and the
accurate contact predictions, we infer object motion coher-
ent with the human. Our results demonstrate that joint inte-
gration is beneficial (Fig. 2). The contact time information
can be used to regularize visual localization by forcing the
virtual human to contact the scene. Having precise human
localization in the scene, along with contact timestamps, al-
lows us to infer: 1) where contacts occur and 2) the object’s
motion without seeing the object or contacts in the camera.

During this project, we captured two new datasets. To
train a contact detection method, we captured a dataset con-
sisting of 8 subjects and more than 3 hours of human-object
interactions annotated with contact time stamps. To validate
our proposed method, we captured a dataset with subjects
moving and interacting with different objects in large 3D
scenes. Our experiments show that iReplica can capture,
for the first time, full interactions, including the human mo-
tion, its location within the 3D scene and the scene changes,
all from wearable sensors alone. We demonstrate that our
human-centric approach outperforms baselines which rely
on SOTA camera-based contact detection or visual object
localization [10, 47].

In summary, our contributions are the following:
1. Novel Problem & Method: We are the first to tackle cap-

turing human-object interactions while localizing the hu-
man in the scene from wearable sensors alone. We pro-
pose a method to address this problem, obtaining, for the
first time, a digital replica of the human interaction in the
scene without any external cameras.

2. Novel Data & Metrics: We provide H-contact – a dataset
of 2300+ human-object interactions with ground truth
annotated contacts. Additionally, we provide EgoHOI
– a dataset of human-object interactions in digitally
scanned environments. Alongside datasets, we pro-
vide metrics to measure the visual plausibility of recon-
structed interactions and the accuracy of contact predic-
tion and object localization.
To foster progresses in this new research area, we will

release the method code, the evaluation protocol, and the
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Interaction is visually implausible due to localization offset

Interaction is out of view Interaction is visible only partially Interaction is out of view

Schema Egocentric camera view

Figure 3. Challenges. Top row: We need to predict human-scene contacts (red circles). The prediction is hard because the interactions
are frequently not in the camera view. Bottom row: Virtual replica of human pose and localization by prior work HPS [15]. HPS achieved
great progress in localizing the human solely by wearable sensors (camera+IMUs). However, for our task, the localization error of 4–16 cm
(red lines) lead to visually implausible results for scene interactions.

datasets, including scans of the scenes, human motion cap-
ture aligned with them and annotated contact timestamps.

2. Related Work

Human–object interaction. Most current methods that
record human–object interactions use external cameras.
Methods to capture the full body pose also use external
cameras and mostly static scenes [16, 18, 34, 67] or work
with a single dynamic object without any scene context [2,
19, 50, 57, 60, 66]; similarly for human–scene and human–
object interaction generation methods [17, 49, 51, 69].
RigidFusion [58] tracks objects using an external RGBD
sensor. Some methods work with first-person view footage.
However, they study the upper body or limited to static cam-
eras, e.g., hand–object pose estimation [12, 30, 33, 38, 52],
or do not model dynamic objects [70]. Our method works
with body-mounted sensors and a moving camera while
capturing the full-body pose and object position.

Embodied research. Body-mounted sensor setups are
heavily used to solve various tasks: activity recognition
methods [1, 7, 13, 37, 42, 63] use egocentric cameras
looking at the body. However, they typically concentrate
on capturing the upper body. Many full-body capturing
methods [41, 54, 59] work with similar head-mounted se-
tups, but as the cameras are pointed at the person wearing
them rather than outwards, these methods ignore the en-
vironment around the subject. Some methods work with
an outwards-facing camera [23, 64, 65]. However, they do
not use any additional sensors to capture the body pose and
predict it using motion priors. On the opposite side, meth-
ods like [24, 61] use inertial sensors to capture the body
pose, but lack of visual cues results in an accumulating po-
sition drift, and body poses far from the ground truth. [32]

