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Abstract

We address the problem of fitting 3D human models to 3D scans of dressed humans.
Classical methods optimize both the data-to-model correspondences and the human
model parameters (pose and shape), but are reliable only when initialized close to
the solution. Some methods initialize the optimization based on fully supervised
correspondence predictors, which is not differentiable end-to-end, and can only
process a single scan at a time. Our main contribution is LoopReg, an end-to-end
learning framework to register a corpus of scans to a common 3D human model.
The key idea is to create a self-supervised loop. A backward map, parameterized by
a Neural Network, predicts the correspondence from every scan point to the surface
of the human model. A forward map, parameterized by a human model, transforms
the corresponding points back to the scan based on the model parameters (pose and
shape), thus closing the loop. Formulating this closed loop is not straightforward
because it is not trivial to force the output of the NN to be on the surface of the
human model — outside this surface the human model is not even defined. To
this end, we propose two key innovations. First, we define the canonical surface
implicitly as the zero level set of a distance field in R?, which in contrast to more
common UV parameterizations {} C R?, does not require cutting the surface, does
not have discontinuities, and does not induce distortion. Second, we diffuse the
human model to the 3D domain R®. This allows to map the NN predictions forward,
even when they slightly deviate from the zero level set. Results demonstrate that we
can train LoopReg mainly self-supervised — following a supervised warm-start, the
model becomes increasingly more accurate as additional unlabelled raw scans are
processed. Our code and pre-trained models can be downloaded for research [3].

1 Introduction

We propose a novel approach for model-based registration, i.e. fitting parametric model to 3D scans
of articulated humans. Registration of scans is necessary to complete, edit and control geometry, and
is often a precondition for building statistical 3D models from data 82} 148 58} [11]].

Classical model-based approaches optimize an objective function over scan-to-model correspondences
and the parameters of a statistical human model, typically pose, shape and non-rigid displacement.
When properly initialized, such approaches are effective and generalize well. However, when the
variation in pose, shape and clothing is high, they are vulnerable to local minima.
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To avoid convergence to local minima, researchers proposed to use predictors to either initialize
the latent parameters of a human model [32], or the correspondences between data points and the
model [60, [76]. Learning to predict global latent parameters of a human model directly from a
point-cloud is difficult and such initializations to standard registration are not yet reliable. Instead,
learning to predict correspondences to a 3D human model is more effective [[10,14].

Several important limitations are apparent with current approaches. First, supervising an initial
regression model of correspondence requires labeled scans [60} (76, 81} 152]], which are hard to obtain.
Second, although some approaches use predicted correspondences to initialize a subsequent, classical
optimization-based registration, this process involves non-differentiable steps.

What is lacking is a joint end-to-end differentiable objective over correspondences and human model
parameters, which allows to train the correspondence predictor, self-supervised, given a corpus of
unlabeled scans. This is our motivation in introducing LoopReg.

Given a point-cloud, a backward map, parameterized by a neural network, transforms every scan point
to a corresponding point on the canonical surface (the human model in a canonical pose and shape).
A forward map, parameterized by the SMPL human model [48]], transforms canonical points under
articulation, shape and non-rigid deformation, to fit the original point-cloud, see Fig.[I} LoopReg
creates a differentiable loop which supports the self-supervised learning of correspondences, along
with pose, shape and non-rigid deformation, following a short supervised warm-start.

The design of LoopReg requires several technical innovations. First, we need a continuous represen-
tation for canonical points, to be on the human surface manifold. We define the surface implicitly
as the zero level set of a distance field in R? instead of the more common approach of using a
2D UV parameterization {2 C R?, which typically relies on manual interaction, and inevitably has
distortion and boundary discontinuities [35]. We follow a Lagrangian formulation; during learning,
NN predictions which deviate from the implicit surface are penalized softly. Furthermore, we interpret
the 3D human model as a function on the surface manifold. We diffuse the function onto the 3D
domain via a distance transform (Fig. [3), which allows to map the NN predictions forward, when
they slightly deviate from the surface during learning.

