
Kinematic 3D Object Detection in Monocular
Video

Garrick Brazil1, Gerard Pons-Moll2, Xiaoming Liu1, and Bernt Schiele2

1 Michigan State University, Computer Science & Engineering
2 Max Planck Institute for Informatics, Saarland Informatics Campus
1 {brazilga, liuxm}@msu.edu, 2 {gpons, schiele}@mpi-inf.mpg.de

Abstract. Perceiving the physical world in 3D is fundamental for self-
driving applications. Although temporal motion is an invaluable resource
to human vision for detection, tracking, and depth perception, such fea-
tures have not been thoroughly utilized in modern 3D object detectors.
In this work, we propose a novel method for monocular video-based 3D
object detection which leverages kinematic motion to extract scene dy-
namics and improve localization accuracy. We first propose a novel de-
composition of object orientation and a self-balancing 3D confidence.
We show that both components are critical to enable our kinematic model
to work effectively. Collectively, using only a single model, we efficiently
leverage 3D kinematics from monocular videos to improve the overall
localization precision in 3D object detection while also producing use-
ful by-products of scene dynamics (ego-motion and per-object velocity).
We achieve state-of-the-art performance on monocular 3D object detec-
tion and the Bird’s Eye View tasks within the KITTI self-driving dataset.

Keywords: 3D Object Detection, Monocular, Video, Physics-based

1 Introduction

The detection of foreground objects is among the most critical requirements to
facilitate self-driving applications [3, 4, 11]. Recently, 3D object detection has
made significant progress [9,21,23,24,37,45], even while using only a monocular
camera [2,19,22,25,27,28,38,40]. Such works primarily look at the problem from
the perspective of single frames, ignoring useful temporal cues and constraints.

Computer vision cherishes inverse problems, e.g., recovering the 3D physical
motion of objects from monocular videos. Motion information such as object ve-
locity in the metric space is highly desirable for the path planning of self-driving.
However, single image-based 3D object detection can not directly estimate phys-
ical motion, without relying on additional tracking modules. Therefore, video-
based 3D object detection would be a sensible choice to recover such motion
information. Furthermore, without modeling the physical motion, image-based
3D object detectors are naturally more likely to suffer from erratic and unnatural
changes through time in orientation and localization (as exemplified in Fig. 1(a)).

2 G. Brazil et al.

RPN

Fig. 1. Single-frame 3D detection [2] often has unstable estimation through time (a),
while our video-based method (b) is more robust by leveraging kinematic motion
via a 3D Kalman Filter to fuse forecasted tracks � 0t and measurements b into �t.

Therefore, we aim to build a novel video-based 3D object detector which is able
to provide accurate and smooth 3D object detection with per-object velocity,
while also prioritizing a compact and efficient model overall.

Yet, designing an effective video-based 3D object detector has challenges.
Firstly, motion which occurs in real-world scenes can come from a variety of
sources such as the camera atop of an autonomous vehicle or robot, and/or from
the scene objects themselves — for which most of the safety-critical objects (car,
pedestrian, cyclist [14]) are typically dynamic. Moreover, using video inherently
involves an increase in data consumption which introduces practical challenges
for training and/or inference including with memory or redundant processing.

To address such challenges, we propose a novel framework to integrate a 3D
Kalman filter into a 3D detection system. We find Kalman is an ideal candidate
for three critical reasons: (1) it allows for use of real-world motion models to
serve as a strong prior on object dynamics, (2) it is inherently efficient due to its
recursive nature and general absence of parameters, (3) the resultant behavior
is explainable and provides useful by-products such as the object velocity.

Furthermore, we observe that objects predominantly move in the direction
indicated by their orientation. Fortunately, the benefit of Kalman allows us to
integrate this real-world constraint into the motion model as a compact scalar
velocity. Such a constraint helps maintain the consistency of velocity over time
and enables the Kalman motion forecasting and fusion to perform accurately.

However, a model restricted to only move in the direction of its orientation
has an obvious flaw — what if the orientation itself is inaccurate? We therefore
propose a novel reformulation of orientation in favor of accuracy and stability.
We find that our orientation improves the 3D localization accuracy by a margin
of 2:39% and reduces the orientation error by � 20%, which collectively help
enable the proposed Kalman to function more effectively.