proposes action recognition and localization using a first-
person perspective video but does not model scene change.
[68] works with a head-mounted camera, but uses it to cap-
ture the pose of other subjects, making it an external-camera
method. Most related to our method, HPS [15] and fol-
lowing works [9, 62] capture human motion using body-
mounted IMUs and a head-mounted camera looking out-
wards to capture the subject location within a pre-built 3D
scan of the environment. We extend HPS by not only track-
ing the human pose but also an object the person interacts
with. Whereas HPS is restricted to static environments and
cannot model scene changes caused by human–object inter-
actions, iReplica removes these restrictions.
Visual localization. Visual localization aims to estimate
the pose of a camera in a known environment. Current
state-of-the-art approaches are based on 2D–3D matches
between pixels in the camera image and 3D scene points.
These 2D–3D matches are either estimated based on local
features [20, 31, 36, 43, 45, 46] or by regressing a 3D point
coordinate for each pixel [3, 4, 8, 11, 48]2. A recent line
of works focuses on the robustness of localization algo-
rithms [11, 22, 53, 56], e.g., to illumination, weather, and
seasonal changes, as well as to changes caused by human
actions (rearranging furniture, etc.). These approaches as-
sume that a large enough part of the scene remains static and
is observed by the camera to facilitate pose estimation. The
second assumption is violated in our scenario and we use
IMU-based human pose tracking to bridge gaps where vi-
sual localization algorithms will most likely fail. As in [15],
for the head-mounted camera localization, we use a state-
of-the-art localization pipeline [43, 44]. Similar to the idea
of visual-inertial approaches, e.g. [6, 25, 35], we use data

2We refer the interested reader to [5] for a discussion and comparison
of both types of approaches.
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from the IMU sensor to stabilize the predicted camera tra-
jectory during periods of low scene visibility or when a lot
a scene changes are happening. Note that our main contri-
bution, i.e., jointly reasoning about human and object pose,
is not tied to any particular localization algorithm.

3. Problem Setting
Goal. Our goal is to estimate human-object interaction
from wearable sensors only, without information from ex-
ternal sensors, using only body-mounted IMUs and an ego-
centric camera. This opens a broad set of interconnected
challenges: how to define the interaction? How do we de-
tect the start and the end of it? And how do we track the
object’s motion without having sensors dedicated?

Assumptions. We assume to have a static 3D scan of the
scene, along with a set of marked interactive objects, know-
ing their initial position and degrees of freedom (e.g., we
expect that a sofa can slide on the ground but not be lifted
and that a door rotates around a hinge). We will refer to this
as interactive environment (IE).

Input/Output. We require a set of body-mounted wear-
able IMUs (we use 17 sensors from XSens [39]) and a video
stream from a head-mounted camera. Using only wearable
sensors lets us handle large scenes consisting of multiple
rooms. Compared to using external cameras, wearable sen-
sors are much more consumer-friendly as they are easier to
set up. iReplica outputs a virtual replica of the interaction,
i.e., coherent human and object motion in the scene.

4. iReplica

Overview. We obtain initial localization and pose esti-
mation for the person relying on an improved version of
HPS [15] (Sec 4.1, Fig 4 A). Our method considers only the
human pose at each instant and predicts the probability of
contact with an object (Sec 4.2, Fig 4 B). Once the contact
is detected, we model the object dynamically as follows: we
deform the human trajectory to match the object contact; the
object is attached to the human and driven in space accord-
ing to its degrees of freedom (Sec 4.3, Fig 4 C); when our
method infers from the human pose the end of the contact,
the object is released (Fig 4 D).