In summary, our key contributions are:

e LoopReg is the first end-to-end learning process jointly defined over a parametric human
model and the data (scan / point cloud) to model correspondences.

e We propose an alternative to classical UV parameterization for correspondences. We define
the canonical human surface implicitly as the zero levelset of a distance field, and diffuse
the SMPL function to the 3D domain. The formulation is continuous and differentiable.

e LoopReg supports self-supervision. We experimentally show that registration accuracy can
be improved as more unlabeled data is added.

2 Related Work

In this section, we first broadly discuss existing work on correspondence prediction followed by
approaches on non-rigid registration with special focus on methodology dealing with both.

Correspondence prediction. Early 3D correspondence prediction methods relied on optical
flow [[L6], parametric fitting [74], function mapping [7]], and energy minimization [83} 50, 22} 21} 23]
Recent advancements include functional maps to transport real valued functions across sur-
faces [53, 152, 28} 1311, learning from unsupervised data [65} 133 165]], implicit correspondences [71]
and search for novel neural network architectures [20, 81} 79].

Aforementioned work focused primarily on establishing correspondences across isometric [54]] or
non-isometric shapes [69, 39, 80] but did not leverage such information for parametric model fitting.

Model based registration. In the context of articulated humans, classical ICP based alignment to
parametric models such as SMPL [48]] has been widely used for registering human body shapes[56}
1811191581159, 134} 129]] and even detailed 3D garments [57, [15]. Incorporating additional knowledge
such as precomputed 3D joints, facial landmarks [42] 8] and part segmentation [[14]] significantly
improves the registration quality but these pre-processing steps are prone to error at various steps.
Though there exist approaches for correspondence-free registration [[72} (70, |68]], we focus on work
that exploit correspondences for non-rigid registration [12]. Recent work have built on classical
techniques such as functional maps [49]], part-based reconstruction [27]] and segmentation guided
registration [44]] and showed impressive advancements in the registration quality. Despite their



Input: s; € S p; € HCR3
Figure 1: The input to our method is a scan or point cloud (A) S. For each input point s;, our network CorrNet
fs(-) predicts a correspondence p; to a canonical model in H C R* (B). We use these correspondences to
jointly optimize the parametric model (C) and CorrNet under self-supervised training.

strengths, these approaches are not end-to-end differentiable wrt. correspondences. One of the major
bottlenecks in making correspondences differentiable is defining a continuous representation for 3D
surfaces.

Representing 3D surfaces. Surface parameterization is non-trivial because it is impossible to find a
zero distortion bijective mapping between an arbitrary genus zero surface in R? and a finite planar
surface in R2. Prior work has tried to minimize custom objectives such as angle deformation [43]],
seam length together with surface distortion [45] and packing efficiency [47]]. Attempts have been
made to minimize global [37, 67 or patch-wise distortion using local surface features[85]. But the
bottom line remains —a surface in R3 cannot be embedded in R? without distortions and cuts. Instead,
we define the surface as the zero levelset of a distance field in R3, and penalize deviations from it.
Additionally, we diffuse surface functions to 3D, which allows us to predict correspondences directly
in 3D. While implicit surfaces [55 51} 24} 166} 25]] and diffusion [38} 36] techniques have been used
before, they have not been used in tandem to parameterize correspondences in model fitting.

Joint optimization over correspondence and model parameters. Prior work initialize correspon-
dences with a learned regressor [60} 76l 161]], and later optimize model parameters, but the process is
not end-to-end differentiable. An energy over correspondence and model parameters can be mini-
mized directly with non-linear optimization (LMICP [30]]), which requires differentiating distance
transforms for efficiency [9} [73]]. In general, the distance transform needs to change with model
parameters, which is hard and needs to be approximated [[77] or learned [26]. A few works are
differentiable both wrt. model parameters and correspondences [86, [75]]; but their correspondence
representation is only piece-wise continuous and not suitable for learning. Using UV maps, continu-
ous and differentiable (except at the cut boundaries) correspondences can be learned [41} [40] jointly
with model parameters, but inherent problems with UV parametrization still remain. Using mixed
integer programming, sparse correspondences and alignment can be solved at global optimality [13].
In 3D-CODED [32]] authors directly learn to deform the model to explain the input point cloud, but
this limits the ability to make localized predictions, and the approach has not been shown to work
with scans of dressed humans.

