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Figure 1. Left: We present Neural Riemannian Distance Fields (NRDFs), a principled method to learn data-driven priors
as subspace of high-dimensional Riemannian manifolds. Right: NRDFs can effectively model the pose of different ar-
ticulated shapes. We present diverse samples generated using NRDFs trained on human, hand, and animal poses respectively.

Abstract

Faithfully modeling the space of articulations is a cru-
cial task that allows recovery and generation of realistic
poses, and remains a notorious challenge. To this end,
we introduce Neural Riemannian Distance Fields (NRDFs),
data-driven priors modeling the space of plausible articu-
lations, represented as the zero-level-set of a neural field
in a high-dimensional product-quaternion space. To train
NRDFs only on positive examples, we introduce a new sam-
pling algorithm, ensuring that the geodesic distances fol-
low a desired distribution, yielding a principled distance
field learning paradigm. We then devise a projection al-
gorithm to map any random pose onto the level-set by
an adaptive-step Riemannian optimizer, adhering to the
product manifold of joint rotations at all times. NRDFs
can compute the Riemannian gradient via backpropaga-
tion and by mathematical analogy, are related to Rieman-
nian flow matching, a recent generative model. We conduct
a comprehensive evaluation of NRDF against other pose
priors in various downstream tasks, i.e., pose generation,
image-based pose estimation, and solving inverse kinemat-
ics, highlighting NRDF’s superior performance. Besides

humans, NRDF’s versatility extends to hand and animal
poses, as it can effectively represent any articulation.

1. Introduction
Pose and motion are ubiquitous yet very challenging and
intriguing aspects of understanding articulated agents such
as humans, animals or hands. Pose is intrinsic to the hu-
man experience, our interaction with each other and the
environment. Understanding it is vital for applications in
fields such as medicine, entertainment, AR/VR, etc. As a
result, human pose understanding, generation, and acquisi-
tion have been extensively studied in the domain of com-
puter vision and graphics.

Acquisition using IMUs [33], mocap markers [45], and
scans [14] have accelerated the research direction by pro-
viding an enormous amount of data. These datasets are used
to learn pose distributions, which are further used as pri-
ors in downstream tasks such as solving inverse-kinematics
(IK), image HPS [51], motion denoising, etc. Previous
work in this domain have used GMMs [13], VAEs [51] and
GANs [27] to model pose prior. However, these methods
are either limited by Gaussian assumptions [13, 51] or risk
suffering from instability of the training process [27].
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In this work, we propose Neural Riemannian Dis-
tance Fields (NRDFs), implicit, neural distance fields
(NDFs) [24, 50] constructed on the space of plausible and
realistic articulations. NRDFs are induced by the geodesic
distance on the product manifold of quaternions and are
trained to predict the Riemannian distance. In order to
learn well-defined and detailed pose manifolds, we dili-
gently study the role of training data distribution in learn-
ing distance field priors. To draw more samples near the
surface with a gradual decrease for faraway regions [17],
we introduce a wrapped sampling algorithm on Rieman-
nian manifolds that allows explicit control over the result-
ing distance distribution. We show that heuristics developed
in the past [63] sample points around the surface and often
do not lead to desired distribution characteristics. The effect
gets exacerbated in high-dimensional spaces like the prod-
uct space of articulated bodies.

One of the key benefits of pose priors is the ability to
map an arbitrary articulation onto a plausible one [63]. To
this end, we introduce an adaptive-step Riemannian gra-
dient descent algorithm, RDFGrad, in which the gradient
obtained by a backward pass, scaled to the predicted dis-
tance, is used to update an articulated pose, respecting the
product manifold of quaternions at all times. This is in stark
contrast to Pose-NDF [63], which uses a Euclidean gradient
descent to approximate the projection onto the articulation
manifold. As a result, every projection step is followed by
a re-projection onto joint rotations, resulting in slower con-
vergence. Our manifold-aware formulation ensures the iter-
ates to remain as articulated bodies. Our models bear simi-
larities to Riemannian Flow Matching (RFM) [21, 44], the
recent state-of-the-art generative models, as we explain. In
fact, NRDF obtains the required gradients by backpropaga-
tion, whereas RFM is explicitly trained on them.

In summary, our contributions are:

• A principled framework for learning NDFs on Rieman-
nian manifolds, with strong ties to flow matching
• A theoretically sound adaptive-step Riemannian gradient

descent algorithm that leads to accelerated convergence
in mapping poses onto the learned manifold
• A versatile framework for sampling training data, crucial

for pose-manifold learning

The efficacy of NRDF is shown in a range of downstream
tasks, such as pose generation, solving inverse kinemat-
ics (IK) problems, and pose estimation from images. We
observe that the NRDF-based pose prior outperforms ear-
lier works such as VPoser [51], GAN-S [27], GFPose [25],
Pose-NDF [63] on aforementioned tasks, under pose dis-
tance metrics. We also conduct a user study about the per-
ceptual quality of different pose distance metrics. As NRDF
can be easily applied to any articulated shape, we also eval-
uate our model on hand poses and animal poses.

2. Related Work
We now review articulated (e.g. human) pose and mo-
tion priors crucial for understanding human pose from im-
ages [8, 13, 38, 42], videos [40, 60], IMUs [9, 33, 67]
and scans [4, 14]. As we explore the connection to flow-
matching models, we also review related literature therein.

Early pose priors. Initial works in modeling robust pose
prior learn constraints for joint limits in Euler angles [29]
or swing and twist representations [2, 6, 56]. However,
these methods mainly rely on small-scale datasets and can
still produce unrealistic poses due to unreal combinations
of different joints. This was followed by more sophisticated
models such as GMMs [13] or PCAs [49, 57, 66].

VAEs and GANs. Recent generative deep learning mod-
els have harnessed large-scale datasets to train VAEs [51–
53, 71] and GANs [7, 27, 38] as pose/motion priors, either
in a task-dependent [7, 38] or task-independent [27, 51]
manner. For instance, [38] trains a GAN for p(θ|I)
for image-based pose estimation, HP-GAN [7] models
p(θt|θt−1), representing the current pose given the previ-
ous one. HuMoR [53] proposes to learn a distribution of
possible pose transitions in motion sequences using a con-
ditional VAE. ACTOR [52] learns an action-conditioned
VAE-Transformer prior. On the other hand, more task-
independent models such as VPoser [51] learn a VAE us-
ing AMASS [45] dataset. However, because of Gaus-
sian assumptions in the latent space, the model is biased
towards generating mean poses, along with the risk of
generating unrealistic poses from dead-regions of Gaus-
sians [27, 63]. [27] learn a human pose prior using GANs,
overcoming the limitations of Gaussians, but requires train-
ing a GAN, which is known to be unstable [55].

Probabilistic flow. More recently, pose and motion prior
have also been developed using widely popular diffusion-
based models [35, 58, 59]. GFPose learns score function
(gradient of log-likelihood) of a task conditional distribu-
tion. Likewise, MDM [61] and MoFusion [26] model mo-
tion sequences conditioned on tasks through a diffusion
process. Normalizing flows [39] have been applied in hu-
man pose-related tasks for a while, to address the ambigu-
ous inverse 2D-to-3D problem [68], or recently to perform
anomaly detection [34]. Flow Matching was also intro-
duced to Riemannian manifolds [21]. We show that our
method has strong ties to the flow matching principle and
apply it to pose for the first time.

Distance fields. Closest to our work is Pose-NDF [63],
which also models the manifold of plausible human poses
using neural distance fields. Pose-NDF uses the learned dis-
tance field and its gradient to project arbitrary poses onto
a manifold, using Euclidean gradient descent, where every
step is followed by a re-projection onto the SO(3). This
results in slower convergence. In contrast, we leverage an
adaptive-step Riemannian gradient descent which ensures



that the iterates always remain on SO(3)K , yielding faster
convergence. Moreover, Pose-NDF’s training data genera-
tion is naively engineered, requiring a difficult per-task fine-
tuning. We introduce a novel sampling method based on re-
cent advances in scheduled optimal transport sampling [21],
to create training data which results in robust learning with-
out the need of manual, task-specific tuning.