4.1. Egocentric human visual localization.

Problem. Our method is built on a combination of IMUs
and head-mounted camera data. Previous methods rely on
optimizations to get from these two modalities smooth tra-
jectories estimation [15, 25, 35]. However, no previous ap-
proach considers the human’s interaction with the scene nor
shows extensions to incorporate constraints coming from
this. Also, if 10 cm of error (average for HPS [15]) might
not seem much for human localization in a building, for

human-object interaction (which is our ultimate goal), this
can cause dramatic inconsistencies. Instead, we see (and
take advantage of) the relation between human localization
and contact prediction: solving for contact prediction sup-
ports human localization in large volumes; human localiza-
tion helps detect object contact in time and space.

Trajectory optimization. We start introducing an im-
provement over the HPS approach [15]. We deploy a simple
optimization that is flexible and can be used to incorporate
interaction constraints. While we work with 3D trajectories,
we consider a 2D optimization since one dimension (grav-
ity axis) is constrained by the ground of the scene. Consider
the trajectory described as a 2D curve l(τ) = (x(τ), y(τ))
defined in the time interval τ = [τstart, τend], and a list of
K control points p = {pi = (xi, yi)}Ki=1 (constraints) at
times τstart ≤ τ1, . . . , τK ≤ τend. We want to recover a
new trajectory l̂(τ) = (x̂(τ), ŷ(τ)) that gets close to the
control points while not deviating too much from the ini-
tial trajectory. We introduce an energy Etr that encodes the
trajectory deviation in terms of angles.

Etr (̂l, l) =

∫ τend

τstart

(
dα̂(τ)

dτ
− dα(τ)

dτ

)
dτ, (1)

where:

α̂(τ) = atan2

(
dŷ

dτ
,
dx̂

dτ

)
, α(τ) = atan2

(
dy

dτ
,
dx

dτ

)
.

Concretely, Etr measures the difference between two tra-
jectories at each instant in terms of direction (angle) varia-
tion. We define the difference only in terms of angles since,
as pointed out in previous works [15], the total distance
tracked by the IMUs is well measured, while the curvature
tends to accumulate drift over time.

We then correct the human trajectory by optimizing the
following energy:

Ftr(l,p) = argmin
α̂

(
K∑
i=1

(||̂l(τi)− pi||2) + λEtr (̂l, l)

)
,

(2)
where λ is the global rigidness coefficient, which encodes
how much local angles should retain the initial estimation.

Contact-based human trajectory correction. In
iReplica, we perform the above optimization two times. We
consider the input trajectory recovered by the IMUs, and we
optimize it using the control points returned by the camera
localization. Then, our method detects the moments of con-
tact along the human motion sequence. For each detection,
we select the nearest object in the scene within a reasonable
range (e.g., 50 cm). The contact is ignored as a false posi-
tive if no object is that close. We select a contact point pc as
the closest point of the object to the contacting hand. Then,
we rerun our optimization again, considering pc as the only
control point to satisfy. We report details in supplementary.
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Figure 4. Overview of iReplica. iReplica estimates the location and full 3d pose of a subject within a large 3D scene and dynamically
tracks changes made to the scene by the subject – using only wearable sensors. We do so in 4 steps: A) We obtain an initial localization of
the subject in the interactive environment by head camera self-localization. B) The start of the interaction is predicted by a neural network.
Predictions are provided as contact / no-contact classification of the subject’s hands (red and blue areas). The contacts are used to correct
inaccurate head camera localization of the subject, snapping the human trajectory smoothly to the object. C) The motion of the contacted
regions are used to infer the object trajectory (green). D) The network predicts the release of the interaction, which is essential to stop
object dragging. The algorithm is detailed in Sec. 4.

4.2. Contact detection

Problem. The key ingredient for accurate localization is
detecting when and where the user interacts with an object.
In this work, we purely focus on human poses (obtained
from IMUs) for contacts instead of relying on camera data
for multiple reasons: (1) contacts are often not visible, i.e.,
camera data alone is insufficient for the task. (2) IMUs are
cheaper and much more power-efficient than cameras. At
the same time, processing their lower-dimensional output
requires significantly less compute (and thus power). This
makes purely IMU-based contact prediction very attractive
for applications running on mobile devices such as AR/VR
headsets or robots. Naturally, combining inertial and visual
data should improve performance, similar to visual-inertial
localization. However, we leave this integration for future
work and focus on IMU-only contact detection.