Our approach on the other hand is not only continuous and differentiable wrt. to both correspondences
and model parameters, but also does not rely on the problematic UV parametrization.

3 Method

Current state of the art human model based registration such as [42, 8] require pre-computed 3D
joints and keypoint/landmark detection. These approaches render the scans from multiple views, use
OpenPose [[1]] or similar models for image based 2D joint detection, and lift the 2D joint detections
to 3D. This is prone to error at multiple levels. Per-view joint detection may be inconsistent across
views. Furthermore, when scans are point-clouds instead of meshes, they can not be rendered. Fig. []
and [5] show that accurate scan registration is not possible for complex poses without this information.
In LoopReg, we replace the pre-computed sparse joint information with continuous correspondences
to a parametric human model. Our network CorrNet contains a backward map, that transforms scan
points to corresponding points on the surface of a human model with canonical pose and shape. In a
forward map, these corresponding points are deformed using the human model to fit the original scan,
thereby creating a self-supervised loop. We start our description by reviewing the basic formulation
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Figure 2: Illustration of the diffusion process. We diffuse the function ¢ (-) (denoted as per-vertex colours),
defined only on the vertices (v1,Vva,Vv3), to any point p € R®. Within the surface (in this example just a
triangle), the function < (-) is diffused using barycentric interpolation (sub-figure C). For a point p € R® beyond
the surface, the function 4 (-) is diffused by evaluating the barycentric interpolation at the closest point ¢ to
p, implemented by pre-computing a distance transform (sub-figure B). The result is a diffused function g* (p)
defined, not only on vertices, but over all R®. Fig. explains the same process for a complete human mesh.

of traditional model based fitting approaches, and follow with our self-supervised registration method.
For improved readability we additionally tabulate all notation in the supp. mat.

3.1 Classical Model-Based Fitting

The classical way of fitting a 3D (human) model to a scan S is via minimization of an objective
function. Let M (v;,x) : T x X’ + R3, denote the human model which maps a 3D vertex v; € Z,
on the canonical human surface M7 C R? to a transformed 3D point after deforming according to
model parameters x € X”. For the SMPL+D model, which we use here, x = {6, 3, D} corresponds
to pose 6, shape (3, and non-rigid deformation D. The standard registration approach is to find a

set of corresponding canonical model points C = {cy,...,cy} (the correspondences) for the scan
points {s1, ...,y },s; € S and minimize a loss of the form:
L(C,x) = ) dist(ss, M(c;, x)), )
s; €S

where dist (-, -) is a distance metric in R3. Note that Eq. (T) uses continuous surface points ¢; € M,
and M’(-) interpolates the model function M (-) defined for discrete model vertices v; € Z with
barycentric interpolation.

Eq. [T)is minimized with non-linear ICP, which is a two step non-differentiable process. First, for
every scan point a corresponding point on the human model is computed. Next, the model parameters
are updated to minimize the distance between scan points and corresponding model points using
gradient or Gauss-Newton optimizers. This alternating process is non-differentiable, which rules out
end-to-end training. Our work is inspired by [[75] which continuously optimizes the corresponding
points and the model parameters. The trick is to parameterize the canonical surface with piece-wise
mappings from a 2D space (2 to 3D R? — per triangle mappings. This requires keeping track of the
TriangleIDs and point location within the triangle when correspondences shift across triangles. Apart
from being difficult to implement, this is not a suitable representation for learning correspondences
as TriangleIDs do not live in a continuous space with metric. Furthermore, the optimization in [75] is
instance specific.