3. Background
We first introduce the necessary preliminaries to define our
Riemannian distance fields. Following [10, 11, 20], we de-
fine an m-dimensional Riemannian manifold, embedded in
an ambient Euclidean space X = Rd and endowed with a
Riemannian metric G ≜ (Gx)x∈M to be a smooth curved
space (M,G). A vector v ∈ X is said to be tangent to
M at x iff there exists a smooth curve γ : [0, 1] → M s.t.
γ(0) = x and γ̇(0) = v. The velocities of all such curves
through x form the tangent space TxM = {γ̇(0) | γ :
R → M is smooth around 0 and γ(0) = x}, whose union
is called the tangent bundle: TM =

⋃
x TxM = {(x,v) |

x ∈ M,v ∈ TxM}. The Riemannian metric G(·) equips
each point x with an inner product in the tangent space
TxM, ⟨u,v⟩x = uTGxv. We will also work with a prod-
uct of K manifolds,M1:K :=M1×M2×· · ·×MK , For
identical manifolds, i.e.Mi ≡ Mj , we recover the power
manifold,MK :=M1:K , whose tangent bundle admits the
natural isomorphism, TMK ≃ (TM × · · · × TM). We
now define the operators required for our algorithm.

Definition 1 (Riemannian Gradient). For a smooth function
f : M → R and ∀(x,v) ∈ TM, we define the Rieman-
nian gradient of f as the unique vector field gradf satisfy-
ing [16]:

Df(x)[v] = ⟨v, gradf(x)⟩x (1)
where Df(x)[v] is the derivation of f by v. It can further
be shown (see our supplementary) that an expression for
gradf can be obtained through the projection of the Eu-
clidean gradient orthogonally onto the tangent space

gradf(x) = ∇f(x)∥ = Πx

(
∇f(x)

)
. (2)

where Πx : X → TxM ⊆ X is an orthogonal projector
with respect to ⟨·, ·⟩x.

In most packages such as ManOpt [64], Eq. (2) is known
as the egrad2rgrad.

Definition 2 (Riemannian Optimization). We consider gra-
dient descent to solve the problems of minx∈M f(x). For a
local minimizer or a stationary point x⋆ of f , the Rieman-
nian gradient vanishes gradf(x⋆) = 0 enabling a simple
algorithm, Riemannian Gradient Descent (RGD):

xk+1 = Rxk
(−τk gradf(xk)) (3)

where τk is the step size at iteration k and Rxk
is the re-

traction usually chosen related to the exponential map. Note

that both RGD and its stochastic variant [15] are practi-
cally convergent [15, 16, 47, 65, 70]. Though, only in rare
cases is τk analytically computable. Therefore, most mini-
mizers use either Armijo or Wolfe line-search [1].

Quaternions H1. A unit quaternion q ∈ H1 repre-
sents a rotation using a 4D unit vector [w := q1,v :=
(q2, q3, q4)] double covering the non-Euclidean 3-sphere,
i.e., q ≡ −q identify the same rotation. The inverse
or conjugate of q is given by q̄ := q−1 = (w,−v),
whereas the non-commutative multiplication of two quater-
nions q = (q1,vq) and r = (r1,vr) is defined to be
q⊗r := qr := (q1r1−vp ·vr, p1vr+r1vp+vp×vr). Fol-
lowing [5, 12], we now briefly explain the Lie group struc-
ture of the quaternions essential for manifold optimization.

Definition 3 (Exponential map). The exponential map
Expq(·) maps any vector in TqH1 onto H1:

Expq(η) = q exp(η) = q
(
cos(θ),v

sin(θ)

θ

)
, (4)

where η = (w,v) ∈ TqH1 and θ = ∥v∥.

Definition 4 (Logarithmic map). The inverse of exp-map,
Logq(p) : H1 → TqH1 is log-map and defined as:

Logq(p) = log(q−1p) =
(
0,

v

∥v∥
arccos(w)

)
, (5)

this time with a slight abuse of notation q−1p = (w,v).
Definition 5 (Quaternion geodesic distance (dq)). Let us
rephrase the Riemannian distance between two unit quater-
nions using the logarithmic map, whose norm is the length
of the shortest geodesic path. Respecting the antipodality:

d(q1,q2) =

{
∥Logq1

(q2)∥ = arccos(w), w ≥ 0

∥Logq1
(−q2)∥ = arccos(−w), w < 0

where q−1
1 q2 = (w,v).

4. Neural Riemannian Distance Fields
We start by explaining Riemannian Distance Fields to
model realistic articulated shapes in Sec. 4.1 and introduce
our novel projection algorithm to map onto this space while
adhering to the manifold of joint rotations. We then propose
NRDF and a novel method for sampling articulated poses,
to generate desired training data, in Sec. 4.2. We conclude
this section by forming a link between recently-popularized
flow matching models [21] and NRDF.

4.1. Modeling of Plausible Articulated Poses

We parameterize the pose of a 3D articulated body com-
posed of K joints, θ := {qi ∈ H1}Ki=1, on the power mani-
fold of quaternions HK

1 = H1 × · · · ×H1.



Definition 6 (Geometry of 3D articulated poses). HK
1 turns

into a Riemannian manifold (HK
1 ,GK) when endowed with

the Lp product metric dHK
1
: HK

1 ×HK
1 → R:

dHK
1
(θ,θ′) = ∥d(q1,q

′
1), d(q2,q

′
2), . . . , d(qK ,q′

K)∥p,

where q ∈ θ ∈ HK
1 and q′ ∈ θ′ ∈ HK

1 . In this work, we
use p = 1. The natural isomorphism further allows us to
write its exponential map Expθ : T HK

1 → HK
1 component-

wise: Expθ =
(
Expq1

,Expq2
, . . . ,ExpqK

)
. Akin to this,

is the logarithmic map, Logθ. Since the tangent spaces and
therefore Πθ are replicas, the gradient of a smooth function
f : HK

1 → R w.r.t. θ is also the Cartesian product of the
individual gradients:

gradθf(θ) =
(
gradq1

f(θ), . . . , gradqK
f(θ)

)
. (6)

Definition 7 (Riemannian Distance Fields (RDFs)). Given
the parameterization above, we model the manifold of real-
istic and plausible articulations (as defined by a dataset) on
the zero level set of a model fϕ : HK

1 → R+:

S = {θ ∈ HK
1 | fϕ(θ) = 0}, (7)

such that the value of f represents the unsigned geodesic
distance to the closest plausible pose on the manifold.

Proposition 1 (RDFGrad). Given S (hence f ), we employ
an adaptive-step Riemannian optimizer, to project any pose
θ0 onto the plausible poses:

θk+1 = Expθk

(
−αf(θk)

gradf(θk)

∥gradf(θk)∥

)
. (8)

The details are given in Sec. 3. This procedure is in
contrast to Pose-NDF [63], which uses a projected (Eu-
clidean) gradient descent to approximate the projection onto
the manifold. We therefore require the expression for pro-
jecting onto the tangent space of a quaternion, whose ex-
plicit form seems to be lacking in the literature. In what
follows, we derive this operator.

Proposition 2 (Quaternion-egrad2rgrad). For the quater-
nion manifold, the projection and mapping onto the tangent
space of the canonical unit quaternion e =

[
1 0 0 0

]⊤
(egrad2rgrad in Eq. (2)) takes the form:

Πq(v) = Pv − e⊤Pv

1 + q⊤e
(q+ e) (9)

=


0 0 0 0

−q2/(1 + q1) 1 0 0
−q3/(1 + q1) 0 1 0
−q4/(1 + q1) 0 0 1

Pv, (10)

where v ∈ R4 and P(q) = I− qq⊤.

Sketch of the proof. The full proof uses the projection oper-
ator of S3 as well as the parallel transport of the quaternion
manifold. We leave the full proof to our supplementary.

