
Multi-Garment Net: Learning to Dress 3D People from Images
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Figure 1:
Detailed architecture of MGN. We use CNNs to encode image and 2D joint information into latent codes. MGN

incorporates explicit garment models in the prediction stream and maps the latent codes from CNN into the garment
parameters directly. Our garment sub-networks essentially decode the garment parameters and add high frequency offsets

on top of the prediction.

Figure 2: Robust segmentation is essential to register garments
without artifacts. Here we can clearly see that incorrect segmen-
tation leads to artifacts in registration. From left to right: scan,
erroneous segmentation of feet, distorted pant registration, regis-
tration with corrected segmentation.

1. Additional results

In this section we show further results that highlight
practical applications of our proposed approach. We show
transfer of texture over a fixed topology and transfer of
topology itself across subjects. We show more qualitative
comparison with [1] in Fig. 8. Figs. 2 and 3 clearly show
the significance of our segmentation pipeline and laplacian
initialization respectively.

Figure 3: Our lapacian initialization is important to register gar-
ments with very different topology and geometry. From right to
left: snapshot of the source to be registered, without laplacian ini-
tialization the optimization often gets stuck in local minima and
the pant template is not pulled up at the boundary, our laplacian
initialization smoothly matches the template boundary to the scan
garment boundary.

Inferring 3D garments and underlying body In this ex-
periment we use 8 images of each unseen test subject to
generate 3D outputs using MGN. In Fig. 5, we show MGN
predictions on the test set. We also study the effect of us-
ing a single image as input at inference time and report the
following results (mean vertex-to-surface error): 15 frames:
5.43mm, 10 frames: 5.48mm, 8 frames: 5.78 mm, 6 frames:
5.60mm, 5 frames: 5.66mm , 3 frames: 5.95mm, 2 frames:
6.38mm.
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Alldieck et al.[1] Ours

GT Pose GT Pose Full pred.

Pants 5.44 5.57 10.16
Short-Pants 8.23 5.97 10.00
T-Shirt 5.80 5.63 11.97
Shirt 5.71 6.33 9.05
Coat 5.85 5.66 9.09

Table 1: Quantitative comparison with [1]. We compute per gar-
ment mean vertex-to-surface error. We also report the performance
of our approach with GT and predicted poses.

Table 1 shows further comparison between [1] and our ap-
proach. This experiment also details per-garment perfor-
mance of MGN.
We also ablate the reconstruction accuracy of MGN, with
and without using the high frequency displacement field
on top of the PCA based reconstruction. We report mean
vertex-to-surface error of 6.44mm without using the high
frequency term as opposed to 5.78mm while using it.

Texture Transfer Our approach models garments as ge-
ometric deformations on a canonical garment mesh. Un-
like single mesh methods, this preserves the semantic mean-
ing of individual vertices across different geometries over a
fixed topology. We leverage this consistency to map gar-
ment textures across different garments. Fig.4 shows the
transfer of texture over fixed topology (shirts, coats and
pants) but varying geometries.

Garment Re-targeting Our formulation of layered multi-
mesh representation of clothed bodies allows us to dress
SMPL using a digital wardrobe. In Fig.6 we show gar-
ment re-targeting using 3D data. More interestingly we
can re-target garments just using images by inferring the
3D garments and body shape using MGN. We show the re-
sults in Fig.7. This experiment highlights the strength of
our approach in correctly estimating 3D geometry of the
garments and human body shape. Note that each garment
class has a different mesh topology (along with different
geometry). Our approach can seamlessly add and remove
these disparate meshes. To the best of our knowledge this
is the first approach that allows topology-agnostic garment
re-targeting using only images.
We further experiment with garment fitting by extracting
garments from the images of different subjects and dress di-
verse SMPL bodies with the same garment. Fig. 10 shows
the re-targeting results on diverse body shapes. Fig. 9 shows
the comparison between a naive and our body aware re-
targeting.

Testing on real world data The input to our approach is
semantic segmentation. This allows us to train our model

entirely on scan data and test on real world images. Fig.
11 shows the garment predictions from our network on
PeopleSnapshot [4] dataset. Note that network was never
trained on real images.

2. Limitations and Future Work:
In this section (and Fig. 12) we discuss some of the re-

search avenues that our approach opens up or shows unsatis-
factory performance. We hope that this would simulate fur-
ther research into the direction of modelling 3D garments,
underlying body and their interactions.

• The proposed approach does not deal with pose depen-
dent deformations.

• Skinning garments though convenient, often leads to
artifacts while re-posing in case of extreme poses (Fig
12 a).

• Re-targeting relies heavily on segmentation. In case
we wrongly segment part of skin as garment our ap-
proach incorrectly moves the skin along with the gar-
ment. (Fig 12 b)

• Current approach cannot impaint the skin texture un-
derneath the garments. This creates artifacts when re-
targeting short garments (eg: t-shirt) on a body which
was previously wearing long garments (eg: coat) (Fig
12 c)

• In its current form MGN does not model hair.
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Figure 4: Texture transfer. We model each garment class as a mesh with fixed topology and surface parametrization. This enables us to
transfer texture from any garment to any other registered instance of the same class. Rows correspond to shirt, coat and pant respectively.
The first column shows the source garment mesh, while the subsequent images show original and transferred garment texture registrations.

Figure 5: Figure shows the MGN predictions for three test subjects. Each set shows (left to right) the 2D image of the subject and
corresponding MGN prediction. We show the predictions with and without texture for higher clarity



Figure 6: Re-targeting using registered 3D garments and body
shapes. Each set contains (from left to right) a source subject,
a target subject and the re-dressed target. In first row we show
re-targeting two different source garment sets on the same target
subject in different poses. In the second row we show re-targeting
of the same source garment set to different targets. In the third row
we some some more re-targeting examples.

Figure 7: Re-targeting using images. Each set contains (from left
to right) a source subject, a target subject and the re-dressed target.
In first row we show re-targeting two different source garment sets
on the same target subject in different poses. In the second row
we show re-targeting of the same source garment set to different
targets. Note that re-targeting reflects the difference of underlying
body shapes. In the third row we some some more re-targeting
examples highlighting minimal distortions while re-dressing. We
use MGN to infer 3D garments and body shape from the images
of the source subject and re-target the garments to target subject.



Figure 8: More comparative results with Alldieck et al.[1] (left) and our approach (right). Notice that our approach has fewer distortions.

Figure 9: Comparison between naive and our body aware re-targeting. In each set, (left to right) we show the source, target with naive
re-targeting and target with our body aware re-targeting. Notice the lower inter-penetrations in our body aware approach.



Figure 10: Garments inferred by MGN can easily be used to dress novel subjects. Rows correspond to female and male subjects respec-
tively. In each row we show (from left to right) the images/ video from source subject, the undressed body shapes from SMPL shape
subjects and dressed body shapes respectively.

Figure 11: Garment prediction by MGN on real world dataset [2]. The network is trained entirely on scan data but testing is done on real
images. This highlights the utility of appearance agnostic semantic segmentation as input.
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Figure 12: Ours is the first approach to infer separable 3D garments from images. Though very promising, the proposed approach has
shortcomings. In this figure we present some interesting challenges for future work. From left to right: A) Unposing artifacts due to
skinning, B) part of source hair got moved along with the garments due to incorrect segmentation at the boundary, C) Current approach
cannot impaint texture under clothing.