3.2 Proposed Formulation

Instead of instance specific optimization, we want to automatize the model fitting process by lever-
aging a corpus of 3D human scans. Our key idea is to create a differentiable registration loop
motivated by classical model-based fitting Eq. (I)). We learn a continuous and differentiable mapping
fs(s;8) : R® x & — Mg C R3, with network parameters ¢, from the scan points s € S to the
canonical surface (of the human model in canonical pose and shape) M. Let {S; }j\’:ul be a set of

unlabeled scans, and X = {x; }jvzl be the set of unknown instance specific latent parameters per
scan. The following self-supervised loss creates a loop between the scans and the model

Nu
L(g,X) =" > dist(si, M'(f4(s:: S;),%;)), @)
j=1 SiESj



Figure 3: Illustration of the diffusion process on a human mesh. In sub-figure A, an arbitrary function ¢ (-),
defined over mesh vertices (illustrated as per vertex colors), is diffused to # C R® via a distance transform
(sub-figure B). This results in a new function g“’ (+) (sub-figure C).

where, in contrast to the instance specific Eq. (I)), optimization in Eq. (2) is over a training set, and
correspondences are predicted by the network, ¢ = f,(s;S;). It is important to note that those
correspondences network predicted, ¢, need not be on the canonical surface. Outside the canonical
surface, M’ (+) is not even defined. The question then is how to minimize Eq. (Z) end-to-end.

Implicit surface representation. To predict correspondences on M, we need a continuous
representation of its surface. One of our key ideas is to define the surface implicitly, as the
zero levelset of a signed distance field. Let d(p) : R® ~ R be the distance field, defined as
d(p) = sign(p) - minee m, ||c — p|| taking a positive sign on the outside and negative otherwise. The
surface is defined implicitly as M7 = {p € R? | d(p) = 0}. But how can we satisfy the constraint
d(p) = 0 during learning? And how to handle network predictions that overshoot the surface?

Diffusing the human model function to R3. Imposing the hard constraint d(p) = 0 during learning
is not feasible. Hence, our second key idea is to diffuse the human body model to the full 3D domain
(see Fig.[3] and Fig. 2] to better understand the diffusion process with a simple example). Without
loss of generality, we use SMPL [48]] as our human model throughout the paper, but the ideas apply
generally, to other 3D statistical surface models [82} 164} 56] [17, 46].

The SMPL model applies a series of linear mappings to each vertex v; € Z of a template, followed
by skinning. The per-vertex linear mappings are the pose blendshapes bp : Z — R3*18l shape
blendshapes bg : Z — R**I8l applied to a canonical template, followed by linear blend skinning
with parameters w; : Z +—+ R, The i-th vertex v; is transformed according to

K

vi =) w(vi)Gi(8,8) - (vi +bp(vi) -0 +bs(vi) - B) 3)

k=1

where G (0, 3) € SE(3) is the 4 X 4 transformation matrix of part K, see [48]. Note that SMPL is
a function defined on the vertices v; of the template, while we need a continuous mapping in R3.
Let ) : Z — ) be a function defined on discrete vertices v; € Z, with co-domain ). The idea is to
derive a function g¥ (p) : R? ) which diffuses v to R3. ) can trivially be diffused to the surface
by barycentric interpolation and to R? using the closest surface point ¢ = arg minee a1, ||c — pll,

g% (p) = a1h(vi) + a2 (vi) + az(viy), 4

where a1, o, s € R3 are barycentric coordinates of ¢ € M, and vy, vi, v,,, € Z are correspond-
ing canonical vertices, see Fig. |Z|-A,C,D.

During learning, we need to evaluate g% (p) and compute its spatial gradient Vg% (p) efficiently.
Hence, we pre-compute g¥(p) in a 3D grid around the surface My (we use a unit cube with
64x64x64 resolution), and use tri-linear interpolation to obtain a continuous differentiable mapping
in regions near the surface H C R3.

LoopReg. The aforementioned representation allows the formulation of correspondence prediction
in a self-supervised loop, as a composition of the backward map f, and the forward map g¥. The
backward map f,(s;S) : R® x S +— H C R?® (implemented as a deep neural network) transforms
every scan point s to the corresponding canonical point p in the unshaped and unposed space % C R3.
For clarity, we simply use fy4(s) for the network prediction.