A notorious challenge of using Kalman comes in the form of uncertainty,
which is conventionally [41] assumed to be known and static, e.g., from a sensor.
However, 3D objects in video are intuitively dependent on more complex factors
of image features and cannot necessarily be treated like a sensor measurement.
For a better understanding of 3D uncertainty, we propose a 3D self-balancing

Kinematic 3D Object Detection in Monocular Video 3

confidence loss. We show that our proposed confidence has higher correlation
with the 3D localization performance compared to the typical classification prob-
ability, which is commonly used in detection [33,35].

To complete the full understanding of the scene motion, we elect to estimate
the ego-motion of the capturing camera itself. Hence, we further narrow the
work of Kalman to account for only the object’s motion. Collectively, our pro-
posed framework is able to model important scene dynamics, both ego-motion
and per-object velocity, and more precisely detect 3D objects in videos using a
stabilized orientation and 3D confidence estimation. We demonstrate that our
method achieves state-of-the-art (SOTA) performance on monocular 3D Object
Detection and Bird’s Eye View (BEV) tasks in the KITTI dataset [14].
In summary, our contributions are as follows:

� We propose a monocular video-based 3D object detector, leveraging realistic
motion constraints with an integrated ego-motion and a 3D Kalman filter.

� We propose to reformulate orientation into axis, heading and offset along
with a self-balancing 3D localization loss to facilitate the stability necessary
for the proposed Kalman filter to perform more effectively.

� Overall, using only a single model our framework develops a comprehen-
sive 3D scene understanding including object cuboids, orientation, velocity,
object motion, uncertainty, and ego-motion, as detailed in Fig. 1 and 2.

� We achieve a new SOTA performance on monocular 3D object detection and
BEV tasks using comprehensive metrics within the KITTI dataset.

2 Related Work

We first provide context of our novelties from the perspective of monocular 3D
object detection (Sec. 2.1) with attention to orientation and uncertainty estima-
tion. We next discuss and contrast with video-based object detection (Sec. 2.2).

2.1 Monocular 3D Object Detection

Monocular 3D object detection has made significant progress [2,7,8,19,22,25,27–
29,38,39,43]. Early methods such as [8] began by generating 3D object proposals
along a ground plane using object priors and estimated point clouds, culminat-
ing in an energy minimization approach. [7, 19, 43] utilize additional domains
of semantic segmentation, object priors, and estimated depth to improve the
localization. Similarly, [27, 40] create a pseudo-LiDAR map using SOTA depth
estimator [6, 12, 13], which is respectfully passed into detection subnetworks or
LiDAR-based 3D object detection works [18, 31, 32]. In [22, 25, 28, 29, 38] strong
2D detection systems are extended to add cues such as object orientation, then
the remaining 3D box parameters are solved via 3D box geometry. [2] extends the
region proposal network (RPN) of Faster R-CNN [35] with 3D box parameters.

Orientation Estimation: Prior monocular 3D object detectors estimate ori-
entation via two main techniques. The first method is to classify orientation via
a series of discrete bins then regress a relative offset [7, 8, 19, 22, 25, 28, 29, 43].

4 G. Brazil et al.

The bin technique requires a trade-o� between the quantity/coverage of the dis-
cretized angles and an increase in the number of estimated parameters (bin�).
Other methods directly regress the orientation angle using quaternion [38] or
Euler [2,27] angles. Direct regression is comparatively e�cient, but may lead to
degraded performance and periodicity challenges [46], as exempli�ed in Fig. 1.

In contrast, we propose a novel orientation decomposition which serves as an
intuitive compromise between the bin and direct approaches. We decompose the
orientation estimation into three components: axis and heading classi�cation,
followed by an angle o�set. Thus, our technique increases the parameters by a
static factor of 2 compared to a bin hyperparameter, while drastically reducing
the o�set search space for each orientation estimation (discussed in Sec. 3.1).

Uncertainty Estimation: Although it is common to utilize the classi�ca-
tion score to rate boxes in 2D object detection [5,33,35,44] or explicitly model
uncertainty as parametric estimation [20], prior works in monocular 3D ob-
ject detection realize the need for 3D box uncertainty/con�dence [25, 38]. [25]
de�nes con�dence using the 3D IoU of a box and ground truth after center
alignment, thus capturing the con�dence primarily of the 3D object dimensions.
[38] predicts a con�dence by re-mapping the 3D box loss into a probability range,
which intuitively represents the con�dence of the overall 3D box accuracy.