4.2. Learning RDFs
We now describe how we construct S, i.e., learn fϕ.

Definition 8 (Neural RDFs (NRDFs)). We model f using
a combination of hierarchical network and an MLP de-
coder, similar to Pose-NDF [63]. Given a dataset D =
{θi}1≤i≤N of articulated poses and a scheduled sampler
for network inputs, the network is trained to predict the dis-
tance to the closest example from dataset D:

ϕ⋆ = argmin
ϕ

N∑
i=1

∥fϕ(θi)− min
θ′∈D

d(θi,θ
′)∥. (11)

We call fϕ⋆ , learned in this way, an NRDF. We obtain
gradfϕ⋆(θ) via backprop. followed by an egrad2rgrad.
Sampling training data. While the positive examples, ly-
ing on S are provided, the model performance strongly de-
pends upon the statistical distribution of training examples
and including sensible negative samples (d > 0) is critical.
This is also observed in the training of general neural dis-
tance fields for tasks like 3D shape reconstruction or com-
pletion [17, 23, 62]. To effectively capture intricate details
of the pose manifold, it is essential to have an abundance of
samples in proximity to the pose manifold d < ϵ, gradually
decreasing as we move away from it. This ensures that the
network sees data points spanning the entire space, resulting
in a well-behaved and continuous learned distance field.

Pose-NDF [63] samples a training pose as θ+ϵ
∥θ+ϵ∥2

, where
θ ∼ D and ϵ ∼ N (0, σI) ∈ R4K . We observe the follow-
ing: (1) This specific sampling technique leads to distances,
which are roughly X -distributed for large k before projec-
tion, as shown in Fig. 2a, as the distance is the sqrt-sum of
squared Normal distributions with variance σ. This is con-
trary to the goal that the data should contain more samples
close to the manifold. (2) Simply corrupting data samples
by Euclidean noise does not expose explicit control over the
distribution of generated distances, complicating the design
of a schedule adhering to distance-related conditions.

In the following, we propose a framework for data sam-
pling that allows for explicit control over generated distance
distributions. As outlined in Alg. 1, given an arbitrary dis-
tribution P over R+ and an input pose θ, the algorithm first
samples a distance h ∈ R and then generates an example, h
apart from θ. It does so by sampling a direction v ∈ TθMK

independently from h ∈ P , before finding the new pose via
interpolation in tangent space. We can now show that the
distances h sampled this way translate to the examples.
Proposition 3 (Distance preservation). Let P be a distribu-
tion over domain [0, 1], θ ∈ D a data example, θ̂ ∈ HK

1 the
output of Alg 1 with input (θ,P), and d = d(θ, θ̂). Then,
for the distribution of resulting distances holds p(d) = P .

Sketch of the proof. The proof uses the distance preserva-
tion of logarithmic and exponential maps in the base. A full
proof is given in the supplemental materials.



Algorithm 1 Sampling in SO(3) for articulated poses

Input: Data example θ, distribution P
Output: A pair (θ̂, h), input to the network.
Sample distance from arbitrary P:

1: h ∼ P , h ∈ R+

Sample direction v uniformly from unit sphere in TθHK
1 :

2: v ∼ NTθHK
1
(0,1),v ∈ TθHK

1

3: v← v/∥v∥
Interpolate in TθHK

1 and map to HK
1 :

4: θ̂ ← Expθ(hv)

Given the introduced framework, we can induce a dis-
tribution P , e.g. half-Gaussian, or exponential, as shown
in Fig 2. Note that Prop. 3 holds for distances to the seed
example p, while we show the distribution of distances to
the closest neighbor in D (c.f. Eq. (11)). Thus, we observe
slight distribution shifts to the left.
Sampling diverse poses. To generate diverse pose sam-
ples on the manifold, we adopt an iterative procedure. We
use Alg. 1 to produce an initial sample and then project it
onto the zero level set via the proposed RDFGrad.
NRDF and Riemannian Flow Matching (RFM) [21].
RFM is a simulation-free method for learning continuous
normalizing flows (CNFs) [22] on Riemannian manifolds,
finding the optimal transport (OT) between a simple dis-
tribution and the data distribution. Interestingly, we can
make a strong connection between our framework and flow
matching. While flow matching predicts steps along OT
trajectories towards the data manifold via feed-forward pre-
diction, we find these steps as a gradient of our distance
field via backpropagation. Our data generation procedure
additionally ensures that (1) the t ∈ [0, 1] of flow match-
ing is a scaled variant of distance (by normalization of v
in Alg. 1), and (2) we recompute nearest neighbors from D
after sample generation. We provide a formal connection
in the supplementals. In general, our distance field formu-
lation has some advantages: instead of predicting the step
towards the manifold via an autoencoder, we obtain it via
backpropagation. This allows optimization in domains in
which designing decoders is challenging. Also, we can uti-
lize existing optimizers of deep learning frameworks for La-
grangian iterations by simply minimizing distance.

5. Experiments and Results
In this section, we evaluate the performance of NRDF on
a range of downstream tasks and provide a comparison
with baselines and prior work. NRDF incorporates three
key components: an innovative sampling method for train-
ing data generation (Alg.1), Riemannian distance (dq from
Def 5), and a novel projection using RDFGrad. Ablation
studies for each component are detailed in Sec. 5.1, along-
side a comparison with Pose-NDF [63]. We also compare
our model to score-based model [25] and RFM [21]-based
work, emphasizing the strong mathematical connection be-
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Figure 2. Distance distributions and histograms from different
sampling strategies. a) Pose-NDF sampling generates a X -like
distribution for large k, which does not fit the needs of distance
field learning. Our sampling schedule allows to control the dis-
tance distribution, e.g. to follow b) Half-Gaussian or c) Exponen-
tial distributions. The histograms show the distance to the closest
example in D, not the distance to the original example, resulting in
a slight distribution shift to the left due to neighbor changes with
increasing distance.

tween the latter and NRDF. We demonstrate the application
of NRDF as a prior in downstream tasks, such as pose gen-
eration (Sec. 5.2), solving IK from sparse/partial observa-
tions (Sec. 5.3), and for human pose estimation from im-
ages (Sec. 5.3). We compare against previous pose priors
such as VPoser [51], Pose-NDF [63], GFPose [25], GAN-
S [27] and our own baselines. Since NRDF can be easily
extended to any articulated shape, we show results on hand
and animal poses in Sec. 5.4.

Evaluation metric. Previous research [19, 43] highlighted
a significant gap in standard distance metrics based on
joint locations, orientations, and user perception. We con-
ducted a user study and identified that the most user-
perceptive metric combines quaternion in the global frame
and Euclidean marker-to-marker distance (∆q + m2m), fol-
lowed by only marker-to-marker distance (m2m). These
metrics are used for evaluation in our experiments, with
user study details in the supplemental materials. To as-
sess pose generation diversity, we utilize Average Pairwise
Distance (APD) [3], and for realism evaluation, we em-
ploy Fréchet distance (FID) and a distance metric dNN =
minθ′∈D dq(θ,θ

′). FID gauges the similarity between the
distributions of real and generated samples, while dNN mea-
sures the distance between the generated pose and its near-
est neighbor from the training data.

Baselines. Here, we present baselines inspired by flow
matching and diffusion models. Specifically, we adopt a
score-based human pose model, GFPose [25]. However,
there are two key differences in the experimental setup:
1) GFPose is modeled using joint-location representation,
and 2) the original model is trained on H3.6M [36] dataset.
We implement two baselines based on GFPose: GFPose-
A and GFPose-Q. GFPose-A, is trained using the AMASS
dataset, in joint-location representation, and GFPose-Q, is
trained using quaternion representations. We also introduce
two RFM [21]-based baselines, namely FM-Dis and FM-
Grad. FM-Grad represents the original RFM model trained
for pose-denoising tasks with time conditioning, while FM-
Dis closely aligns with our approach, where we predict the
distance (without t-conditioning) and obtain the vector field



Method Avg. Conv. Step↓ ∆q +m2m ↓ m2m (cm) ↓
Pose-NDF [63] 40 0.349 25.04
GFPose-Q \ 0.359 24.43
Gradient Prediction w/o time 68 0.401 37.26
FM-Dis (w/o time) 33 0.230 18.74
FM-Grad (w/ time) 52 0.216 16.72

Ours (α=1.0) 8 0.170 14.32
Ours (α=0.5) 34 0.180 15.05
Ours (α=0.1) 96 0.196 16.31

Ours w/o RDFGrad 48 0.171 14.51
Ours w/o (RDFGrad, dq) 100 0.179 15.15

Table 1. Comparison with baselines and model ablations on
pose denoising: We evaluate (∆q +m2m) and m2m between de-
noised poses and their ground truth nearest neighbors. Our method
achieves the best accuracy while converging faster, thanks to the
novel training data generation, dq and RDFGrad.

toward the manifold through backpropagation in contrast to
the direct prediction of the vector field in FM-Grad. Models
based on distance fields utilize gradients calculated through
backpropagation to approach the manifold. Additionally,
we implement a Gradient Prediction network, which di-
rectly predicts this gradient, and unlike diffusion, this ap-
proach is not time-conditioned. We provide more details in
the supplementary. We apply the aforementioned baselines
for pose denoising and generation. However, only FM-Dis
is employed for optimization tasks, as others are formulated
using the t-conditioned model, rendering them unsuitable
for integration into the optimization pipeline.