Training data. Existing datasets for human-object con-
tact prediction contain only a limited number of samples per
object type [2], or only hand-held objects [50]. In our con-
text, the interaction involves large objects appearing in real
scenes. Hence, we collect and annotate a training dataset
(H-contact, Sec. 5.1) of ∼680k pose frames (> 3 hours)
recorded with 8 subjects wearing IMUs and 12 different ob-
jects. Our dataset is noticeably bigger compared to several
other human–object and human–scene interaction datasets
(BEHAVE [2] contains ∼15k frames, PROX [16] ∼100k).

Transformer. To predict contacts, we train a sequence-to-
sequence Transformer [55] to map a sequence of poses to a
sequence of per-hand contact probabilities. Specifically, we
concatenate 61 SMPL pose vectors in a sequence, forward-
ing them to an MLP, appending the frame position as po-
sitional encoding, and processing them with a Transformer
to output a sequence of contact probabilities for each hand.
We use a sliding-window approach, and at each instance, we
retain only the central (30th) prediction. The contact is con-
sidered active once the probability reaches a certain thresh-
old. The architecture is visualized in Fig. 5. To remove false

negatives, any gap of ≤ 0.5 s between two active contacts is
filled (i.e. marked active). This produced the best results on
a validation set (see supplementary).

While focusing on hands is not entirely descriptive of the
way in which humans interact with the world, they cover the
majority of cases in which humans cause changes in their
environments. Our method can easily extend to other body
parts; more detailed analyses are left for future works.

Contact intervals. Each group of consecutive frames with
active contact is considered as a contact interval. If the net-
work predicts the end of the interaction only for one hand,
while the other is still considered to be in contact, iReplica
splits the contact interval into two consecutive interactions
(a two-handed and a one-handed one). Similar cases (e.g.,
interchanging hands) are treated the same way. Likewise,
our method can handle multi-object interaction – please see
supplementary for details.

Training details. The network is trained for 100 epochs
with a batch size of 100 using the Adam optimizer [28] with
a learning rate of 10−3 and a standard binary cross-entropy
loss. The resulting architecture is lightweight, with 21.9k
network parameters in total and an inference time of less
than a second per minute of motion (3600 motion windows)
on an Nvidia RTX 3090 GPU.

4.3. Interaction modeling

The benefits of iReplica‘s pose-based contact prediction
and human localization are best visualized by dynamically
adapting the scene changes as their consequence. Con-
cretely, when contact with an object is predicted, we attach
the object to the user; its dynamic is driven by human mo-
tion given through IMU pose and the object’s degrees of
freedom defined in the interactive environment. Please see
the supplementary paper for the technical details.
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Figure 5. Contact prediction based on human pose. Interactions are frequently unobserved in an egocentric view, see Fig. 3 (top row),
making contact prediction ill-posed. Instead, we propose to predict from sequences of full 3d human poses. We leverage a transformer-
based architecture that takes 61 frames {i− 30, . . . , i+ 30} of SMPL pose vectors of size S = 69 and predicts the contact probability for
each hand for the middle frame i. See Sec. 4.2 for details.

5. Experiments

5.1. Datasets

Introducing a new task and method, we lack of appropri-
ate datasets, baselines, and evaluation metrics. Thus, we
captured and annotated two new datasets: H-contact and
EgoHOI, which we will publicly release, together with our
annotation tool.

H-contact is a dataset of human–object interactions, de-
signed to serve as a training set for our contact predictor.
We captured and annotated more than 2300 human–object
interactions in > 3 hours of recordings divided into 30 unin-
terrupted sequences. A total of around 680k frames, provid-
ing interaction for 8 subjects and 12 objects, whose lengths
range from 1 to 19 seconds. To obtain ground-truth con-
tact labels, we built a GUI-based annotation tool for this
task. Using synchronized video from an external camera,
we asked annotators to define the contact classifications.