In contrast, our self-balancing con�dence loss is generic and self-supervised,
with two bene�ts. (1) It enables estimation of a 3D localization con�dence using
only the loss values, thus being more general than 3D IoU. (2) It enables the
network to naturally re-balance extremely hard 3D boxes and focus on relatively
achievable samples. Our ablation (Sec. 4.4) shows the importance of both e�ects.

2.2 Video-based Object Detection

Video-based object detection [1,26,42,47,48] is generally less studied than single-
frame object detection [5, 33{35, 44, 45]. A common trend in video-based detec-
tion is to bene�t the accuracy-e�ciency trade-o� via reducing the frame redun-
dancy [1,26,42,47,48]. Such works are applied primarily on domains of ImageNet
VID 2015 [36], which contain less ego-motion from the capturing camera than
self-driving scenarios [10,14]. As such, the methods are designed to use 2D trans-
formations, which lack the consistency and realism of 3D motion modeling.

In comparison, to our knowledge this is the �rst work that utilizes video cues
to improve the accuracy and robustness of monocular 3D object detection. In
the domain of 2D/3D object tracking, [15] experiments using Kalman Filters,
Particle Filters, and Gaussian Mixture Models, and observe Kalman to be the
most e�ective aggregation method for tracking. An LSTM with depth ordering
and IMU camera ego-motion is utilized in [16] to improve the tracking accuracy.
In contrast, we explore how to naturally and e�ectively leverage a 3D Kalman
�lter to improve the accuracy and robustness of monocular 3D object detection.
We propose novel enhancements including estimating ego-motion, orientation,
and a 3D con�dence, while e�ciently using only a single model.

Kinematic 3D Object Detection in Monocular Video 5

Fig. 2. Overview. Our framework uses a RPN to �rst estimate 3D boxes (Sec. 3.1).
We forecast previous frame tracks � t � 1 into � 0

t using the estimated Kalman velocity.
Self-motion is compensated for applying a global ego-motion (Sec. 3.2) to tracks � 0

t .
Lastly, we fuse � 0

t with measurements b using a kinematic 3D Kalman �lter (Sec. 3.3).

3 Methodology

Our proposed kinematic framework is composed of three primary components:
a 3D region proposal network (RPN), ego-motion estimation, and a novel kine-
matic model to take advantage of temporal motion in videos. We �rst overview
the foundations of a 3D RPN. Then we detail our contributions of orientation
decomposition and self-balancing 3D con�dence, which are integral to the kine-
matic method. Next we detail ego-motion estimation. Lastly, we present the com-
plete kinematic framework (Fig. 2) which carefully employs a 3D Kalman [41]
to model realistic motion using the aforementioned components, ultimately pro-
ducing a more accurate and comprehensive 3D scene understanding.

3.1 Region Proposal Network

Our measurement model is founded on the 3D RPN [2], enhanced using novel
orientation and con�dence estimations. The RPN itself acts as a sliding window
detector following the typical practices outlined in Faster R-CNN [35] and [2].
Speci�cally, the RPN consists of a backbone network and a detection head which
predicts 3D box outputs relative to a set of prede�ned anchors.

Anchors: We de�ne our 2D-3D anchor � to consist of 2D dimensions [� w ; � h]2D

in pixels, a projected depth-bu�er � z in meters, 3D dimensions [� w ; � h ; � l]3D in
meters, and orientations with respect to two major axes [� 0; � 1]3D in radians.
The term � z is related to the camera coordinate [x; y; z]3D by the equation
� z � [u; v; 1]T2D = � � [x; y; z; 1]T3D where � 2 R3� 4 is a known projection matrix.
We compute the anchor values by taking the mean of each parameter after
clustering all ground truth objects in 2D, following the process in [2].

3D Box Outputs: Since our network is based on the principles of a RPN [2,35],
most of the estimations are de�ned as a transformationT relative to an anchor.
Let us de�ne na as the number of anchors,nc as the number of object classes,

6 G. Brazil et al.

Fig. 3. Orientation. Our proposed orientation formulation decomposes an object
orientation �̂ (a) into an axis classi�cation �̂ a (b), a heading classi�cation �̂ h (c), and an
o�set �̂ r (d). Our method disentangles the objectives of axis and heading classi�cation
while greatly reducing the o�set region (red) by a factor of 1

4 .