5.1. Comparison with Baselines and Ablation Study
We first compare our model with prior works on the task
of pose denoising in Tab. 1 (top) and evaluate using (∆q
+m2m) and m2m. In contrast to the prior distance field-
based model Pose-NDF [63], NRDF exhibits significantly
lower error in the pose denoising task. We attribute this
improvement to three key components of our model: train-
ing data generation, a Riemannian distance metric dq , and
RDFGrad-based projection. Specifically, unlike Pose-NDF,
our training involves the sampling of more poses near the
manifold, gradually decreasing as we move away from it.
This method results in well-behaved training data, con-
tributing to a continuous and more accurate learned man-
ifold. Furthermore, the new RDFGrad-based projection en-
sures that the projection adheres to the manifold of poses,
eliminating the need for re-projection as seen in Pose-
NDF. Consequently, the convergence is faster, as indicated
in Tab. 1. We note that GFPose-Q exhibits high error, pri-
marily because denoising with GFPose-Q collapses to a
mean pose. This suggests that training a diffusion/score-
based model on quaternion representation poses challenges.
Similar behavior is observed in FM-Dis, which tends to
generate more common poses. The Gradient Prediction
Network yields very high error, emphasizing the difficulty
of training a gradient without time-conditioning. FM-
Grad, which predicts flow with time conditioning, performs
slightly better than the Gradient Prediction Network but still
lags behind NRDF in terms of performance.

Method FID ↓ APD↑ (in cm) dNN ↓ (in rad)

GMM [13] 0.435±.017 21.944±.102 0.159±.001

VPoser [51] 0.048±.002 14.684±.138 0.074±.000

GAN-S [27] 0.201±.030 10.914±.396 0.098±.001

Pose-NDF [63] 3.920±.034 37.813±.085 0.838±.001

GFPose-A 1.246±.005 13.876±.116 \
GFPose-Q 1.624±.002 6.773±.112 0.159±.000

FM-Dis 0.346±.007 6.849±.199 0.086±.001

Ours (α=0.01) 0.636±.007 23.116±.105 0.177±.001

Table 2. Pose generation. We sample 20×500 poses. ± indicates
the 95% confidence interval in sampling 20× 500 poses.

Model ablation. We now perform ablation on each compo-
nent of our model, including training data generation, Rie-
mannian distance metric dq , and RDFGrad-based projec-
tion. show results in Tab. 1(bottom). Ours w/o RDFGrad
, yields similar error rates but exhibits slower convergence
speed, indicating that RDFGrad-based projection adheres
to the manifold and facilitates faster convergence. Ours w/o
(RDFGrad, dq) results in decreased accuracy, emphasizing
that the new distance metric contributes to more accurate
predictions. Finally, Pose-NDF is Ours w/o (RDFGrad, dq)
and w/o new training data, and we observe that the perfor-
mance degrades significantly.

5.2. Diverse Pose Generation
We compare NRDF for pose generation with classical
GMM [13, 48], VPoser [51], GAN-S [27], Pose-NDF [63],
diffusion-based pose priors (GFPose-A, GFPose-Q), and
RFM [21]-based model (FM-Dis), presenting the results
in Tab. 2. Evaluating realism, VPoser shows the lowest FID
and dNN, indicating similarity to training samples, while
Pose-NDF exhibits high FID and dNN, suggesting more di-
vergence from training samples but resulting in unrealis-
tic poses. Meanwhile, FID and dNN for NRDF are higher
than VPoser and GAN-S, but lower than Pose-NDF. NRDF
strikes a balance, producing diverse yet realistic poses.

Assessing pose diversity using APD reveals Pose-NDF
with the highest values and VPoser with significantly lower
scores. NRDF shows substantial APD, indicating more
diversity than VPoser but less than Pose-NDF. However,
given the large FID values, Pose-NDF tends to produce un-
realistic poses, evident in Fig. 3 (a). VPoser, while less di-
verse, maintains realism. NRDF proves to be a good trade-
off between diversity and realism, both visually and numer-
ically. For the remaining priors, we note that they exhibit
much lower APD, primarily generating mean poses.

5.3. Optimization-based Downstream Tasks
NRDF can be used as a pose prior term in optimization-
based downstream tasks (Sec. 5.3) such as pose completion
from partial observation or IK solver and pose estimation
from images. For each task, we aim to find optimal SMPL
parameters (θ,β) that explain the observation. The opti-
mization objective is formulated as Eq. (12), where Ldata is
the task-dependent data term, Lθ is the pose prior term, Lβ
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Figure 3. (a) Pose generation: VPoser generates realistic but somewhat limited diverse poses. Pose-NDF generates highly diverse poses
but tends to yield unrealistic results (e.g., the third pose). NRDF demonstrates a balance between diverse and realistic poses. (b) IK Solver
from partial/sparse markers: Given partial observation (yellow markers), we perform 3D pose completion. We observe that VPoser [51]
based optimization generates realistic, yet fixed and less diverse poses. Pose-NDF [63] generates more diverse, but sometimes unrealistic
poses, especially in case of very sparse observations. NRDF generates diverse and realistic poses in all setups.

is the shape prior term and Lα represents any other regular-
izer, if needed. In our experiments we use Lβ = ||β||2 [51].
For pose prior terms, VPoser uses Lθ = ||z||22, where z is
the latent vector of the VAE. Pose-NDF [63], FM-Dis and
NRDF use Lθ = f(θ), where f(θ) is the distance value
predicted from network. Details of the data and regularizer
terms for each task are provided in respective sections.

β̂, θ̂ = argmin
β,θ

Ldata + λθLθ + λβLβ + λαLα, (12)

IK solver from partial observations. Pose acquisi-
tion from dense sensors is expensive and tedious, while
partial/sparse observation is underconstrained. This under-
scores the need for a fast and user-friendly Inverse Kinemat-
ics (IK) Solver for generating diverse and realistic complete
poses from partial observations. To address this, we devise
an experimental setup for 3D pose completion from partial
observations. Our optimization process, based on Eq. (12),
incorporates the Ldata term defined by Eq. (13), where
M(·) maps (β,θ) to SMPL mesh vertices, J maps the ver-
tices to observed markers/joints, and Jobs ∈ R|joints|×3

represents partial marker or joint observations.

Ldata =
∑

i∈joints

||(J (M(β,θ))j − Jobs
j )||2 (13)

We evaluate IK solver on three kinds of observations: 1)
Occluded Single Arm, 2) Only End Effectors Visible, and
3) Occluded Legs. In Fig. 3 (b), we present qualitative re-
sults from our experiments, where multiple hypotheses are
generated based on different initializations given a partial
observation. Note that VPoser [51]’s default setting initial-
izes the latent space with a zero vector without introducing
noise. Thus we additionally fine-tune it with random initial-
ization of latent space, denoting as VPoser-Random, where
the initialization is sampled from a standard normal distri-
bution N (0, I). Our findings show that VPoser-Random
produces less diverse poses than distance field-based ap-
proaches due to the Gaussian assumption in VPoser’s latent

space. Additionally, Pose-NDF often generates unrealistic
poses and is highly dependent on the initialization. In con-
trast, NRDF generates realistic and diverse poses.