Egocentric Human–Object Interactions (EgoHOI) is a
dataset of humans performing everyday interactions with
objects in real scenes recorded with wearable sensors. The
sensors are placed directly on the human to allow for
large recording volumes not restricted by external camera
placement. The wearable setup consists of the IMU-based
motion-capturing suit Xsens Awinda [39], allowing us to
obtain human pose sequences, and a head-mounted RGB
camera for visual localization of the subject in the scene.
The dataset also includes the related interactive environ-
ments (IE): a 3D scans of the scene, segmented objects
and their degrees of freedom. EgoHOI contains interac-
tions with 14 objects (tables, windows, doors, drawers, so-
fas, chairs, etc.) in multiple IE for a total of more than 100k
motion frames. We also recorded RGBD data from an exter-
nal multi-camera setup to measure reconstruction accuracy.

5.2. Baselines

Due to the novelty of the proposed human–object tracking
task, no published baselines exist. We introduce novel base-
lines and briefly describe them, see supp.mat. for details.

HPS. We compare to HPS [15] that localizes the human
within the prescanned scene using the images of the head-
mounted camera. HPS does not reason about human–object
interactions and does not track scene changes.

HPS w/ GT combines HPS with ground-truth data to pre-
dict the object motion. It has access to the ground-truth
final object pose and ground-truth start and end time of the
object interaction. To obtain the object motion estimate, it
linearly interpolates the object poses in the time window.
Obviously, the required ground-truth data for HPS w/ GT
is not available in real-world applications. This baseline is
used to show that a simple linear interpolation model is not
sufficient for real-world scenes.

HPS w/ RGB Obj. Loc. localizes the object using solely
the RGB frame from the head-mounted camera. As HPS
uses visual localization algorithm [43] to localize the cam-
era in the scene, we use the same process to localize the
interacted object w.r.t. the camera. Knowing the relative
pose of the object to the camera localization in world space,
we can estimate the object pose in world space. To simplify
the matching process, this baseline uses GT object segmen-
tations of the objects of interest.

iReplica w/ HOD [47] and iReplica w/ VISOR [10]. Our
approach predicts human-object contacts based on human
pose information. Alternatively, the head-mounted RGB
camera can be used to make these predictions. As base-
lines, we use two state-of-the-art, pretrained, RGB-based
hand-contact understanding methods: HOD [47] and VI-
SOR [10]; both predict 2D hand and object locations, and
contact probabilities per hand. We use the contact proba-
bilities as a drop-in replacement for the contact predictor in
iReplica, while keeping the rest of the method fixed.

5.3. Results
Qualitative results. Fig. 6 shows our results for sample
frames from interactions in multiple scenes. Videos are
included in the supp. mat. and we urge the reader to look
at them as interactions are best judged in motion. Our re-
sults show that egocentric motion data alone is sufficient
to localize the human in the scene, model the interaction

6



time Interaction 1 Interaction 2 Interaction 3

Head camera view Head camera view Head camera viewiReplica iReplica iReplica
Figure 6. Qualitative results. We show three examples of human interaction, pairing the head-mounted camera view with the interaction
modeling achieved by iReplica. The object is not always visible during the interaction (Interaction 1), hand grasping can be difficult to
understand from the camera (Interaction 2), or object occludes a majority of the first person view (Interaction 3). By relying on human-
centric contact detection, iReplica achieves reliable modeling in all these challenging scenarios. Please see our video for more results.