and w � h as the output resolution of the network. The RPN outputs a clas-
si�cation map C 2 R(n a �n c) � w � h , then 2D transformations [T x ; T y ; T w ; T h]2D ,
3D transformations [T u ; T v ; T z ; T w ; T h ; T l ; T � r]3D , axis and heading [� a ; � h],
and lastly a 3D self-balancing con�dence
 . Each output has a size ofRn a � w � h .
The outputs can be unrolled into nb = (na � w � h) boxes with (nc + 14)-dim,
with parameters of c, [tx ; ty ; tw ; th]2D , [tu ; tv ; tz ; tw ; th ; t l ; t � r]3D , [� a ; � h], and ! ,
which relate to the maps by c 2 C, t2D 2 T 2D , t3D 2 T 3D , � 2 � and ! 2
 .
The regression targets for 2D ground truths (GTs) [x̂; ŷ; ŵ; ĥ]2D are de�ned as:

t̂x 2D =
x̂2D � i
� w2D

; t̂y2D =
ŷ2D � j

� h2D

; t̂w2D = log
ŵ2D

� w2D

; t̂h2D = log
ĥ2D

� h2D

; (1)

where (i; j) 2 Rw� h represent the pixel coordinates of the corresponding box.
Similarly, following the equation of ẑ � [û; v̂; 1]T2D = � � [x; y; z; 1]T3D , the regression
targets for the projected 3D center GTs are de�ned as:

t̂u =
û � i
� w2D

; t̂v =
v̂ � j
� h2D

; t̂z = ẑ � � z : (2)

Lastly, the regression targets for 3D dimensions GTs [^w; ĥ; l̂]3D are de�ned as:

t̂w3D = log
ŵ3D

� w3D

; t̂h3D = log
ĥ3D

� h3D

; t̂ l 3D = log
l̂3D

� l 3D

: (3)

The remaining targets for our novel orientation estimation t � r , [� a ; � h], and 3D
self-balancing con�dence! are de�ned in subsequent sections.

Orientation Estimation: We propose a novel object orientation formulation,
with a decomposition of three components: axis, heading, and o�set (Fig. 3).
Intuitively, the axis estimation � a represents the probability an object is oriented
towards the vertical axis (� a = 0) or the horizontal axis (� a = 1), with its label
formally de�ned as: �̂ a = jsin �̂ j < jcos�̂ j, where �̂ is the ground truth object
orientation in radians from a bird's eyes view (BEV) with [� �; �) bounded range.
We then compute an orientation �̂ r with a restricted range relative to its axis,
e.g., [� �; 0) when �̂ a = 0, and [� �

2 ; �
2) when �̂ a = 1. We start with �̂ r = �̂ then

add or subtract � from �̂ r until the desired range is satis�ed.

Kinematic 3D Object Detection in Monocular Video 7

Intuitively, �̂ r loses its heading since the true rotation may bef �̂ r ; �̂ r � � g.
We therefore preserve the heading using a separatê� h , which represents the
probability of �̂ r being rotated by � with its GT target de�ned as:

�̂ h =

(
0 �̂ = �̂ r

1 otherwise:
(4)

Lastly, we encode the orientation o�set transformation which is relative to the
corresponding anchor, axis, and restricted orientation �̂ r as: t̂ � r = �̂ r � � � a .
The reverse decomposition is� = � � a + b� h e � � + t � r where bedenotes round.

In designing our orientation, we �rst observed that the visual di�erence be-
tween objects at opposite headings of [�; � � �] is low, especially for far objects.
In contrast, classifying the axis of an object is intuitively more clear since the
visual features correlate with the aspect ratio. Note that [� a ; � h ; � r] disentan-
gle these two objectives. Hence, while the axis is being determined, the heading
classi�er can focus on subtle clues such as windshields, headlights and shape.

We further note that our 2 binary classi�cations have the same representa-
tional power as 4 bins following [19, 22, 25, 28]. Speci�cally, bins of [0; �

2 ; �; 3�
2].

However, it is more common to use considerably more bins (such as 12 in [19]).
An important distinction is that bin-based approaches require the network decide
axis and heading simultaneously, whereas our methoddisentanglesthe orienta-
tion into the two distinct and explainable objectives. We provide ablations to
compare our decomposition and the bin method using [2; 4; 10] bins in Sec. 4.4.