Quantitative analysis in Tab. 3 includes evaluating pose
diversity and realism using FID, APD, and dNN metrics.
Notably, VPoser tends to generate more common poses
with slightly better FID and dNN scores due to its genera-
tion of almost mean poses, consistently appearing realistic.
Pose-NDF exhibits the highest APD, FID, and dNN scores,
indicating the generation of diverse yet unrealistic poses.
These observations are consistent with the results shown
in Fig. 3 (b). Our baseline, FM-Dis, performs poorly in
terms of diversity and realism. Additional results on more
experimental setups are provided in the supplementals.
Monocular 3D pose estimation from images. 3D pose es-
timation with neural networks is characterized by speed and
robustness; however, it tends to lack accuracy due to the ab-
sence of feedback between the observation and prediction.
To improve predictions, we propose refining the predictions
through an optimization pipeline based on Eq. (12). We
use the SotA pose-estimation model, SMPLer-X [18] for
predictions and evaluate the optimization pipeline on the
3DPW [67] dataset. The data term in Eq. (12) is:

Ldata =
∑

i∈joints

γiwiρ(ΠK(Rθ(J(β)))− Ĵi) (14)

where Ĵi are GT(or predicted) 2D-keypoints, Rθ transforms
the joints along the kinematic tree according to the pose θ,
ΠK is 3D-2D projection with intrinsic camera parameters,
ρ is a robust Geman-McClure error [32], wi are conf. factor
of 2d keypoint prediction and γi is joint weight.

In Tab. 4, we compare NRDF-based optimization with
other pose prior such as VPoser, Pose-NDF, FM-Dis, and
also with NoPrior term. For quantitative evaluation, we
measure PA-MPJPE, PA-PVE, and PCK@50mm [18, 67]
on 3DPW dataset. Our experiments demonstrate that the
optimization method based on NRDF consistently outper-



Method Occ. Single Arm Only End Effectors Visible Occ. Legs
FID ↓ APD (in cm) ↑ dNN (in rad) ↓ FID ↓ APD (in cm) ↑ dNN (in rad) ↓ FID ↓ APD (in cm) ↑ dNN (in rad) ↓

VPoser-Random 1.148±.264 3.218±.553 0.069±.000 0.769±.095 6.706±.625 0.068±.000 0.650±.150 9.399±1.368 0.060±.004

Pose-NDF [63] 1.281±.258 15.294±1.927 0.443±.001 1.964±.125 30.871±1.202 0.643±.001 3.043±.427 30.291±1.987 0.548±.001

FM-Dis 1.341±.246 4.490±1.293 0.154±.001 1.472±.252 9.554±2.977 0.153±.001 1.030±.221 7.950±2.773 0.155±.001

Ours 1.248±.341 6.094±.003 0.137±.000 1.006±.144 9.787±.040 0.143±.000 0.887±.170 8.264±.007 0.130±.000

Table 3. Quantitative results for IK Solver from with partial/sparse markers. We run all evaluations 20 times, ± indicates the 95%
confidence interval. We evaluate under 3 settings: Occ. Single Arm, Only End Effectors (wrists and ankles) Visible and Occ. Legs. Our
method generates more diverse poses than VPoser [51] for invisible body parts, while preserving more realistic poses (smaller distance to
the manifold) than Pose-NDF [63] and FM-Dis.
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Figure 4. 3D pose and shape estimation from images:(Top): Re-
sults from SMPLer-X [18], (Bottom): We refine the network pre-
diction using NRDF based optimization pipeline. As highlighted,
refined poses align better with the observation.

Method PA-MPJPE↓ (in mm) PA-PVE↓ (in mm) PCK@50↑
SMPLer-X [18] 104.30 88.26 66.30
+ No prior 104.35 89.18 67.19
+ VPoser [51] 100.14 84.62 67.48
+ Pose-NDF [63] 95.20 78.02 70.98
+ FM-Dis 95.89 78.79 69.64
+ Ours 90.59 74.30 79.71

Table 4. 3D pose and shape estimation from images: We take
SMPLer-X [18] predictions and refine them using optimization
pipeline. We compare the performance of different pose priors.

forms other pose priors. This highlights that the NRDF-
based pose manifold is more detailed, leading to improved
accuracy while preserving the realism of poses. We show
qualitative results of SMPLer-X prediction and refined re-
sults using NRDF based optimization in Fig. 4 and provide
more results in the supplementary material.

5.4. Extending NRDF to Other Articulated Bodies
As NRDF formulation is not limited to human poses, we use
the same formulation to model manifolds of plausible hand
and animal poses. For hands, we use MANO representa-
tion [54] and the DART dataset [31], covering 80K poses
of the right hand, to learn a right-hand pose prior. For ani-
mals, we use SMALR [72, 73] representation and utilize the
Animal3D dataset [69], covering 3K animal poses, to learn
articulated animal pose priors. Specifically, we train two
different priors for dogs and horses. We show diverse pose
generation results in and Fig. 1 (right) and supplementals.

6. Conclusion and Discussion
We presented Neural Riemannian Distance Fields (NRDF),
which are data-driven priors that model the space of plausi-
ble articulations. The pose prior is represented as the zero-
level-set of a neural field in a high-dimensional product-
quaternion space. Our model is trained to predict distance
geodesic distance on the Riemannian pose manifold. We
introduce crucial technical insights to effectively learn a
well-behaved and detailed pose manifold. 1) We introduce
a sampling framework on Riemannian manifold, that fol-
lows the desired distribution, 2) A Riemannian distance
metric and 3) We develop a theoretically sound adaptive-
step Riemannian gradient descent algorithm that accelerates
the convergence in mapping poses onto the learned mani-
fold. Furthermore, we establish connections with Rieman-
nian flow matching [44] and introduce baselines based on
RFM to demonstrate the advantages of NRDF. Our model
demonstrates effectiveness in various applications, includ-
ing pose generation, optimization-based Inverse Kinemat-
ics (IK) solving, and 3D pose estimation from images. We
also show the versatility of our formulation by extending it
to learning pose priors for hands and animals.
Limitations and future work. Since our approach is based
on an iterative sampling scheme, it may slightly reduce effi-
ciency for pose generation compared to directly mapping a
random latent code to a pose. Rather than merely sampling
the initial point, we could also inject noise during the pro-
jection, transforming it into a sequential geodesic MCMC
sampler. This would be effective at generating a variety of
random poses similar to a given initial pose. We could also
model uncertainty over the manifold by describing it as a
distribution over a family of implicit surfaces. We leave
these promising avenues for future research.
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Supplementary Material

In the following, we start with proving the propositions
in Sec. A and discuss the relationship to Riemannian Flow
Matching in Sec. A.3. Then, we present our user study
about perceptual pose metrics in Sec. B, followed by imple-
mentation details in Sec. C and additional results in Sec. D.

A. Proofs & Theoretical Discussions
A.1. Proof of Prop. 1

Before proceeding with the proof let us recall the main
proposition.

Proposition 1 (Quaternion-egrad2rgrad). For the quater-
nion manifold, the projection and mapping onto the tangent
space of the canonical unit quaternion e =

[
1 0 0 0

]⊤
(egrad2rgrad in Eq. (2)) takes the form:

Πq(v) = Pv − e⊤Pv

1 + q⊤e
(q+ e) (15)

=


0 0 0 0

−q2/(1 + q1) 1 0 0
−q3/(1 + q1) 0 1 0
−q4/(1 + q1) 0 0 1

Pv, (16)

where v ∈ R4 and P := P(q) = I− qq⊤.

Proof. First, note that the quaternion q is also the normal
vector at point q. Hence, the projection of any ambient vec-
tor onto the tangent space of a quaternion can be obtained
by the standard projection onto the plane defined by the nor-
mal. In other words, the orthogonal complement of the tan-
gent plane is the line in the direction of q. Hence, we can
project any ambient vector v ∈ H1 onto TqH1 as:

(v − qq⊤v) = (I− qq⊤)v = P(q)v. (17)

Next, we need to rotate P(q)v to align with the identity
tangent space, TIM or as in the proposition, TeM. To do
so, we utilize the discrete connection on S3, which can be
obtained by rotation of tangent planes. Since the tangent
planes at q and e are defined by q and e themselves, all
we need to do is to find the linear map, i.e. a rotation, that
aligns q onto e. This is the typical vector-rotation formula
in 4-space and is given by:

v − e⊤v

1 + q⊤e
(q+ e) (18)

Plugging in e =
[
1 0 0 0

]⊤
and re-arranging yields

the matrix form given in the proposition. Note that this is

unique up to rotation around e and well connects to the non-
uniqueness of parallel transport1.

