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Figure 1: Results using our method. Left: sparse voxel reconstruction, middle: dense voxel reconstruction, right: 3D single-view point
cloud reconstruction (back occluded). Our method delivers continuous outputs, handles multiple topologies (right) and unlike prior work,

retains detail in the input (middle and right), and performs well with articulated humans.

Abstract
While many works focus on 3D reconstruction from im-

ages, in this paper, we focus on 3D shape reconstruction
and completion from a variety of 3D inputs, which are de-
ficient in some respect: low and high resolution voxels,
sparse and dense point clouds, complete or incomplete.
Processing of such 3D inputs is an increasingly important
problem as they are the output of 3D scanners, which are
becoming more accessible, and are the intermediate output
of 3D computer vision algorithms. Recently, learned im-
plicit functions have shown great promise as they produce
continuous reconstructions. However, we identified two lim-
itations in reconstruction from 3D inputs: 1) details present
in the input data are not retained, and 2) poor reconstruc-
tion of articulated humans. To solve this, we propose Im-
plicit Feature Networks (IF-Nets), which deliver continu-
ous outputs, can handle multiple topologies, and complete
shapes for missing or sparse input data retaining the nice
properties of recent learned implicit functions, but critically
they can also retain detail when it is present in the input
data, and can reconstruct articulated humans. Our work
differs from prior work in two crucial aspects. First, instead
of using a single vector to encode a 3D shape, we extract
a learnable 3-dimensional multi-scale tensor of deep fea-

tures, which is aligned with the original Euclidean space
embedding the shape. Second, instead of classifying x-y-
z point coordinates directly, we classify deep features ex-
tracted from the tensor at a continuous query point. We
show that this forces our model to make decisions based on
global and local shape structure, as opposed to point coor-
dinates, which are arbitrary under Euclidean transforma-
tions. Experiments demonstrate that IF-Nets clearly outper-
form prior work in 3D object reconstruction in ShapeNet,
and obtain significantly more accurate 3D human recon-
structions. Code is available at https://virtualhumans.mpi-
inf.mpg.de/ifnets/.

1. Introduction

While many works focus on image-based 3D reconstruc-
tion [23], in this paper, we focus on 3D surface recon-
struction and shape completion from a variety of 3D in-
puts, which are deficient in some respect: low-resolution
voxel-grids, high-resolution voxel-grids, sparse and dense
point-clouds, complete or incomplete. Such inputs are be-
coming ubiquitous as 3D scanning technology is increas-
ingly accessible, and they are often an intermediate output
of 3D computer vision algorithms. However, the final out-
put for most applications should be a renderable continuous
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and complete surface, which is the focus of our work.
For sparse grids and (incomplete) point clouds, learning-

based methods are a better choice than classical meth-
ods [6, 42], as they reason about global object shape, but are
limited by their output representation. Mesh-based methods
typically learn to deform an initial convex template [72],
and hence can not represent different topologies. Voxel-
based representations [11, 39] have a large memory foot-
print, which critically limits the output resolution to coarse
shapes, without detail. Point cloud [54, 55] representations
are more efficient but do not trivially enable rendering and
visualization of the surfaces.

Recently, implicit functions [48, 43, 10] have shown to
be a promising shape representation for learning. The key
idea is to learn a function which, given a coarse shape en-
coded as a vector, and the x-y-z coordinates of a query point,
decide whether the point is inside or outside of the shape.
The learned implicit function can be evaluated at query 3D
points at arbitrary resolutions, and the mesh/surface can be
extracted applying the classical marching cubes algorithm.
This output representation enables shape recovery at ar-
bitrary resolutions, is continuous and can handle different
topologies.

While these approaches work well to reconstruct aligned
rigid objects, we observed they suffer from two main lim-
itations: 1) they can not represent complex objects like ar-
ticulated humans (reconstructions often miss arms or legs),
2) they do not retain detail present in the input data. We hy-
pothesize this occurs because 1) networks learn an overly
strong prior on x-y-z point coordinates damaging the in-
variance to articulation, and 2) the shape encoding vector
lacks 3D structure, resulting in decodings that look more
like classification into shape prototypes [66] rather than
continuous regression. Consequently, all existing learning-
based approaches, either based on voxels, meshes, points or
implicit functions are lacking in some respect.