Self-Balancing Loss: The novel 3D localization con�dence ! follows a self-
balancing formulation closely coupled to the network loss. We �rst de�ne the
2D and 3D loss terms which comprise the general RPN loss. We unroll and
match all nb box estimations to their respective ground truths. A box is matched
as foreground when su�cient (� k) 2D intersection over union (IoU) is met,
otherwise it is considered background (^c = 0) and all loss terms except for
classi�cation are ignored. The 2D box loss is thus de�ned as:

L 2D = � log(IoU(b2D ; b̂2D))[ĉ 6= 0] + CE(c; ĉ); (5)

where CE denotes a softmax activation followed by logistic cross-entropy loss
over the ground truth class ĉ, and IoU uses predictedb2D and ground truth b̂2D .
Similarly, the 3D localization loss for only foreground (ĉ 6= 0) is de�ned as:

L 3D = L 1(t3D ; t̂3D) + � a � BCE([� a ; � h]; [�̂ a ; �̂ h]); (6)

where BCE denotes a sigmoid activation followed by binary cross-entropy loss.
Next we de�ne the �nal self-balancing con�dence loss with the ! estimation as:

L = L 2D + ! � L 3D + � L � (1 � !); (7)

where � L is the rolling mean of the nL most recent L 3D losses per mini-batch.
Since ! is predicted per-box via a sigmoid, the network can intuitively balance
whether to use the loss ofL 3D or incur a proportional penalty of � L � (1 � !).
Hence, when the con�dence is high (! � 1) we infer that the network is con�dent
in its 3D loss L 3D . Conversely, when the con�dence is low (! � 0), the network

8 G. Brazil et al.

is uncertain in L 3D , thus incurring a
at penalty is preferred. At inference, we
fuse the self-balancing con�dence with the classi�cation score as� = c � ! .

The proposed self-balancing loss has two key bene�ts. Firstly, it produces a
useful 3D localization con�dence with inherent correlation to 3D IoU (Sec. 4.4).
Secondly, it enables the network to re-balance samples which are exceedingly
challenging and re-focus on the more reasonable targets. Such a characteristic can
be seen as the inverse of hard-negative mining, which is important while monoc-
ular 3D object detection remains highly di�cult and unsaturated (Sec. 4.1).

3.2 Ego-motion

A challenge with the dynamics of urban scenes is that not only are most fore-
ground objects in motion, but the capturing camera itself is dynamic. Therefore,
for a full understanding of the scene dynamics, we design our model to addition-
ally predict the self-movement of the capturing camera,e.g., ego-motion.

We de�ne ego-motion in the conventional six degrees of freedom: translation
[
 x ;
 y ;
 z] in meters and rotation [� x ; � y ; � z] in radians. We attach an ego-motion
features layer E with ReLU to the concatenation of two temporally adjacent
feature maps � which is the �nal layer in our backbone with size Rn h � w � h

architecture, de�ned as � t � 1 jj � t . We then attach predictions for translation
[� x ; � y ; � z] and rotation [Px ; Py ; Pz], which are of sizeRw� h . Instead of using
a global pooling, we predict a spatial con�dence mapEc 2 Rw� h based onE.
We then apply softmax over the spatial dimension ofEc such that

P
Ec = 1.

Hence, the pooling of prediction maps [�; P] into [
; �] is de�ned as:

 =
X

(i;j)

� (i; j) � Ec(i; j); � =
X

(i;j)

P(i; j) � Ec(i; j); (8)

where (i; j) is the coordinate in Rw� h . We show an overview of the motion
features E , spatial con�dence Ec, and outputs [�; P] ! [
; �] within Fig. 2.
We use aL 1 loss against GTs ^
 and �̂ de�ned as L ego = L 1(
;
̂) + � r � L 1(�; �̂).

3.3 Kinematics

In order to leverage temporal motion in video, we elect to integrate our RPN
and ego-motion into a novel kinematic model. We adopt a 3D Kalman [41] due
to its notable e�ciency, e�ectiveness, and interpretability. We next detail our
proposed motion model, the procedure for forecasting, association, and update.

Motion Model: The critical variables we opt to track are de�ned as 3D center
[� x ; � y ; � z], 3D dimensions [� w ; � h ; � l], orientation [� � ; � � h], and scalar velocity � v .
We de�ne � � as an � orientation constrained to the range of [� �

2 ; �
2), and � h as

in Sec. 3.13. We constrain the motion model to only allow objects to move in the
direction of their orientation. Hence, we de�ne the state transition F 2 R9� 9 as:

3 We do not use the axis � a of Sec. 3.1, since we expect the orientation to change
smoothly and do not wish the orientation is relative to a (potentially) changing axis.