The forward map g¥ (p) is the diffused SMPL function by setting ¢» = M (body model). Specifically,



we diffuse the pose and shape blend-shapes, and skinning weights to the 3D region H, obtaining
functions ¢®7, gbs, g*. We also obtain the function g’ which maps every point p € H to its closest
surface point ¢ € M. The diffused SMPL function for x = {0, 3,D} € X’ is obtained as

K
MiHxX =R gM(p,6,8,D) = g¥'(p)Gr(6,8)(g" (P)+9"" (P)0+4" (P)B), (5)

which is continuous and differentiable. This enables re-formulating Eq. (2) as a differentiable loss

Lot (¢, X Z > dist(si, gt (f5(s:))) + A+ d(fo(s1)), ©6)

j=1s,€S;

where f,;(s) = p is the corresponding point predicted by the network, and we used the notation
g% (p) = 9™ (p;,0;,3,,D;) for clarity, and d(-) is the distance transform. Network predictions
which deviate from the surface are penalized with the term A - d(fy(s;)) following a Lagrangian
formulation of constraints. Note that this term is important in forcing predicted correspondences
to be close to the template surface, as gradient updates far away from the surface may not be well
behaved. Notice that Vd(p,) points towards the closest surface point (see Fig. B.), and along this
direction g (p]) is constant, and hence Vd(p;) L Vg2 ( p,); the terms are complementary and
do not compete against each other. Unfortunately, dlrectly minimizing Eq. @over network fy and
instance specific parameters X is not feasible. The initial correspondences predicted by the network
are random, which leads to unstable model fitting and a non-convergent process.

Semi-supervised learning. We propose the following semi-supervised learning strategy, where

we warm-start the process using a small labeled dataset {S;, M(Xj)};\]:sl, with M(x,) denoting

the registered SMPL surface to the scan, and subsequently train with a larger un-labeled corpus of
scans {S; };V:”l Learning entails minimizing the following three losses over correspondence-network

parameters ¢ and instance specific model parameters X' = {x; }j\f:sl
L= Lunsup + Lsup + Lreg- @)

The unsupervised loss consists of a data-to-model term Lg,,, = dist(s, M(x)) and the self-
supervised loss Lget, in Eq.[6]

Luniup ¢7 Z Z dlbt 877 )) + dlSt(S“gi\f(‘f¢(87))) +A- d(qu)(sl))a (8)

j=1s;€S8;

where M (x;) is the SMPL mesh deformed by the unknown parameters x;, and dist(s, M(x)) is a
differentiable point-to-surface distance. The term Lg,,, pulls the deformed model M (x) to the data,
which in turn makes learning the correspondence predictor fg more stable.

The supervised loss, Lg,,, minimises the Lo distance between network-predicted correspondences
and ground truth ones ¢;; obtained from M (x;)

Lup( Z D 1fo(s0:85) = &l ©)

j=1s;€S;

The regularisation term Ly, consists of priors on the SMPL shape and pose (Lg) parameters.

Lieg (6, X ZLa )+ 118;ll2 (10)

Our experiments show that with good initialization, our approach can be trained self-supervised,
using only Lypsup and Lyeg.

CorrNet: Predicting scan to model correspondences The aforementioned formulation is contin-
uous and differentiable with respect to instance specific parameters x; = {0, 3 D ;} as well as
global network parameters ¢. In this section, we describe our correspondence prediction network,
CorrNet. CorrNet fy(-), is designed with a PointNet++ [62] backbone and regresses for each input



Registration Errors vertex-to-vertex (cm) surface-to-surface (mm)

Dataset Our FAUST [18] Our FAUST [18]
(a) Optimization [84} 42} 8] 16.5 13.5 12.6 3.8
(b) 3D-CODED single init. 22.3 21.9 8.7 10.6
(c) 3D-CODED [32] 2.0 3.1 2.4 2.6
(d) Ours 14 2.2 1.0 2.4

Table 1: We compare registration performance of our approach against instance specific optimization (a)
[1841 142] 8] (without pre-computed joints and manual selection) and learning based [32] approach. Note that
3D-CODED requires multiple initializations (c) to find best global orientation, without which the approach
easily gets stuck in a local minima (b). Since [32] freely deforms a template, for a fair comparison, we use
SMPL+D model for our and [42] |8} 184] approaches, even though data contains undressed scans.