A.2. Proof of Prop. 2

We re-state Prop. 2 of the main paper before delving into
the proof.

Proposition 2 (Distance preservation). Let P be a distribu-
tion over domain [0, 1], θ ∈ D a data example, θ̂ ∈ HK

1 the
output of Alg. 1 with input (θ,P), and d = d(θ, θ̂). Then,
for the distribution of resulting distances holds p(d) = P .

Proof. Our proof closely follows the steps in our algorithm
where we sample a Gaussian vector of magnitude h, project
it on the 3-sphere (where the distribution is uniform) and
take steps. In the sequel, we prove each step.

Definition 9. A vector v ∈ Rn is said to be radially sym-
metric if ∀A ∈ O(n),v

d
= Av.

Lemma 1. Let v ∈ Rn be a radially symmetric random
vector. Then v/∥v∥ ∼ U(Sn−1).

Proof. Let A ∈ O(n) denote an orthogonal matrix and
Proj be the projection onto Sn−1. Then the following
holds:

Proj(v) :=
v

∥v∥
d
=

Av

∥v∥
= Proj(Av). (19)

Thus, the random vector v/∥v∥ takes all its values over
Sn−1 and is radially symmetric. This is exactly the def-
inition of U(Sn−1), the uniform distribution over Sn−1.
A more rigorous proof involves geometric measure theory,
which is beyond the scope of this work. We refer the reader
to [46] for further details.

Showing that v after normalization follows a uniform
distribution on the unit sphere in TθS, we move to the sec-
ond part, where ∥θ − h · v∥ = h since ∥v∥ = 1 and
h · v ∈ TθS for any h > 0. In other words, h moves v
towards/away from the base θ.

Lemma 2. Let v ∈ TθHK
1 . Using the ambient space of R4

and ∥v∥ = 1, for all t:

d (θ,Expθ(h · v)) = h∥v∥, (20)

in a sufficiently small interval (respecting the cut-locus),
where d(·, ·) denotes the geodesic distance.

1The hairy ball theorem states the nonexistence of a global parameter-
ization of any continuously varying basis vector of TxS on all of S.



Proof. The proof follows the do Carmo, “Riemannian Ge-
ometry”, Proposition 3.6 [28].

Since by this lemma, the exponential map on the sphere
preserves distances to the base within [0, 1]2, it follows that
d(θ′,θ) = h. With a similar argumentation, when h ∼ P ,
d(θ′,θ) ∼ P .

How are the sample points distributed?. While our al-
gorithm guarantees that the distances attained as a result of
sampling preserve the initial choice of distance distribution,
the distribution of the samples themselves can undergo dis-
tortion, i.e., they can follow a complicated distribution on
HK

1 . Naturally, it is of interest to also understand how the
samples are actually distributed on HK

1 . While we cannot
provide an explicit analytical form, we will provide an intu-
ition into their distributions below, by following the exposi-
tion in [30].

Quaternions look like SU(2), a Lie group isomorphic
to SO(3). Their Lie algebra (tangent space) su(2) is iso-
morphic to the Lie algebra so(3). Let us denote the Lie
algebra of quaternions by h. Being the direct product of
(non-Abelian) Lie groups, HK

1 is also a Lie group, with a
Lie algebra hK . The adjoint representation of x ∈ hK ,
adx(y), is the matrix representation of the map [x,y] called
the Lie bracket. For quaternions adx is the linear represen-
tation of this map. In our sampling algorithm (Alg. 1, to
explicitly control the distance distribution, we first sample
v ∼ N (0, I) in the Lie algebra of θ. We then normal-
ize it yielding a uniform distribution on the 3-sphere and
compose it with Gaussian sampled scalars h, resulting in
a Gaussian distribution radially and uniform distribution in
terms of direction: v/∥v∥ ∼ U(S3h) and ∥v∥2 ∼ N (0, 1).
We call this tangent distribution r(v). Next, we use the ex-
ponential map to push r wrapping the samples on the man-
ifold resulting in our wrapped uniform-spherical distribu-
tion:

p(θ) =
∑
v∈hK

Expµ(v)=θ

r(v)
∣∣J−1

∣∣ , (21)

where J is the Jacobian map, whose determinant is the
change of volume:

∣∣J−1
∣∣ := det

( ∞∑
k=0

(−1)k

(k + 1)!
adkx

)
. (22)

Intuitively, J linearly relates the tangent spaces and as such
can be computed, similar to Eq. (9), via the parallel trans-
port. As a result, we lose the simple form of the distribution
in the tangent space and can only arrive at the final distribu-
tion via this push-forward operation.

2Note that, a common mistake is to assume that all distances are pre-
served. This is not true and only the distances to the base of the Exp/Log
map is preserved.

A.3. Riemannian Flow Matching (RFM) vs. NRDF
Our training strategy resembles the extension of a recent
state-of-the-art generative model, Flow Matching (FM) [44]
onto Riemannian manifolds, known as, Riemannian Flow
Matching (RFM) [21]. The differences lie in the sampling
of training data and time steps as well as the way the flow is
computed / predicted. In what follows, we will briefly sum-
marize RFM and make the connection to our model NRDF.
We will begin by recalling certain definitions.

Definition 10 (Riemannian CNF). A CNF φt(·) :M→M
on the smooth manifoldM is defined by integration along
a time-dependent vector field vt(x) ∈ TxM: φ̇t(x) =
vt(φt(x)), parameterized by t ∈ [0, 1], where φ0(x) = (x).

Definition 11 (Probability path). Let P(M) denote the
space of probability distributions onM. A probability path
ρt : [0, 1] → P(M) interpolates between two distributions
ρ0, ρ1 ∈ P(M) indexed by t ∈ [0, 1]. ρt is said to be gen-
erated by φt if it pushes forward ρ0 to ρ1 following vt, i.e.
ρt = [φt]#(ρ0).

Definition 12 (RFM). Given a probability path ρt, subject
to the boundary conditions ρ0 = ρdata and ρ1 = ρprior, as
well as an associated flow φt, learning a CNF by directly
regressing vt through a parametric, neural network gβ , is
called Riemannian flow matching.

Definition 13 (Riemannian Conditional FM). Unfortu-
nately, the vanilla RFM objective is intractable as we do not
have access to the closed-form ut generating ρt. Instead,
we can regress gβ against a tractable conditional vector
field vt(xt | z), generating a conditional probability path
ρt(xt | z) which can recover the target unconditional path
by marginalization:

vt(x) =

∫
M

vt(x | z)
ρt(x | z)q(z)

ρt(x)
dvolz. (23)

Chen & Lipman then define the following Riemannian con-
ditional FM (RCFM) objective for learning as:

LRCFM (β) = Et,q(z),ρt(xt|z)d(gβ(t,xt), vt(xt, z))
2,
(24)

whose gradient is the same as that of RFM. Here, t ∈
U(0, 1) and d(·, ·) is the geodesic distance.

A simple variant of RCFM makes a particular choice of
time scheduling, linearly decreasing the geodesic distance
between xt and x1 arriving at:

Et,q(x1),p(x0)

∥∥∥∥vt(xt, t) + d(x0,x1)
grad d(xt,x1)

∥grad d(xt,x1)∥2g

∥∥∥∥2
g

(25)
This form will closely relate to our work as we clarify be-
low.