HPS HPS w/ RGB Obj. Loc.HPS w/ GT iReplica w/ HOD iReplica w/ VISOR iReplica (Ours)

Figure 7. Qualitative comparison. We visually compare iReplica (ours) to the baseline methods (interacted object highlighted in red
for visual clarity). For the sofa sequence (top row) no baseline can dynamically track the sofa and correctly place the subjects‘ hands.
Similarly, on the door sequence, notice that the door is incorrectly placed by all baselines and that the hand is not in contact with the
handle. In contrast, iReplica obtains visually plausible results, by adjusting human and object locations to satisfy contact constraints.
Please see comparisons in our supp. video.

between the human and objects, and update the scene ac-
cordingly. Our contact predictor allows iReplica to estimate
object tracking only based on the human pose; e.g., doors,
chairs, and tables can be interacted with in the scene.

Qualitative comparisons to baselines. Fig. 7 visually
compares iReplica to our baselines by showing individual
frames from some of the interactions. The interactions are
best viewed in the supp. video. HPS does not track scene
changes and thus obtains unrealistic motions. For example,

the door opening is not tracked. The subject should have
opened the door with the handle, but the door is still closed.
(Fig. 7, door). Or the sofa is dragged by the subject, but
the object stands still. The sofa, therefore, is visibly not in
contact with the subject’s hands (Fig. 7, sofa). HPS w/ GT
linearly interpolates the object motion given ground-truth
object start and end pose and contact times. Resulting inter-
action is not visually plausible, due to a large mismatch be-
tween the hands of the subject and the sofa. Human-object
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interaction motion is highly non-linear in its nature, so lin-
ear approximations seem unrealistic: according to our user
study, iReplica results were preferred over this baseline and
HPS in 84.2% of the cases (see suppl.). HPS w/ Obj. Loc.
fails to detect the accurate object position during the inter-
action, resulting in misaligned results, to the point that it
fails to localize the object at all (e.g., Tab. 2, Box). iReplica
w/ HOD and iReplica w/ VISOR both suffer from false neg-
atives, resulting in a sudden contact loss in the middle of the
interaction and missed contacts between object and subject.
iReplica ensures that the subject’s hands are close to the ob-
ject during the whole interaction – a key aspect of visual
plausibility not achieved by the baselines. This shows the
value of iReplica’s correction of the human trajectory based
on the human–object interaction.

Reconstruction quality compared to real scenes. We
quantitatively validate iReplica’s object and human local-
ization results in terms of the reconstruction quality with re-
spect to the original scene. We measure deviations from the
virtual replica to the real scene using the EgoHOI dataset.
Tab. 1 shows the object localization accuracy at the end
of the interaction, where the GT object pose was anno-
tated. On average, iReplica improves the results consider-
ably (col. All). All object types are localized with a distance
below 10 cm and an orientation error below 13 degrees.

Ablation of Contact-based human trajectory correc-
tion. We ablate the proposed contact-based human trajec-
tory correction, by excluding it from iReplica. We report the
results in Table 1 and 2 (iReplica w/o Contact corr.). We
show that method greatly benefits from the proposed cor-
rection. Moreover, we measure the error of human localiza-
tion with (iReplica) and without (HPS [15]) correction on
a special sequence that additionally has ground truth point
clouds obtained via an external multi-view system of depth
cameras. iReplica again improves upon HPS – see the supp.
mat. for details.

Visual plausibility. We aim to measure the visual plau-
sibility of iReplica results compared to the baselines. One
key factor of the plausibility of interactions is that the hu-
man needs to be in contact with the object. To validate this,
we measure the mean distance from the object to the inter-
acting hand, see Tab. 2. iReplica keeps this distance be-
low 3 cm. Keeping track of contacts and using them for
attaching the object and the human motion creates the low-
est human–object distances. This can be seen qualitatively
in the videos.