-

A
D

Figure 4: Comparison with existing scan registration approaches [42] [8]]. We show A) input point cloud, B)
registration using [42} 8] without pre-computed joints/ landmarks. C) Our registration. D) GT registration using
[42, 18] + precomputed 3D joints + facial landmarks + manual selection. It can be seen that B) makes significant
errors as compared to our approach C).

scan point s;, its correspondence p; € H. We observe that the correspondence mapping is discon-
tinuous when the scan has self-occlusion and contact. For example, when the hand touches the hip,
nearby scan points need to be mapped to distant p = (z, y, z) coordinates, which is difficult. Inspired
by [63], we first predict a body part label (we use N = 14 pre-defined parts on the SMPL mesh) for
each scan point and subsequently regress the continuous x, y, z-correspondence only within that part.
Similar to ensemble learning approaches we use a weighted sum of part-specific classifiers to regress
correspondences. This way, our formulation is differentiable with respect to part classification, which
would not be possible if we directly used arg max for hard part assignment:

Nparts

fos)=p= D> [355(s,8) [5%(s,S), (11)
k=1

where f(;lass : R3 x S — RNrarts ig the (soft) part-classification branch of the CorrNet and f;elf :
R3 x S — H C R? is the part specific regressor.

4 Experiments

In this section, we evaluate and show that our approach outperforms existing scan registration
approaches. Moreover, our approach seamlessly generalizes across undressed (comparatively easier)
and fully clothed (significantly more challenging) scans in complex poses. We show that our
approach can be trained with self-supervision (with supervised warm-start) and performance improves
noticeably as more and more raw scans are made available to our method.

4.1 Dataset

We use 3D scans of humans from RenderPeople, AXYZ and Twindom [2} 13} 4]]. To obtain reference
registrations for evaluation, we fit the SMPL model to scans using [|8, 42] with pre-computed 3D
joints lifted from 2D detections, facial landmarks and manually select the good fits. The input to our
method are point clouds, which we extract from SMPL fits for undressed humans, and from the raw



Figure 5: Comparison with existing scan registration approaches [42] [8]]. We show A) input point cloud, B)
registration using [42} 8] without pre-computed joints/ landmarks. C) Our registration and D) GT scan. It can be
seen that B) makes significant errors as compared to our approach C).

Unsupervised % 0% 10% 25% 50% 75 % 100 %
(a) v2v (cm) 9.3 8.4 6.3 4.1 2.7 1.5
(b) s2s (mm) 6.8 6.6 6.2 5.5 5.1 4.2

Table 2: Performance of the proposed approach increases as we add more unsupervised data for training. Here
100% corresponds to 2631 scans. Out of the 2631 scans 1000 were also used for supervised warm-start. We
report vertex-to-vertex (v2v) and bi-directional surface-to-surface (s2s) errors and clearly show that adding more
unsupervised data improves registration performance, specially for the more demanding v2v metric.

scans for clothed humans. We divide the SMPL fits in a supervised (1000 scans), unsupervised (1631
scans) and testing set (290 scans). We perform additional experiments on Faust [[18] which contains
around 100 scans of undressed people and corresponding GT SMPL registrations.

4.2 Comparison with existing instance specific optimization based approaches

Registering undressed scans. One of the key strengths of our approach is the ability to register 3D
scans without additional information such as pre-computed joint/ landmarks and manual intervention.
In Fig. ] we show that existing state of the art registration approaches [84, 42} ] cannot perform
accurate registration without these pre-processing steps.

Registering dressed scans. In Fig.[5|we show results with dressed scans and report an avg. surface-
to-surface error after fitting the SMPL4+D model of 2.2mm (Ours) vs 2.9mm ([42} 8}, 184]]). It can be
clearly seen that without pre-computed joints, prior approaches perform quite poorly, especially for
complex poses. We quantitatively corroborate the same (for undressed scans) in Table[I]

4.3 Comparison with existing learning based approach

Conceptually, we found the work by Thibault et al. [32]] very related to our work, even though
they require supervised training. For a fair comparison, we retrain their networks on our dataset
and compare the registration error against our approach. Quantitative results in Table 1] clearly
demonstrate the better performance of our approach. We also found that [32] is susceptible to bad
initialization and hence requires multiple (global rotation) intializations for ideal performance. We
report these numbers also in Table E} Originally, the method in [32] was trained on SURREAL [78]
with augmentation yielding a significantly larger dataset than ours. It is possible that the method of
[32] requires a lot of data to perform well. Importantly, the supervised approach [32] does not deal
with dressed humans whereas our approach works well for both dressed and undressed scans.