Kinematic 3D Object Detection in Monocular Video 9

F =

2

6
6
6
6
6
6
4

I 9� 8

cos(� � + � b� � h e)
0

� sin(� � + � b� � h e)
0
...
1

3

7
7
7
7
7
7
5

; (9)

where I denotes the identity matrix and the state variable order is respectively
[� x ; � y ; � z ; � w ; � h ; � l ; � � ; � � h ; � v]. We constrain the velocity to only move within its
orientation to simplify the Kalman to work more e�ectively. Recall that since our
measurement model RPN processes a single frame, it doesnot measure velocity.
Thus, to map the tracked state space and measurement space, we also de-
�ne an observation model H as a truncated identity map of size I 2 R8� 9.
We de�ne covarianceP with 3D con�dence � , asP = I 9� 9 � (1 � �) � � o where � o

is an uncertainty weighting factor. Hence, we avoid the need to manually tune
the covariance, while being dynamic to diverse and changing image content.

Forecasting: The forecasting step aims to utilize the tracked state variables and
covariances of timet � 1 to estimate the state of a future time t. The equation
to forecast a state variable � t � 1 into � 0

t is: � 0
t = F t � 1 � � t � 1, where F t � 1 is the

state transition model at t � 1. Note that both objects and the capturing camera
may have independent motion between consecutive frames. Therefore, we lastly
apply the estimated ego-motion to all available tracks' 3D center [� x ; � y ; � z] by:

2

6
6
4

� x

� y

� z

1

3

7
7
5

0

t

=
�

R ; T
0; 1

� t

t � 1
�

2

6
6
4

� x

� y

� z

1

3

7
7
5

0

t

; � 0
t� = � 0

t� + � y (10)

whereR t
t � 1 2 R3� 3 denotes the estimated rotation matrix converted from Euler

angles andT t
t � 1 2 R3� 1 the translation vector for ego-motion (as in Sec. 3.2).

Finally, we forecast a tracked object's covarianceP from t � 1 to t de�ned as:

P 0
t = F t � 1 � P t � 1 � FT

t � 1 + I 9� 9 � (1 � � t � 1); (11)

where � t � 1 denotes the average self-balancing con�dence � of a track's life.
Hence, the resultant track states � 0

t and track covariances P 0
t represent the

Kalman �lter's best forecasted estimation with respect to frame t.

Association: After the tracks have been forecasted fromt � 1 to t, the next
step is to associate tracks to corresponding 3D box measurements (Sec. 3.1).
Let us denote boxes produced by the measurement RPN asb 2 R8 mimicking
the tracked state as [bx ; by ; bz ; bw ; bh ; bl ; b� ; b� h]4. Our matching strategy consists
of two steps. We �rst compute the 3D center distance between the tracks� 0

t
and measurementsb. The best matches with the lowest distance are iteratively
paired and removed until no pairs remain with distance� kd. Then we compute
the projected 2D box IoU between any remaining tracks� 0

t and measurementsb.

4 We apply the estimated transformations of Sec. 3.1 to their respective anchors with
equations of [2], and backproject into 3D coordinates to match track variables.

10 G. Brazil et al.

The best matches with the highest IoU are also iteratively paired and removed
until no pairs remain with IoU � ku . Measured boxes that werenot matched are
added as new tracks. Conversely, tracks that werenot matched incur a penalty
with hyperparameter kp, de�ned as � t � 1 = � t � 1 � kp. Lastly, any box who has
con�dence � t � 1 � km is removed from the valid tracks.

Update: After making associations between tracks� 0
t and measurementsb,

the next step is to utilize the track covariance P 0
t and measured con�dence�

to update each track to its �nal state � t and covarianceP t . Firstly, we formally
de�ne the equation for computing the Kalman gain as:

K = P 0 H T (H P 0 H T + I 8� 8 (1 � �) � � o) � 1; (12)
where I 8� 8 (1 � �) � � o represents the incoming measurement covariance matrix,
and P 0 the forecasted covariance of the track. Next, given the Kalman gainK ,
forecasted state� 0

t , forecasted covarianceP 0
t , and measured boxb, the �nal track

state � t and covarianceP t are de�ned as:
� t = � 0

t + K (b� H � 0
t); P t = (I 9� 9 � K H) P 0

t : (13)
We lastly aggregate each track's overall con�dence� t over time as a running
average of� t = 1

2 � (� t � 1 + �), where � is the measured con�dence.