In this paper we propose Implicit Feature Networks (IF-
Nets), which, unlike previous work, do well in 5 dif-
ferent axis, shown in Table 1: they are continuous, can
handle multiple topologies, can complete data for sparse
input, retaining the nice properties of implicit function
models [48, 43, 10], but crucially they also retain detail
when is present in the input (dense input), and can re-
constructed articulated humans. IF-Nets differ from re-
cent work [48, 10, 43] in two crucial aspects. First, in-
stead of using a single vector to encode a 3D shape, we
extract a 3-dimensional multi-scale tensor of deep features,
which is aligned with original Euclidean space embedding
the shape. Second, instead of classifying x-y-z point coor-
dinates directly, we classify deep features extracted at con-
tinuous query points. Hence, unlike previous work, IF-nets
do not memorize common x-y-z locations, which are arbi-
trary under Euclidean transformations. Instead, they make

Output Continuous Multiple Sparse Dense Arti-
3D Repr. Output topologies Input Input culated
Voxels 7 3 3 7 3
Points 7 3 3 7 3
Meshes 7 7 3 7 3
Implicit∗ 3 3 3 7 7

Ours 3 3 3 3 3

Table 1. Overview of strengths and weaknesses of recent 3D re-
construction approaches classified by their output representation.
Voxels, point clouds, and meshes are non-continuous and suffer
from discretization. Meshes additionally have fixed topologies,
which limits the space of representable 3D shapes. Recent learned
implicit functions∗ [43, 10, 48] alleviate these limitations but fail
to retain details or reconstruct articulation. The proposed IF-Nets
share the desired properties of implicit functions for reconstructing
from 3D inputs, but are additionally able to preserve detail present
in dense 3D input and to reconstruct articulated humans.

decisions based on multi-scale features encoding local and
global object shape structures around the point.

To demonstrate the advantages of IF-Nets, first, we show
that IF-Nets can reconstruct simple rigid 3D objects at bet-
ter accuracy than previous methods. In ShapeNet [9], IF-
Nets outperform the state-of-the-art results. For articu-
lated humans, we train IF-Nets and related methods on a
dataset of 1600 humans in varied poses, shapes, and cloth-
ing. In stark contrast to recent work [48, 10, 43], IF-Nets
can reconstruct articulated objects globally without miss-
ing limbs, while recovering detailed structures such as cloth
wrinkles. Quantitative and qualitative experiments validate
that IF-Nets are more robust to articulations and produce
globally consistent shapes without losing fine-scale detail.
To encourage further research in 3D processing, learning,
and reconstruction, we make IF-Nets publicly available at
https://virtualhumans.mpi-inf.mpg.de/ifnets/.

2. Related Work
Approaches for 3D shape reconstruction can be classi-

fied according to the representation used: voxels, meshes,
point clouds, and implicit functions; and according to the
object type: rigid objects vs humans. For a more exhaus-
tive recent review, we refer the reader to [23]. A condensed
overview of strengths and weaknesses of recent 3D recon-
struction approaches is given in Table 1.

Voxels for rigid objects: Since voxels are a natural 3D
extension to pixels in image grids and admit 3D convolu-
tions, they are most commonly used for generation and re-
construction [29, 26, 57, 46]. However, the memory foot-
print scales cubically with the resolution, which limited
early works [75, 11, 68] to predict shapes in small 323 grids.
Higher resolutions have been used [74, 73, 81] at the cost
of limited training batches and slow training or lossy 2D
projections [63]. Multi-resolution [24, 65, 71] reconstruc-
tion reduced the memory footprint, allowing grids of size



2563. However, the approaches are complicated to imple-
ment, require multiple passes over the input, and are still
limited to grids of size 2563, which result in visible quanti-
zation artifacts. To smooth out noise, it is possible to rep-
resent shapes as Truncated Signed Distance functions [12]
for learning [14, 36, 58, 64]. The resolution is however still
bounded by the 3D grid storing the TSDF values.

Generative shape models typically map a 1D vector to a
voxel representation with a neural network [18, 74]. Like
us, the authors of [40] observe that the 1D vector is too re-
strictive to generate shapes with global and local structures.
They introduce a hierarchical latent code with skip connec-
tions. Instead, we propose a much simpler 3-dimensional
multi-scale feature tensor, which is aligned with original
Euclidean space embedding the shape.