4.4 Correspondence prediction

Though our work does not directly predict correspondences between two shapes we can still register
the two shapes with a common template. This allows us to establish correspondences between the
shapes. We compare the performance of our approach on the correspondence prediction task on
FAUST [18]. We report the results in Tabled] For competing approaches we take the numbers from
the corresponding papers. See supplementary for further discussion.



Supervised % 0% 10% 25% 50% 75% 100%

(a) v2v (cm) 16.0 12.4 11.5 8.3 54 1.5
(b) s2s (mm) 13 7.8 8.5 7.7 6.4 4.2
Table 3: We study the effect of reducing the amount of available supervised data. Here 100% corresponds to

1000 scans used for supervised warm-start. We use additional 1631 scans for unsupervised training. We report
vertex-to-vertex (v2v) and bi-directional surface-to-surface (s2s) errors.

Method Inter-class AE (cm) Intra-class AE (cm)
FMNet [52] 4.83 2.44
FARM [49] 4.12 2.81
LBS-AE [44] 4.08 2.16
3D-CODED [32] 2.87 1.98
Ours 2.66 1.34

Table 4: Comparison with existing correspondence prediction approaches. Our registration method clearly
outperforms the existing supervised [52}132] and unsupervised [44,49] approaches.

4.5 Importance of our semi-supervised training

Adding more unsupervised data improves registration. An advantage of our approach over
existing approaches is the self-supervised training. We use a small amount of supervised data to warm
start our method and subsequently the performance can be improved by throwing in raw scans (see
Table[2). It can be clearly seen that performance improves significantly as more and more unlabeled
scans are provided to our method.

Importance of supervised warm-start. Good initialization is important for our network before it
can adequately train using self-supervised data. In Table [3 we demonstrate the importance of good
initialization using a supervised warm start. Note that we use only 1000 scans for supervised warm
start where as methods such as 3D-CODED [32] require an order of magnitude more supervised data
for optimal performance.

5 Conclusions

We propose LoopReg, a novel approach to semi-supervised scan registration. Unlike previous
work, our formulation is end-to-end differentiable with respect to both the model parameters and a
learned correspondence function. While most of the current state of the art registration is based on
instance specific optimization, our method can leverage information across a corpus of unlabeled
scans. Experiments show that our formulation outperforms existing optimization and learning-
based, approaches. Moreover, unlike prior work, we do not rely on additional information such
as precomputed 3D joints or landmarks for each input, although these could be integrated in our
formulation, as additional objectives, to improve results. Our second key contribution is representing
parametric model as zero levelset of a distance field which allows us to diffuse the model function
from the model surface to entire R®. Our formulation based on this representation can be useful for a
wide range of methods as it removes the pre-requisite of computing a 2D surface parameterization.
In contrast, we make predictions in the unconstrained R? and subsequently map them to the model
surface while still preserving differentiability. This makes our formulation easy to use, and potentially
relevant for future work in learning based model fitting and correspondence prediction.
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Broader Impact

Our work focuses on registering 3D scans with a controllable parametric model. Scan registration
is a basic pre-requisite for many computer graphics and computer vision applications. Current
approaches require manual intervention to accurately register scans. Our method could alleviate this
restriction allowing for 3D data processing in aggregate. This line of work is especially important for
applications such as animation, AR, VR, or gaming.

One challenge of similar work (including ours) in human-centric 3D vision is ‘limited testing’.
Given that 3D data is still limited compared to 2d images, extensive testing and demonstration of
generalization is difficult. This makes systems brittle to out-of-sample inputs (e.g., in our case, rare
human poses). This bottleneck needs to be overcome before this and similar work can find application
in fields where reliability is important.

With advancements in deep learning, a lot of current work requires collecting, processing and storing
personal 3D human data. At this point in time, the awareness amongst general population regarding
the negative potential of using this data is still relatively low. This could lead to privacy challenges
without subjects even understanding the consequences. Processing data in aggregate as pursued
here, as well as other forms of federated learning could offer convenient usability-privacy trade-offs,
moving forward.
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