3.4 Implementation Details
Our framework is implemented in PyTorch [30], with the 3D RPN settings of [2].
We release source code athttp://cvlab.cse.msu.edu/project-kinematic.html .
We use a batch size of 2 and learning rate of 0:004. We setk = 0 :5, � o = 0 :2,
� r = 40, nL = 100, � a = ku = 0 :35, kd = 0 :5, kp = 0 :75, and km = 0 :05.
To ease training, we implement three phases. We �rst train the 2D-3D RPN with
L = L 2D + L 3D , then the self-balancing loss of Eq. 7, for 80k and 50k iterations.
We freeze the RPN to train ego-motion usingL ego for 80k. Our backbone is
DenseNet121 [17] wherenh = 1 ;024. Inference uses 4 frames as provided by [14].

4 Experiments
We benchmark our kinematic framework on the KITTI [14] dataset. We compre-
hensively evaluate on 3D Object Detection and Bird's Eye View (BEV) tasks.
We then provide ablation experiments to better understand the e�ects and jus-
ti�cation of our core methodology. We show qualitative examples in Fig. 6.

4.1 KITTI Dataset
The KITTI [14] dataset is a popular benchmark for self-driving tasks. The o�cial
dataset consists of 7;481 training and 7;518 testing images including annotations
for 2D/3D objects, ego-motion, and 4 temporally adjacent frames. We evaluate
on the most widely used validation split as proposed in [8], which consists of
3;712 training and 3;769 validation images. We focus primarily on the car class.

Metric: Average precision (AP) is utilized for object detection in KITTI.
Following [38], the KITTI metric has updated to include 40 (" 11) recall points
while skipping the �rst. The AP 40 metric is more stable and fair overall [38].
Due to the o�cial adoption of AP 40, it is not possible to compute AP11 on test.
Hence, we elect to use the AP40 metric for all reported experiments.

Kinematic 3D Object Detection in Monocular Video 11

AP 3D (IoU � 0:7) AP BEV (IoU � 0:7)
s/im �

Easy Mod Hard Easy Mod Hard
FQNet [25] 2:77 1:51 1:01 5:40 3:23 2:46 0:50y

ROI-10D [28] 4:32 2:02 1:46 9:78 4:91 3:74 0:20
GS3D [22] 4:47 2:90 2:47 8:41 6:08 4:94 2:00y

MonoPSR [19] 10:76 7:25 5:85 18:33 12:58 9:91 0:20
MonoDIS [38] 10:37 7:94 6:40 17:23 13:19 11:12 �
M3D-RPN [2] 14:76 9:71 7:42 21:02 13:67 10:23 0:16
AM3D [27] 16:50 10:74 9:52 25:03 17:32 14:91 0:40

Ours 19:07 12 :72 9:17 26:69 17 :52 13:10 0:12

Table 1. KITTI Test . We compare with SOTA methods on the KITTI test dataset.
We report performances using the updated AP 40 metric from the o�cial leaderboard.
* the runtime is reported from the o�cial leaderboard with slight variances in hardware.
We indicate methods reported on CPU with y. Bold / italics indicate best/second AP.

AP 3D (IoU � [0:7=0:5]) AP BEV (IoU � [0:7=0:5])
Easy Mod Hard Easy Mod Hard

MonoDIS [38] 11:06/ � 7:60/ � 6:37/ � 18:45/ � 12:58/ � 10:66/ �
M3D-RPN [2] 14:53/ 48:56 11:07/ 35:94 8:65/ 28:59 20:85/ 53:35 15:62/ 39:60 11:88/ 31:77

Ours 19:76/ 55:44 14 :10/ 39:47 10 :47/ 31:26 27:83/ 61:79 19 :72/ 44:68 15 :10/ 34:56

Table 2. KITTI Validation . We compare with SOTA on KITTI validation [8] split.
Note that methods published prior to [38] are unable to report the updated AP 40 metric.

4.2 3D Object Detection

We evaluate our proposed framework on the task of 3D object detection, which
requires objects be localized in 3D camera coordinates as well as supplying the
3D dimensions and BEV orientation relative to the XZ plane. Due to the strict
requirements of IoU in three dimensions, the task demands precise localization of
an object to be considered a match (3D IoU� 0:7). We evaluate our performance
on the o�cial test [14] dataset in Tab. 1 and the validation [8] split in Tab. 2.