Humans with voxels: From images, CNN based re-
construction of humans represented as voxels [70, 17, 82]
or depth-maps [16, 62, 38] typically produce more details
than mesh or template-based representations, because pre-
dictions are aligned with the input pixels. Unfortunately,
this comes at the cost of missing parts in the body. Hence,
some methods [70, 62] fit the SMPL [41] model to the re-
constructions as a post-processing step. This is however
prone to fail if the original reconstructions are too incom-
plete. All these approaches process image pixels whereas
we focus on processing 3D data directly. Unlike our IF-
Nets, these methods are bounded by the resolution of the
voxel grid.

Meshes for rigid objects: Most mesh-based methods
predict shape as a deformation from a template [72, 56] and
hence are limited to a single topology. Alternatively, the
mesh (vertices and faces) can be inferred directly [20, 13] –
while this research direction is promising, methods are still
computationally expensive and can not guarantee a closed
mesh without intersections. Direct mesh prediction can also
be obtained using a learnable version [40] of the classical
marching cubes algorithm [42], but the approach is limited
to an underlying small voxel grid of 323. Promising combi-
nations of voxels and meshes have been proposed [19], but
results are still coarse.

Meshes for humans: Since the introduction of the
(mesh-based) SMPL human model [41] there have been
a growing number of papers leveraging it to reconstruct-
ing shape and pose from point clouds, depth data and im-
ages [28, 32, 33, 47, 69, 79]. Since SMPL does not model
clothing and detail, recent methods predict deformations
from SMPL [1, 2, 3, 51, 7] or a template [21, 22]. Un-
fortunately, CNN based mesh predictions tend to be over-
smooth. More detail can be obtained predicting normals and
displacement maps on a UV-map/geometry image of the
surface [4, 37, 53]. However, all these approaches require
different templates [7, 49] for every new garment topology
or do not produce high-quality reconstructions [53].

Point clouds for rigid objects: Processing point clouds
is an important problem as they are the output of many
sensors (LiDAR, 3D scanners) and computer vision algo-
rithms. Due to their low weight, they have been also popu-
lar in computer graphics for representing and manipulating
shapes [50]. PointNet based architectures [54, 55] were the
first to process point clouds directly for classification and
semantic segmentation. The idea is to apply a fully con-
nected network to each point followed by a global pool-
ing operation to achieve permutation invariance. Recent ar-
chitectures apply kernel point convolutions [67], tree-based
graph convolutions [60], and normalizing flows [77]. Point
clouds are also used as shape representation for reconstruc-
tion [15, 25] and generation [77]. Unlike voxels or meshes,
point clouds need to be non-trivially post-processed using
classical methods [6, 30, 31, 8] to obtain renderable sur-
faces.

Point clouds for humans: Very few works represent hu-
mans with point clouds [5], probably because they can not
be rendered. Recent works have employed either PointNet
architectures [27] or architectures based on point bases [52]
to register a human mesh to the point cloud.

Implicit Functions for rigid objects: Recently, neu-
ral networks have been used to learn a continuous implicit
function representing shape [43, 48, 10, 44, 35]. For this a
neural network can be feed with a latent code and a query
point (x-y-z) to predict the TSDF value [48] or the binary
occupancy of the point [43, 10]. A recent method [76]
achieved state-of-the-art results for 3D reconstruction from
images combining 3D query point features with local im-
age features, by approximating the projection of the query
point onto the 2D image with a view-point prediction. This
trick of querying continuous points used in implicit function
learning allows predicting in continuous space (potentially
at any resolution), breaking the memory barrier of voxel-
based methods. These works inspired our work, but we note
that they can not reconstruct articulated humans from 3D
data: [76] can not take 3D inputs as point clouds or voxel
grids and relies on an approximate 3D to 2D projection los-
ing details; the reconstructions of [43, 10] often miss limbs.
We hypothesize that [43, 10, 76] memorize point coordi-
nates instead of reasoning about shape, and that the vector-
ized latent 1D vector representation [43, 10] is not aligned
with the input, and lacks 3D structure. We address this is-
sues by querying deep features extracted at continuous lo-
cations of a 3D grid of multi-scale features aligned with the
3D input space. This modification is easy to implement and
results in significant gains in reconstruction quality.

