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Figure 1. HPS jointly estimates the full 3D human pose and location of a subject within large 3D scenes, using only
wearable sensors. Left: subject wearing IMUs and a head mounted camera. Right: using the camera, HPS localizes the hu-
man in a pre-built map of the scene (bottom left). The top row shows the split images of the real and estimated virtual camera.

Abstract

We introduce (HPS) Human POSEitioning System, a
method to recover the full 3D pose of a human registered
with a 3D scan of the surrounding environment using wear-
able sensors. Using IMUs attached at the body limbs and a
head mounted camera looking outwards, HPS fuses cam-
era based self-localization with IMU-based human body
tracking. The former provides drift-free but noisy position
and orientation estimates while the latter is accurate in the
short-term but subject to drift over longer periods of time.

We show that our optimization-based integration exploits
the benefits of the two, resulting in pose accuracy free of
drift. Furthermore, we integrate 3D scene constraints into
our optimization, such as foot contact with the ground, re-
sulting in physically plausible motion. HPS complements
more common third-person-based 3D pose estimation meth-
ods. It allows capturing larger recording volumes and
longer periods of motion, and could be used for VR/AR ap-
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plications where humans interact with the scene without re-
quiring direct line of sight with an external camera, or to
train agents that navigate and interact with the environment
based on first-person visual input, like real humans.

With HPS, we recorded a dataset of humans interact-
ing with large 3D scenes (300-1000 m2) consisting of 7
subjects and more than 3 hours of diverse motion. The
dataset, code and video will be available on the project
page: http://virtualhumans.mpi-inf.mpg.de/hps/.

1. Introduction

Capturing the full 3D pose of a human, while localizing
and registering it with a 3D reconstruction of the environ-
ment, using only wearable sensors, opens the door to many
applications and new research directions. For example, it
will allow Augmented / Mixed / Virtual Reality users to
move freely and interact with virtual objects in the scene,

http://virtualhumans.mpi-inf.mpg.de/hps/


without the need for external cameras. From the captured
data, we could train digital humans that plan and move like
real humans, based on visual data arriving at their eyes.
Moreover, by relying only on ego-centric data, we could
capture a wider variety of human motion, outside of a re-
stricted recording volume imposed by external cameras.

The dominant approach in vision has been to analyze hu-
mans from an external third-person camera, often without
considering scene context [4, 30, 39, 45, 51, 55]. A few re-
cent methods capture 3D scenes and humans [24], but again
using a third-person camera. Capturing with external cam-
eras is undoubtedly a central problem in vision, but it has
its limitations – occlusions are a problem, and interactions
across multiple rooms or beyond the viewing area cannot be
captured; consequently recordings are typically short.

We propose Human POSEitioning System (HPS), the
first method to recover the full body 3D pose of a human
registered with a large 3D scan of the surrounding envi-
ronment relying only on wearable sensors – body-mounted
IMUs and a head mounted camera, approximating the vi-
sual field of view of the human. Inspired by visual-inertial
odometry and localization [29, 40], as well as IMU-based
human pose estimation [50, 71, 73], HPS fuses information
coming from body-mounted IMUs with camera pose ob-
tained from camera self-localization [57,59,64] (see Fig. 1).
Instead of placing the camera towards the body [52,67], we
place it towards the scene, which allows us to capture what
the human observes together with their 3D pose. In com-
parison to third-person pose methods, the body is not seen
by the camera, which poses new challenges.

Pure IMU-based tracking is known to drift over time and
camera localization produces many outliers. By jointly inte-
grating IMU tracking with camera self-localization, we are
able to remove drift [29, 40], and recover the human tra-
jectory when self-localization fails. Furthermore, since we
can approximately locate the person in the 3D scene, we in-
corporate scene constraints when foot contact is detected.
Overall, with HPS we recover natural human motions, reg-
istered with the 3D scene and free of drift, during long pe-
riods of time, and over large areas.

To demonstrate the capabilities of HPS, we capture a
dataset of real people moving in large scenes. Our HPS
dataset consists of 8 types of environments - some being
larger than 1000m2, and 7 subjects performing a variety of
activities such as walking, excercising, reading, eating, or
simply working in the office. The dataset can be used as
a testbed for ego-centric tracking with scene constraints, to
learn how humans interact and move within large scenes
over long periods of time, and to learn how humans process
visual input arriving at their eyes.

We make the following contributions: 1) to the best of
our knowledge, HPS is the first approach to estimate the full
3D human pose while localizing the person within a pre-

scanned large 3D scene using wearable sensors. 2) we intro-
duce a joint optimization which integrates camera localiza-
tion, IMU-based tracking and scene constraints, resulting in
smooth and accurate human motion estimates. 3) we pro-
vide the HPS dataset, a new dataset consisting of 3D scans
of large scenes (some larger than 1000 m2), ego-centric
video, IMU data, and our 3D reconstructed humans moving
and interacting with the scene. In contrast to existing 3D
pose datasets, which are captured from a third-person view,
ours is captured from an egocentric view. We believe both
HPS and HPS dataset will provide a step towards develop-
ing future algorithms to understand and model 3D human
motion and behavior within the 3D environment from an
egocentric (or third-person) perspective.