We emphasize that our method improves the SOTA on KITTI test by a sig-
ni�cant margin of " 1:98% compared to [27] on the moderate con�guration with
IoU � 0:7, which is the most common metric used to compare. Further, we note
that [27] require multiple encoder-decoder networks which add overhead com-
pared to our single network approach. Hence, their runtime is� 3� (Tab. 1)
compared to ours, self-reported onsimilar but not identical GPU hardware.
Moreover, [2] is the most comparable method to ours as both utilize a single
network and an RPN archetype. We note that our method signi�cantly outper-
forms [2] and many other recent works [19,22,25,28,38] by� 3:01� 11:21%.

We further evaluate our approach on the KITTI validation [8] split using the
AP40 for available approaches and observe similar overall trends as in Tab. 2.
For instance, compared to competitive approaches [2, 38] our method improves
the performance by" 3:03% for the challenging IoU criteria of � 0:7. Similarly,
our performance on the more relaxed criteria of IoU� 0:5 increases by" 3:53%.
We additionally visualize detailed performance characteristics on AP3D at dis-
crete depth [15; 30; All] meters and IoU matching criterias 0:3 ! 0:7 in Fig. 4.

12 G. Brazil et al.

AP 3D (IoU � [0:7=0:5]) AP BEV (IoU � [0:7=0:5])
Easy Mod Hard Easy Mod Hard

Baseline 13:81/47:10 9:71/34:14 7:44/26:90 20:08/52:57 13:98/38:45 11:10/29:88
+ � decomposition 16:66/51:47 12:10/38:58 9:40/30:98 23:15/56:48 17:43/42:53 13:48/34:37
+ self-con�dence 16:64/52:18 12:77/38:99 9:60/ 31:42 24:22/58:52 18:02/42:95 13:92/ 34:80
+ � = c � ! 18:28/ 54:70 13:55/ 39:33 10:13/31 :25 25:72/ 60:87 18:82/ 44:36 14:48/34 :48
+ kinematics 19:76/ 55:44 14 :10/ 39:47 10 :47/ 31:26 27:83/ 61:79 19 :72/ 44:68 15 :10/ 34:56

Table 3. Ablation Experiments . We conduct a series of ablation experiments with
the validation [8] split of KITTI, using diverse IoU matching criteria of � 0:7=0:5.

4.3 Bird's Eye View

The Bird's Eye View (BEV) task is similar to 3D object detection, di�ering
primarily in that the 3D boxes are �rstly projected into the XZ plane then
2D object detection is calculated. The projection collapses the Y-axis degree of
freedom and intuitively results in a less precise but reasonable localization.

We note that our method achieves SOTA performance on the BEV task
regarding the moderate setting of the KITTI test dataset as detailed in Tab. 1.
Our method performs favorably compared with SOTA works [2,19,22,25,28,38]
(e.g., � 3:85 � 14:29%), and similarly to [27] at a notably lower runtime cost.
We suspect that our method, especially the self-balancing con�dence (Eq. 7),
prioritizes precise localization which warrants more bene�t in full 3D Object
Detection task compared to the Bird's Eye View task.

Our method performs similarly on the validation [8] split of KITTI (Tab. 2).
Speci�cally, compared to [2,38] our proposed method outperforms by a range of
� 4:10� 7:14%, which isconsistent to the same methods on test� 3:85� 4:33%.

4.4 Ablation Study

To better understand the characteristics of our proposed kinematic framework,
we perform a series of ablation experiments and analysis, summarized in Tab. 3.
We adopt [2] without hill-climbing or depth-aware layers as our baseline method.
Unless otherwise speci�ed we use the experimental settings outlined in Sec. 3.4.

Orientation Improvement: The orientation of objects is intuitively a crit-
ical component when modeling motion. When the orientation is decomposed
into axis, heading, and o�set the overall performance signi�cantly improves,
e.g., by " 2:39% in AP3D and " 3:45% in APBEV , as detailed within Tab. 3.
We compute the mean angle error of our baseline, orientation decomposition, and
kinematics method which respectively achieve 13:4� , 10:9� , and 6:1� (# 54:48%),
suggesting our proposed methodology is signi�cantly morestable.

We compare our orientation decomposition to bin-based methods following
general idea of [19, 22, 25, 28]. We speci�cally change our orientation de�nition
into [� b; � o] which includes a bin classi�cation and an o�set. We experiment with
the number of bins set to [2; 4; 10] which are uniformly spread from [0; 2�).
Note that 4 bins have the same representational power as using binary [� a ; � h].
We observe that the ablated bin-based methods achieve [9:47%; 10:02%; 10:76%]
in AP 3D . In comparison, our decomposed orientation achieves 12:10% in AP3D .
We provide additional detailed experiments in our supplemental material.