Algorithm 2 Training Riemannian Flow Matching for
Learning on Articulated Bodies

Input: Base distribution p(θ0), target q(θ1), initial param-
eters ϕ0 of a network gϕ

Output: Trained weights ϕ
1: while (not converged) do
2: Sample t ∼ U(0, 1)
3: Sample training pose θ1 ∼ q(θ1)
4: Sample noisy pose θ0 ∼ p(θ0)
5: θt = Expθ0

(t · Logθ0
(θ1)) (cf . Eq. (26))

6: Update ϕt by minimizing LRCFM in Eq. (25)
7: end while

NRDF & RFM. In our work, we consider RFM on the
product manifold of quaternions whereM ≡ HK

1 ,x ≡ θ,
and use the associated operators. We present in Alg. 2 the
Riemannian Flow Matching adapted to our problem, artic-
ulated pose estimation. Note that, there are two fundamen-
tal differences: (i) the sampling of RFM and our sampling
in Alg. 1, and (ii) the way the gradients are obtained. We
now have a closer look into this.
Sampling. As seen in Alg. 2, RFM samples time uniformly,
t ∼ U(0, 1), and a target pose is obtained as:

θt = Expθ0
(t · Logθ0

(θ1)), (26)

where θ1 ∼ q(θ1) is the data distribution and θ0 ∼ p(θ0) is
the noise. Instead, our sampling algorithm presented in the
main paper obtains a sample that is h away from a training
pose as:

θ̂ ← Expθ(h · v), (27)

where v is directly sampled in the tangent space and nor-
malized, and h ∼ P for arbitrary P over R+. In contrast to
RFM, we fix d(θ,v) = 1 through normalization and thus,
d(θ̂,θ) = h (explicit control over distance). Also note the
time dependence. As our loss does not compute an explicit
expectation over time, we can pre-compute all our train-
ing variables (nearest neighbors and the distances) offline.
Having nearest neighbors as target distribution is unique to
our work. As shown in Alg. 3, this greatly simplifies the
training loop leading to stable and fast training. Moreover,
note that, such pre-computation also allows for updating the
nearest neighbor at each iteration during training.
Obtaining gradients. RFMs neural network mini-
mizes Eq. (25) by explicitly predicting the steps. When
we would use our sampler from above, d(θ0,θ1) = 1
would hold, and the network would be trained to the
distance, whose derivation (by backpropagation) provides
grad d(θt,θ1)

∥grad d(θt,θ1∥2
g

, which is the gradient of the distance field.
Thus, in this case, the gradient of our network would coin-
cide with the prediction of the flow matching network. Note
that even with the flow matching sampling, the flow match-
ing network prediction points in the same direction as the
distance field gradient, it is just scaled by d(θ0,θ1) ̸= 1.

Algorithm 3 Neural Riemannian Distance Fields for Learn-
ing Articulated Pose Priors

Input: Distribution P , target distribution q(θ), initial pa-
rameters ϕ of a network fϕ

Output: Trained weights ϕ
1: Get training data samples D′ via Alg. 1
2: Search nearest neighbour θ′ and compute d(θ,θ′) for

all θ ∈ D′

3: while (not converged) do
4: Sample a training pose θi from D′

5: Update ϕ by minimizing
6: ∥fϕ(θi)−minθ′∈D d(θi,θ

′)∥
7: end while

B. User Study for Evaluation Metrics

Previous studies [19, 43] have highlighted a significant
disparity between perceptual pose distance and commonly
used metrics, such as differences in joint locations and ori-
entations. The neural distance field model uses a certain
distance metric to learn the relation between an arbitrary
pose and the manifold of plausible poses by finding the
nearest neighbor on the manifold. Consequently, NRDF re-
lies on the distance metric possessing specific properties:
1) the distance metric is well-defined, and continuous and
2) the distance metric is close to human perception. To as-
sess these criteria, we conducted a user study comparing
various metrics, including orientation, Euclidean-based dis-
tance metrics, and a combination of both. We now define
each distance metric used in our user study.

Orientation-based metrics. We take the distance metric
used by Pose-NDF [63] as the candidate metric, denoting as
∆ql

p. We also adopt he quaternion geodesic distance ∆ql
g ,

which has a more explicit physical interpretation and cov-
ers a wider range of values. For both metrics, we further
calculate the distance between noisy poses and their nearest
neighbor in global (relative to the root) frames, denoted as
∆qg

p and ∆qg
g , respectively.

Euclidean-based metrics. Our Euclidean-based metrics
involve calculating the average Euclidean distance over all
body joints and a specific set of surface markers, denoted as
j2j and m2m respectively.

Combinations of orientation and Euclidean. In our ob-
servations, Euclidean-based metrics preserve the accurate
overall shape of the body pose. However, they fall short
of preserving the local twists of certain body joints. On
the other hand, orientation-based metrics preserve precise
local twists, yet they exhibit sensitivity to numerical val-
ues, resulting in divergent rotations even when the numeri-
cal values are close. To combine the strengths of both ap-
proaches, we introduce a hybrid metric, specifically defined
as ∆q+m2m = m2m+λq∆qg

g . This hybrid metric aims to
leverage the advantages of Euclidean and orientation-based
metrics, striking a balance that combines the faithful rep-



Figure 5. User study for pose similarity assessment: In our user
interface, participants rank the similarity between a query pose
(green) and its nearest neighbors (blue) from the AMASS dataset.
These neighbors are obtained using different distance metrics.

resentation of the overall pose shape with the meticulous
preservation of local joint twists. We set λq = 0.5.
User study. We selected ∆ql

p, ∆qg
g , m2m and ∆q+ m2m

as final candidates. We prepare 52 questions, each com-
prising the noisy pose and 4 NNs queried by a correspond-
ing distance metric. Options are randomly shuffled in each
question. As shown in Fig. 5, users ranked the options from
most similar to least similar, with the flexibility to assign
the same rank to multiple options.
Result analysis. From a total of 54 responses, 32.79% of
users identified m2m as the most similar, while 30.09% fa-
vored ∆q + m2m. For the second most similar, 29.72%
preferred ∆q + m2m, and 27.13% chose ∆qg

g . Following
this, we use m2m and ∆q+ m2m as evaluation metrics for
the ablation studies.

C. Implementation Details
In this section, we introduce the experimental setup for data
preparation, network training, baselines, and optimization-
based downstream tasks such as partial-IK solver and
image-based pose estimation.

C.1. Data Preparation

Training data. For training, we use a subset of the
AMASS [45]. We follow the training split of AMASS used
in VPoser [51] and Pose-NDF [63] and assume that the
AMASS training set can sufficiently explain a comprehen-
sive and valid human pose manifold.

To pre-process the AMASS dataset, we crop the cen-
tral 80% of each motion sequence to focus on the most
informative part of the data. We apply subsampling at a
rate of 30 Hz, resulting in a total of 4 million clean poses.
This is similar to VPosers and Pose-NDFs training setup.
To create negative training samples along with their corre-
sponding ground truth distances to the manifold, we sample

noisy poses using Alg. 1, with P = N (0, π/4). Follow-
ing Pose-NDF [63], to speed up the NN search process, we
adopt a multi-step mechanism for querying the NN of each
noisy pose. For the first stage, we implement k′NN using
FAISS [37], get k′ candidates. For the second stage, we
use the quaternion geodesic distance to find exact k neigh-
bors from these k′ candidates. In our implementation, we
set k′ = 1000 and k = 1. Note that we determine the final
distance by considering only the closest NN, deviating from
the approach in Pose-NDF [63], where the average distance
over the top 5 NNs is computed. This is motivated by the
observation that the top 5 NNs may exhibit discontinuities,
and averaging their distances tends to over-smooth the man-
ifold boundary.
Evaluation and validation. For validation, we utilize the
validation split of the AMASS dataset, specifically we use
Human Eva, MPI-HDM05, SFU, and MPI Mosh. For
testing the accuracy and convergence speed across various
baselines, we take the test split of AMASS dataset, specif-
ically, we use SSM-Synced and Transitions. The distance
values are computed in reference to the training data.

C.2. Network Training
Alg. 3 shows our training procedure. Specifically, we em-

ploy a hierarchical neural implicit network to implement
NRDF, following the approach outlined in [63]. The net-
work takes a quaternion representation of SMPL pose as
input and produces a scalar distance field as output. We
adopt a two-stage training strategy. For the first stage, each
training batch comprises a balanced combination of 50%
noisy poses and 50% clean poses. Subsequently, to enhance
generalization to downstream tasks, in the second stage, we
fine-tune our model using poses sampled from a standard
normal distribution N (0, I) ∈ R4K . We set the learning
rate to 1e-4. The entire training process requires 8-10 hours
with a single GeForce RTX 3090 GPU.