Implicit Functions for humans: TSDFs [12] have been
used to represent human shapes for depth-fusion and track-
ing [45, 61]. Such implicit representation has been com-
bined with the SMPL [41] body model to significantly in-
crease tracking robustness and accuracy [78]. From an in-



put image, humans in clothing are predicted using an im-
plicit network [59]. [59] produces higher quality results
compared to prior implicit function work [10]. The recon-
struction is done by pointwise occupancy prediction based
on the location of a 3D query point and 2D image features.
For simple poses, the approach produces very compelling
and detailed results but struggles for more complex poses.
The approach [59] does not incorporate a multi-scale 3D
shape representation like ours, and it is designed for im-
age reconstruction, whereas we focus on 3D reconstruction
from sparse and dense point clouds and occupancy grids.
Like previous implicit networks, our method produces con-
tinuous surfaces at arbitrary resolution. But importantly, by
virtue of our 3D multi-scale shape representation aligned
with the input space, our reconstructions preserve global
structure while retaining fine-scale detail, even for complex
poses.

3. Method
To motivate the design of our Implicit Feature Net-

works (IF-Nets), we first describe the formulation of recent
learned implicit functions, pointing out their strengths and
weaknesses in Sec. 3.1. We explain our IF-Nets in Sec. 3.2.
The key ideas of IF-Nets are illustrated in Fig. 2.

3.1. Background: Learning with Implicit Surfaces

While recent works [48, 43, 10] on learned implicit re-
construction from 3D input differ in their inference and their
output shape representation (signed distance or binary occu-
pancies), they are conceptually similar. Here, we describe
the occupancy formulation of [43]. Note that the strengths
and limitations of these methods are very similar. They all
encode a 3D shape using a latent vector z ∈ Z ⊂ Rm.
Then a continuous representation of the shape is obtained
by learning a neural function

f(z,p) : Z × R3 7→ [0, 1], (1)

which given a query point p ∈ R3, and the latent code z,
classifies whether the point is inside (classification as 1) or
outside (classification as 0) the surface. Thereby, the sur-
face is implicitly represented as the points on the decision
boundary, {p ∈ R3 | f(z,p) = t}, with a threshold param-
eter t (t = 0.5 for IF-Nets).

Once f(·) is learned, it can be queried at continu-
ous point locations, without resolution restrictions imposed
by typical voxel grids. To construct a mesh, marching
cubes [42] can be applied on the predicted occupancy grid.
This elegant formulation breaks the barriers of previous
representations allowing detailed reconstruction of com-
plex topologies, and has proven effective for several tasks
such as rigid object reconstruction from images, occupancy
grids, and point clouds. However, we observed that models

of this kind suffer from two main limitations: 1) they can
not represent complex objects like articulated objects, and
2) they do not preserve detail present in the input data. We
address these limitations with IF-Nets.

3.2. Implicit Feature Networks

We identify two potential problems with the previous
formulation. First, directly inputting point coordinates p
gives the network the option to by-pass reasoning about
shape structure, by memorizing typical point occupancies
for object prototypes. This severely damages reconstruc-
tion in-variance to rotation and translation, which is one of
the cornerstones of successful 2D convolution networks for
segmentation, recognition, and detection. Second, encoding
the full shape in a single vector z loses detail present in the
data, and loses alignment with the original 3D space where
shapes are embedded.

In this work, we propose a novel encoding and decoding
tandem capable of addressing the above limitations for the
task of 3D reconstruction from point clouds or occupancy
grids. Given such 3D input data X ∈ X of an object, where
X denotes the space of the inputs, and a 3D point p ∈ R3,
we want to predict if p lies inside or outside the object.

Shape Encoding: Instead of encoding the shape in a sin-
gle vector z, we construct a rich encoding of the data X
through subsequently convolving it with learned 3D convo-
lutions. This requires the input to lie on a discrete voxel
grid, i.e. X = RN×N×N , where N ∈ N denotes the input
resolution. To process point clouds we simply discretize
them first. The convolutions are followed by down scaling
the input, creating growing receptive fields and channels but
shrinking resolution, just like commonly done in 2D [34].
Applying this procedure recursively n times on the input
data X, we create multi-scale deep feature grids F1, ..,Fn,
Fk ∈ FK×K×K

k , of decreasing resolution K = N
2k−1 ,

and variable channel dimensionality Fk ∈ N at each stage
Fk ⊂ RFk . The feature grids Fk at the early stages (starting
at k = 1) capture high frequencies (shape detail), whereas
feature grids Fk at the late stages (ending at stage k = n)
have a large receptive fields, which capture the global struc-
ture of the data. This enables to reason about missing or
sparse data, while retaining detail when is present in the in-
put. We denote the encoder as

g(X) ··= F1, ..,Fn . (2)