2. Related Work
IMU-based 3D Human Pose Estimation: Although

commercial solutions for IMU-based pose estimation have
improved the stability of earlier solutions [53], they still
suffer from severe drift, especially in the global orientation
and location of the body. Early work [70] developed a cus-
tom suit to capture 3D human pose during daily activities.
One line of work has focused on reducing the amount of
IMUs necessary to capture motion via space-time optimiza-
tion [73] or with deep learning [26]. In order to reduce drift
and improve accuracy, visual-inertial approaches combine
IMUs with multiple external cameras [42, 49, 50, 69, 72], a
depth-camera [25,85] or even a single hand-held RGB cam-
era [71]–which allowed collecting the 3DPW [71] dataset
with accurate 3D poses outdoors. However, they all re-
quire an external camera, which limits the field of view to
be captured, or requires someone to follow the person being
tracked. Instead, we mount the camera (approximating the
person’s field of view) on the head and use it to self-localize
the person in the scene.

Ego-centric capture and prediction: In contrast to our
method, most ego-centric body-capture approaches mount
the camera on the head looking towards the body. While
ego-centric capture has received considerable attention for
activity recognition [6, 12, 17, 41, 54, 80], methods at most
detect the upper body. For full body capture, a pioneering
method [52] relied on a helmet with sticks holding a camera
away from the body. More recent methods [67, 78] work
reasonably well even when the camera is close to the head.
However, the accuracy is still far from desired.

Another group of methods place the camera looking out-
wards (like humans), and aim at estimating 3D pose from
the ego-centric view alone, but 3D poses are inaccurate and
have high uncertainty [28, 81, 82]. These methods to in-
fer 3D pose from an ego-centric view [28, 81, 82] would
benefit from our captured data, which contains ego-centric
video with corresponding accurate 3D pose registered with
the environment. An alternative approach places many cam-



Figure 2.Overview. We use IMU data, RGB video from a head mounted camera, and a pre-scanned scene as input. We obtain an
approximate 3D body pose using IMU data, and use head camera self-localization to localize the subject in the 3D scene. We then integrate
the approximate body pose, the camera position and orientation, along with the 3D scene in a joint optimization to obtain the �nal location
and pose estimates. We urge readers to see the video at http://virtualhumans.mpi-inf.mpg.de/hps/.

eras on the body looking out and use multi-camera structure
from motion [61], but it can only recover slow motions.

Camera Localization: Most 6-DoF camera localization
algorithms can be split into three groups. The �rst group is
structure-based[11,14,37,59,62,63,65,66], which matches
2D points in the query image with 3D scene keypoints to es-
timate the camera pose by minimizing the reprojection er-
ror. While they provide precise position in small scenes,
they do not scale to large scenes as matching becomes am-
biguous and computationally expensive.

The second group of methods is referred to asimage-
based. The idea is to retrieve nearest neighbors in an image
database based on a global descriptor [5,68,76]. The cam-
era pose can then be approximated by the known poses of
the retrieved images. They are more robust and scalable
compared to structure based methods, but less precise, and
the quality depends on the size of the image database.

In the third group arehybrid approaches[10, 56, 57]
which combine the bene�ts of the last two. First, a set of
relevant database images are found using an image-based
method, and then the precise camera pose is recovered using
structure-based methods. Another set of methods directly
regress the camera pose using a CNN [60,74], but their ac-
curacy leaves a lot to be desired.Hybrid approacheshave
been shown to be precise and to scale to large scenes, and
hence the self-localization part of HPS builds upon them.

Humans and Scenes: The relationship between hu-
mans, scenes, and objects is a recurrent subject of study
in vision. Examples are methods for 2D pose and ob-
ject detection [15, 21, 27, 31, 48, 79], 3D object detection
using human poses [20, 22], learning to insert people in

scenes [19,35,75,84], constraining pose [24,83], estimating
forces [36], or predicting long term motion [13] conditioned
on the scene.Most approaches predict only static poses in a
single room, and reasoning is done from a third-person per-
spective. In contrast, our analysis is from a �rst-person per-
spective, and uses the scene to self-localize the human in it.
Furthermore, our method enables to capture humans in mo-
tion in multiple-room and outdoor environments. All afore-
mentioned methods would bene�t from the HPS dataset.

3. Method

Our goal is to recover the 3D body pose and location of a
subject in a known scene from egocentric measurements. To
this end, our method requires as input:1) a head-mounted
camera,2) body-mounted IMUs, and3) a pre-built 3D scan
of a scene, along with a database of RGB scene images
with known camera parameters. Using camera data, our
method localizes the person within a pre-scanned 3D scene
(Sec. 3.2), estimates their 3D pose using IMUs (Sec. 3.3),
and in a joint optimization step (Sec. 3.4) integrates cam-
era localization, IMU pose estimates and scene constraints,
resulting in smooth and accurate human motion estimates.
For an overview of our method, see Fig. 2. For more details
on the 3D scene reconstruction, image database collection,
camera and IMU setup, we refer to the supplementary.

3.1. SMPL Body Model

We use the Skinned Multi-Person Linear (SMPL) body
model [38] to represent the human subject. SMPL is a dif-
ferentiable functionM (� ; t ; � ) : R72� 3� 10 7! R6890� 3

that maps pose� , translationt and shape� parameters