Contact prediction accuracy. We benchmark the accu-
racy of iReplica contact prediction in isolation in Tab. 3,
comparing it to our two RGB contact prediction baselines,
HOD [47] and VISOR [10]. We treat the network predic-
tions as probabilities in a binary classification task and com-
pute 4 metrics: Average Precision (AP), Precision, Recall

Error ↓ Method Door Sofa Table Box All

Distance
(in cm)

HPS 79.27 69.54 25.31 41.92 60.81
HPS w/ RGB Obj. Loc. 28.66 1684.06 119.59 — 597.83
iReplica w/ HOD [47] 57.50 55.78 1.62 3.33 38.58
iReplica w/ VISOR [10] 43.40 66.74 5.98 11.31 39.59
iReplica w/o Contact corr. 18.54 11.70 1.84 7.79 11.68
iReplica (Ours) 9.97 6.66 0.90 7.09 6.88

Angle
(in °)

HPS 109.19 23.53 12.16 3.76 46.89
HPS w/ RGB Obj. Loc. 34.36 118.02 60.08 — 61.43
iReplica w/ HOD [47] 75.74 7.74 0.78 2.71 28.41
iReplica w/ VISOR [10] 56.64 17.36 2.87 12.78 27.27
iReplica w/o Contact corr. 22.16 5.83 0.88 4.81 10.28
iReplica (Ours) 12.94 5.83 0.43 4.81 7.13

Table 1. Object localization accuracy. Distance (in cm) and an-
gle (in °) between object center at the end of the interaction in the
GT pose and object center in the pose predicted by the algorithm.

Class label Door Sofa Table Box All

HPS 46.00 38.32 26.35 6.64 33.61
HPS w/ GT 17.28 6.90 7.55 6.74 10.44
HPS w/ RGB Obj. Loc. 65.26 724.63 136.27 — 287.12
iReplica w/ HOD [47] 48.42 35.96 13.31 5.52 31.26
iReplica w/ VISOR [10] 33.76 51.14 13.39 3.84 31.17
iReplica w/o Contact corr. 18.15 9.80 6.89 5.45 11.37
iReplica (Ours) 2.83 1.46 3.49 5.49 2.93

Table 2. Visual plausibility of human-object interaction. Mean
distance between the object and the contacting hand (in cm) over
the interaction time interval.

Contact predictor AP ↑ Precision@0.5 ↑ Recall@0.5 ↑ Accuracy@0.5 ↑

HOD [47] 0.044 0.251 0.818 0.364
VISOR [10] 0.217 0.313 0.098 0.732
Ours 0.807 0.786 0.880 0.905

Table 3. Contact prediction performance. Metrics obtained on
our test set with subjects that are not appearing in training data.

and Accuracy on the binarization threshold of 0.5. Our con-
tact prediction, solely based on the 3D human pose, signif-
icantly outperforms the RGB-based reasoning - one cause
is that interaction is not always visible in the camera. Once
more, we remark on how 3D human poses in isolation is a
highly informative indicator of interaction contacts.

6. Discussion and Conclusion

In this work we proposed the novel problem of capturing
human-scene interactions and dynamic 3D scenes solely
from wearable sensors - that is, IMUs and a head-mounted
camera, and not relying on any external cameras or object
trackers. Our results show that egocentric motion data alone
can be used to localize the human in the scene, model the
interaction between the human and objects, and update the
scene accordingly. Our contact predictor allows iReplica to
estimate object tracking only based on human pose. E.g.,
doors in the virtual scene can be opened or objects (sofas,
boxes, tables) can be displaced. Inaccuracies in human lo-
calization from HPS are corrected plausibly as iReplica en-
sures that the human and the interacted object are close to
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each other.
Future work can investigate including physics simula-

tions for interaction modeling, such as those available in
game engines. Instead of prescanning the IE, future work
could explore how to build scene reconstructions (e.g. with
SLAM-based models) and annotations on the fly (e.g. us-
ing ScanNet instance-segmentation models). We believe
this work constitutes a first step towards an exciting new re-
search direction of capturing human-scene interactions and
dynamic 3D scenes from wearable sensors. We will release
the iReplica datasets and code to inspire work on the capture
of human-scene interaction in dynamic environments.
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