Shape Decoding: Instead of classifying point coordi-
nates p directly, we extract the learned deep features
F1(p), ..,Fn(p) from the feature grids at location p. This
is only possible because our encoding has a 3D structure
aligned with the input data. Since feature grids are discrete,
we use trilinear interpolation to query continuous 3D points
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Figure 2. Overview of IF-Nets: given an (incomplete or low resolution) input, we compute a 3D grid of multi-scale features, encoding
global and local properties of the input shape. Then, we extract deep features F1(p) . . .Fn(p) from the grid at continuous point locations
p. Based only on these features a decoder f(·) decides whether the point p lies inside (classification as 1) or outside (classification as
0) the surface. Like recent implicit function-based works, we can query at arbitrary resolutions and reconstruct a continuous surface.
Unlike them, our method reasons based exclusively on point-wise deep features, instead of point coordinates. This allows us to reconstruct
articulated structures and preserve input detail.

p ∈ R3. In order to encode information of the local neigh-
borhood into the point encoding, even at early grids with
small receptive fields (e.g. F1), we extract features at the
location of a query point p itself and additionally at sur-
rounding points in a distance d along the Cartesian axes:

{p + a · ei · d ∈ R3|a ∈ {1, 0,−1}, i ∈ {1, 2, 3}}, (3)

where d ∈ R is the distance to to the center point p and ei ∈
R3 is the i−thCartesian axis unit vector, see supplementary
material for an illustration.

The point encoding F1(p), ..,Fn(p), with Fk(p) ∈ Fk,
is then fed into a point-wise decoder f(·), parameterized by
a fully connected neural network, to predict if the point p
lies inside or outside the shape:

f(F1(p), . . . ,Fn(p)) : F1 × . . .×Fn 7→ [0, 1] (4)

In contrast to Eq. (1), in this formulation, the network clas-
sifies the point based on local and global shape features,
instead of point coordinates, which are arbitrary under rota-
tion, translation, and articulation transformations. Further-
more, due to our multi-scale encoding, details can be pre-
served while reasoning about global shape is still possible.

3.3. Method Training

To train the multi-scale encoder gw(·) in Eq. (2), and de-
coder fw(·) in Eq. (4), parameterized with neural weights
w, pairs {Xi,Si}Ti=1 of 3D inputs Xi with corresponding
3D ground truth object surfaces Si are required, where i ∈
1, . . . , T and T ∈ N denotes the number of such training
examples. The notation gw(X,p) ··= Fw

1 (p), . . . ,Fw
n (p)

denotes evaluation of the multi-scale encoding at point p.

To create training point samples, for every ground truth sur-
face Si, we sample a number S ∈ N of points pj

i ∈ R3,
j ∈ 1, . . . , S. To this end, we first make the ground truth
surface Si watertight. Then we compute the ground truth
occupancy oi(p

j
i ) ∈ {0, 1}, which evaluates to 1 for in-

side points and 0 otherwise. Next, the point samples pj
i are

created near the surface by sampling points pSi,j ∈ Si on
the ground truth surfaces and adding random displacements
ni,j ∼ N (0,Σ), i.e. pj

i
··= pSi,j + ni,j . To this end, we

use a diagonal covariance matrix Σ ∈ R3×3 with entries
Σi,i = σ. We find good results by sampling 50% of the
point samples very near the surface with a small σ1, and
50% in the further away surroundings with a larger σ2. For
training, the network weights w are optimized by minimiz-
ing the mini-batch loss

LB(w) ··=
∑
i∈B

∑
j∈R

L(fw(gw(Xi,p
j
i )), oi(p

j
i )) (5)

=
∑
i∈B

∑
j∈R

L(fw(Fw
1 (pj

i ), . . . ,F
w
n (pj

i )), oi(p
j
i )),

which sums over training surfaces i ∈ B ⊂ 1, . . . , T of a
given mini-batch B and point samples j ∈ R ⊂ 1, . . . , S of
a subsample R. The subsample R is regenerated for every
evaluation of the mini-batch loss LB. For L(·, ·), we use the
standard cross-entropy loss. By minimizing LB, we train
the encoder gw(·) and the decoder fw(·) jointly and end-to-
end. Please see the supplementary material for the concrete
values for the hyperparameters used in the experiments.

3.4. Method Inference

At test time, the goal is to reconstruct a continuous and
complete representation, given only a discrete and incom-



plete 3D input X. First, we use the learned encoder network
to construct the multi-scale feature grids g(X) = F1, ..,Fn.
Then, we use the point-wise decoder network f(g(X,p)) to
create occupancy predictions at continuous point locations
p ∈ R3 (cf. Sec. 3.2). In order to construct a mesh, we eval-
uate the IF-Net on points on a grid of the desired resolution.
Then, the resulting high resolution occupancy grid is trans-
formed into a mesh using the classical marching cubes [42]
algorithm.

4. Experiments

In this section we validate the effectiveness of IF-Nets on
the challenging task of 3D shape reconstruction. We show
that our IF-Nets are able to address two limitations of recent
learning-based approaches for this task: 1) IF-Nets preserve
detail present in the input data, while also reasoning about
incomplete data, 2) IF-Nets are able to reconstruct articu-
lated humans in complex clothing. To this end, we conduct
three experiments of increasing complexity: Point Cloud
Completion (Sec. 4.1), Voxel Super-Resolution (Sec. 4.2)
and Single-View Human Reconstruction (Sec. 4.3).

Baselines: For the task of Point Cloud Completion, we
evaluate our approach against Occupancy Networks [43]
(OccNet), Point Set Generation Networks [15] (PSGN)
and Deep Marching Cubes [39] (DMC). For Voxel Super-
Resolution, we compare against IMNET [10] as well as
again against OccNet and DMC. For DMC and PSGN we
used the implementations provided online by the authors
of [43]. We trained all methods until the validation mini-
mum was reached. Training was repeated for every consid-
ered experiment setup. To show a consistent comparison,
we modified the IMNET implementation to be able to be
trained on all ShapeNet classes jointly. For IMNET and Oc-
cNet, we kept the sampling strategies proposed by their au-
thors. For IMNET, we followed the authors and performed
progressive resolution increasing of training data sampling
during training.

Metrics: To measure reconstruction quality quantita-
tively, we consider three established metrics (see suppl. of
[43] for definition and implementation): volumetric inter-
section over union (IoU) measuring how well the defined
volumes match (higher is better), Chamfer-L2 measuring
the accuracy and completeness of the surface (lower is bet-
ter), and normal consistency measuring the accuracy and
completeness of the shape normals (higher is better).

Data: We consider two datasets: 1) a dataset contain-
ing 3D scans of humans1 to assess the challenging task
of reconstruction from incomplete and articulated shapes
and 2) the established ShapeNet [9] dataset, consisting of
rigid object classes, with rather prototypical shapes like
cars, airplanes, and rifles. The ShapeNet data has been pre-

1The dataset will be available for purchase from Twindom.

Input OccNet PSGN DMC Ours GT

Input OccNet IMNET DMC Ours GT

Figure 3. Qualitative results for two input types: point cloud (top)
and voxels (bottom) on ShapeNet dataset. Each type is further sub-
divided into sparse (top two rows) and dense (bottom two rows).

processed to be watertight by the authors of [76], allow-
ing to compute ground truth occupancies and scaled such
that every shape’s largest bounding box edge has length
one. We conduct all experiments and evaluations using pre-
possessed ShapeNet data and use the common training and
test split by [11]. However, preprocessing failed for some
objects, leading to broken objects with large holes. There-
fore, 508 heavily distorted objects have been removed for
meaningful evaluation. The filtered list of all used objects
is published alongside the code. We also evaluate on a
challenging dataset consisting of scanned humans in highly
varying articulations with complex and varying clothing
topologies like coats, skirts, or hats. The scans have been
captured using commercial 3D scanners. The dataset, re-
ferred to as Humans, consists of 2183 such scans, split into
478 examples for testing, 1598 for training and 197 for val-
idation. The scans have been height normalized and cen-
tered, but in contrast to the ShapeNet objects, exhibit vary-
ing rotations.

4.1. Point Cloud Completion

As a first task, we apply IF-Nets to the problem of com-
pleting sparse and dense point clouds – we sample 300
points (sparse) and 3000 points (dense) respectively from
ShapeNet surface models and ask our method to complete
the full surfaces. Completing point clouds is challenging



IoU ↑ Chamfer-L2 ↓ Normal-Consis. ↑
Input − − 0.07 0.009 − −
OccNet 0.73 0.72 0.03 0.04 0.88 0.88
DMC 0.58 0.65 0.03 0.01 0.83 0.86
PSGN − − 0.04 0.04 − −
Ours 0.79 0.88 0.02 0.002 0.90 0.95

Table 2. Results of point cloud reconstruction on ShapeNet. Left
number indicates score from 300 points, right one from 3000
points. Chamfer-L2 results ×10−2.

IoU ↑ Chamfer-L2 ↓ Normal-Consis. ↑
Input 0.49 0.79 0.04 0.003 0.81 0.87
DMC 0.59 0.67 0.45 0.45 0.83 0.84
IMNET 0.49 0.40 0.47 0.40 0.79 0.77
OccNet 0.60 0.71 0.10 0.05 0.85 0.88
Ours 0.73 0.92 0.02 0.002 0.91 0.98

Table 3. Results of voxel grid reconstruction on ShapeNet. For
each metric, left column indicates score from 323 resolution, right
one from 1283 resolution. Chamfer-L2 results ×10−2.

IoU ↑ Chamfer-L2 ↓ Normal-Consis. ↑
Input 0.49 0.76 0.04 0.003 0.82 0.86
DMC 0.77 0.85 0.03 0.01 0.79 0.83
IMNET 0.63 0.64 0.27 0.23 0.79 0.79
OccNet 0.63 0.65 0.22 0.19 0.79 0.79
Ours 0.80 0.96 0.02 0.001 0.86 0.94

Table 4. Results of voxel grid reconstruction on the Humans
dataset. Left number indicates score from 323 resolution, right one
from 1283 resolution. Chamfer-L2 results ×10−2. IF-Nets co-
herently outperform others in the incomplete data setup. IF-Nets
show a large increase in performance with dense data, whereas
others show similar performance. This demonstrates that IF-Nets
are the first learned approach, to our knowledge, being able to
faithfully reconstruct dense information present in 3D data.

since it requires to simultaneously preserve input details and
reason about missing structure at the same time. In Fig. 3
we show comparisons against the baseline methods. Our
method outperforms all baselines both in preserving local
detail and recovering global structures. For the dense point
clouds, the strengths of our method are paramount. Our
method is the only one capable of reconstructing the car
rear-view mirrors and the additional shelf of the wardrobe.
We additionally quantitatively compare our method and re-
port the numbers in Tab. 2. Our method beats the state-of-
the-art in all metrics by large margin. In fact, using 3000
points as input, all competitors produce results which have
larger Chamfer distance than the input itself, suggesting
they fail at preserving input detail. Only IF-Nets preserve
input details while completing missing structures.

4.2. Voxel Super-Resolution

As a second task, we apply our method to 3D super-
resolution. To effectively solve this task, our method needs
to again preserve the input shape while reconstructing de-
tails not present in the input. Our results in side-by-side
comparison with the baselines are depicted in Fig. 3 (bot-

Input OccNet IMNET DMC Ours GT

Figure 4. Qualitative results of sparse (323, upper) and dense
(1283, lower) 3D voxel super-resolution on the Humans dataset.

tom). While most baseline methods either hallucinate struc-
ture or completely fail, our method consistently produces
accurate and highly detailed results. This is also reflected
in the numerical comparison in Tab. 3, where we improve
over the baselines in all metrics.

The two last examples in Fig. 3 illustrate the limitations
of current implicit methods: If a shape differs too much
from the training set, the method fails or seems to return a
similar previously seen example. Consequentially, we hy-
pothesize that the current methods are not suited for tasks
where classification into shape prototypes is not sufficient.
This is for example the case for humans as they come in
various shapes and articulations. To verify our hypothesis,
we additionally perform 3D super-resolution on our Hu-
mans dataset. Here the advantages are even more promi-
nent: Our method is the only one that consistently recon-
structs all limbs and produces highly detailed results. Im-
plicit learning-based baselines produce truncated or com-
pletely missing limbs. We outperform all baselines also
quantitatively (see Tab 4).



Figure 5. 3D single view reconstructions from point clouds (note that the back is completely occluded). For four different single-view point
clouds, we show our reconstructions from four different viewpoints.

4.3. Single-View Human Reconstruction

Finally, to demonstrate the full capabilities of IF-Nets,
we use them for single-view human reconstruction. In this
task, only a partial 3D point cloud is given as input – the
typical output of a depth camera. We conduct this exper-
iment on the challenging Humans dataset, by rendering a
250 × 250 resolution depth image, yielding around 5000
points on the visible side of the subject. To successfully
fulfill this task, our model has to simultaneously recon-
struct novel articulations, retain fine details, and complete
the missing data at the occluded regions – the input con-
tains only one side of the underlying shape. Despite these
challenges, our model is capable of reconstructing plausible
and highly detailed shapes. In Fig. 5, we show both input
and our results from four different angles. Note how fine
structures like the scarfs, wrinkles, or individual fingers are
present in the reconstructed shapes. Although the backside
region (occluded) has less details than the visible one, IF-
Nets always produce plausible surfaces.

This can also be seen quantitatively. Ours: IoU 0.86,
Chamfer-L2 0.011 × 10−2, Normal-Consistency 0.90. In-
put point cloud: Chamfer-L2 0.252 × 10−2. The quantita-
tive results are in between the reconstruction quality of 323

and 1283 full subject voxel inputs (see Tab. 4), which once
more validates that IF-Nets can complete single-view data.
In the supplementary video, we show an additional result on
single-view reconstruction on the BUFF dataset [80] from
video (without retraining nor fine tuning the model).

5. Discussion and Conclusion

In this work, we have introduced IF-Nets for 3D recon-
struction and completion from deficient 3D inputs. First, we

have argued for an encoding consisting of a 3D multi-scale
tensor of deep features, which is aligned with the Euclidean
space embedding the shape. Second, instead of classify-
ing x-y-z coordinates directly, we classify deep features ex-
tracted at their location. Experiments demonstrate that IF-
Nets deliver continuous outputs, can reconstruct multiple
topologies such as 3D humans in varied clothing, and 3D
objects from ShapeNet. Quantitatively, IF-Nets outperform
all state-of-the-art baselines by a large margin in all tasks.
Our reconstruction from single-view point clouds(detailed
on the visible part but with missing data on the occluded
part), demonstrate the strengths of IF-Nets: details in the
input are preserved, while the shape is completed on the oc-
cluded part, even for articulated shapes.

Future work will explore extending IF-Nets to be gener-
ative, that is being able to sample detailed hypothesis condi-
tioned on partial input. We also plan to address image-based
reconstruction in 2 stages: first predicting a depth map, and
then completing shape with IF-Nets.

With a rising number of computer vision image recon-
struction methods producing partial 3D point clouds and
voxels, and 3D scanners and depth cameras becoming ac-
cessible, 3D (deficient and incomplete) data will be om-
nipresent in the future, and IF-Nets have the potential to
be an important building block for its reconstruction and
completion.
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[16] Valentin Gabeur, Jean-Sébastien Franco, Xavier Martin,
Cordelia Schmid, and Grégory Rogez. Moulding humans:
Non-parametric 3d human shape estimation from single im-
ages. In IEEE International Conference on Computer Vision,
pages 2232–2241, 2019. 3

[17] Andrew Gilbert, Marco Volino, John P. Collomosse, and
Adrian Hilton. Volumetric performance capture from min-
imal camera viewpoints. In European Conference on Com-
puter Vision, pages 591–607, 2018. 3

[18] Rohit Girdhar, David F. Fouhey, Mikel Rodriguez, and Ab-
hinav Gupta. Learning a predictable and generative vector
representation for objects. In European Conference on Com-
puter Vision, pages 484–499, 2016. 3

[19] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh
R-CNN. In IEEE International Conference on Computer Vi-
sion, pages 9785–9795, 2019. 3

[20] Thibault Groueix, Matthew Fisher, Vladimir G. Kim,
Bryan C. Russell, and Mathieu Aubry. A papier-mâché ap-
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