C.3. Baseline Details
In this section, we present implementation details of base-
lines. Our evaluation focuses on the pose denoising
task, where we compare finally converged poses with their
ground truth nearest neighbors. We sample 20k noisy poses
by using Alg. 1 based on AMASS [45] test set. We now
first investigate the significance of our Riemannian projec-
tion (Ours v/s Ours w/o RDFGrad) and sampling method
(Pose-NDF v/s Ours w/o RDFGrad). This is followed by
comparison with a closely related Riemannian Flow Match-
ing [21] based distance field (Ours v/s FM-Dis) and an ab-
lation on distance v/s gradient field modeling.
Ours v/s Ours w/o RDFGrad. In this study, we evalu-
ate the significance of our novel adaptive-step Riemannian
gradient descent algorithm, termed as RDFGrad. For Ours
w/o RDFGrad we use standard stochastic gradient descent
(SGD) in Euclidean space. The results presented in Tab. 1
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Figure 6. Pose generation: We compare pose generation results of our method with VPoser [51], GMM, FM-Dis, Pose-NDF [63], GAN-
S [27], GFPose-A [25] and GFPose-Q. In comparison to VPoser, our method produces more diverse results. Furthermore, when compared
to GMM, FM-Dis, and Pose-NDF, our method generates more realistic poses.



Method Occ. Single Arm Only End Effectors Visible Occ. Legs
FID ↓ APD (in cm) ↑ dNN (in rad) ↓ FID ↓ APD (in cm) ↑ dNN (in rad) ↓ FID ↓ APD (in cm) ↑ dNN (in rad) ↓

VPoser-Random 1.145±.265 3.085±.642 0.066±.001 0.681±.091 8.330±.783 0.067±.000 0.748±.141 6.650±.951 0.058±.001

Pose-NDF [63] 1.460±.233 16.445±2.415 0.622±.001 2.081±..114 31.524±.872 0.738±.001 3.015±.162 24.831±1.328 0.677±.001

FM-Dis 1.150±.253 4.967±.798 0.210±.001 1.010±.103 10.812±1.451 0.347±.002 0.976±.158 6.886±1.664 0.226±.020

Ours 1.306±.259 5.892±.236 0.132±.000 0.964±.117 10.388±.820 0.137±.001 0.899±.170 6.705±.613 0.125±.001

Table 5. Quantitative results for IK Solver from partial/sparse joints. We run all evaluations 20 times, ± indicates the 95% confidence
interval. We evaluate under 3 settings: Occ. Single Arm, Only End Effectors (wrists and ankles) Visible, and Occ. Legs

illustrate that our approach achieves 6× acceleration in con-
vergence speed thanks to the gradient update on the Rie-
mannian quaternion manifold. Please refer to the supple-
mentary video for qualitative comparisons. The conver-
gence criterion is based on the absolute difference between
the previously predicted distance and the current predicted
distance being less than 1e-5.
Ours w/o (RDFGrad, dq) v/s Pose-NDF. In this study we
evaluate the significance of our novel training data sam-
pling strategy. For this we compare Pose-NDF, which uses
a naive sampling strategy with Ours w/o (RDFGrad, dq),
which is basically Pose-NDF with our novel sampling strat-
egy. From Tab. 1, we observe that just changing the sam-
pling strategy, reduces the m2m distance from 25.04 cm to
15.16 cm, which shows the significance of the distance dis-
tribution of training data.
Ours v/s FM-Dis. In order to connect with the recent Rie-
mannian flow matching, we introduce a new baseline, called
FM-Dis, which extends RFM to model the pose prior as a
distance field. Instead of predicting the gradient, our varia-
tion FM-Dis predicts the distance between θt and the cor-
responding clean pose θ1 without recomputing the near-
est neighbor. Specifically, we minimize LFM−Dis, given
by Eq. (29), where θt is sampled by using Eq. (26),

LFM−Dis(ϕ) (28)

= Et∼U(0,1),q(θ1),p(θ0)∥vϕ(θt)− d(θt,θ1)∥2g (29)

It is apparent that θt is evenly interpolated between the
noise and a particular clean sample, which stands in con-
trast to our distribution, where the number of samples grad-
ually decreases as one moves outward from the manifold.
As shown in Fig. 6, FM-Dis tends to generate poses close
to the mean. We show qualitative comparisons in our sup-
plementary video.
Distance v/s gradient prediction. To connect our model
with diffusion / score-based methods and flow matching-
based methods, we implement Gradient prediction w/o
time, FM-Grad w/ time and GFPose-Q. These approaches
explicitly predict either the gradient or the gradient direc-
tion, while our method derives the gradient of distance with
respect to the input pose through network back-propagation.
Predicting full gradients (including length) without time-
step conditioning is challenging for neural networks, lead-
ing to significant errors. Therefore, Gradient prediction
w/o time is designed to predict the gradient direction (with

normalized length) between the noisy pose and its nearest
neighbor only. Noisy poses are sampled using Alg. 1 in this
case. We additionally incorporate Riemannian flow match-
ing (RFM) [21] into our experiment, denoting as FM-Grad.
Different from RFM, we maximize the cosine similarity be-
tween the network prediction and gradient, thus, minimiz-
ing LFM−Grad, given by Eq. (30), where t ∼ U(0, 1) as
above and θt is obtained in the same manner as FM-Dis.
We set T = 1000 during training.

LFM−Grad(ϕ) (30)

= −Et,q(θ1),p(θ0)

∣∣∣∣ vϕ(θt, t) · Logθt
(θ1)

∥vϕ(θt, t)∥2g∥Logθt
(θ1)∥2g

∣∣∣∣ .
For test-time projection, we follow Eq. (3) using

vϕ(θt, t) as the gradient. We set τ = 0.01 and the initial
time-step T ′ = 200. For training Gradient prediction w/o
time and FM-Grad, we employ the same network architec-
ture as GFPose [25]. The convergence criterion is based on
the absolute difference between the predicted gradient norm
at t+1 and t being less than 1e-5. Regarding GFPose-Q, we
retrain it using the quaternion representation on the AMASS
dataset, with ∅ conditioning. Since gradient prediction is
less accurate than distance prediction, results based on gra-
dient prediction tend to exhibit either over-correction or un-
realistic poses. Please refer to the supplementary video for
qualitative comparisons.

C.4. IK Solver Setup

We utilize the AMASS test set and compute ground truth
marker/joint positions through forward kinematics. The
overall loss function, based on Eq. (12), encompasses a data
term defined by the L2 loss between predicted marker/joint
locations and observations. Given that most off-the-shelf
optimizers in PyTorch are SGD-based or its variations,
and there is no optimizer designed for quaternions in
geoopt [41], we introduce a custom optimizer specifically
designed for RDFGrad. This involves obtaining the Eu-
clidean gradient returned by the network and projecting it
onto the Riemannian quaternion manifold using Eq. 9. We
plan to release our code for public use and stimulating fu-
ture research. During optimization, for VPoser, VPoser-
Random and Pose-NDF, we set λθ = 0.1, λβ = 0.05 and
λα = 0.001. For FM-Dis and NRDF, we set λθ = 5.0,
λβ = 0.05 and λα = 0. Concerning our RDFGrad-based
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Figure 7. Animal and Hand pose generation: We generate diverse animal and hand poses using NRDF.

optimizer, for an effective initialization of the prior loss,
we exclude the data term in the first 50 epochs and opti-
mize only the prior term. Subsequently, we combine all
loss terms for joint optimization. The stopping criterion for
all experiments is set as MPJPE = 3 cm.

M
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m
)

VPoser

Ours

Negative log-likelihood

Figure 8. Error Distribution vs. Pose Difficulty: X axis rep-
resents the relative negative log likelihood (NLL) while Y axis
represents the MPJPE between the result joint locations and cor-
responding observations.

C.5. Image-based Tasks Setup

For evaluating the impact of our prior on human pose esti-
mation from images, we use 3DPW dataset [67]. We con-
duct the evaluation on the test split of 3DPW, where ground
truth for a single person in the image is available. This
amounts to roughly 6k images. In particular, we want to
refine network prediction using optimization-based refine-
ment. We use SMPLer-X [18] for predicting human pose
θ̂ and shape β̂ from images and then use optimization loss
mentioned in Eq. (12) and Eq. (14) to refine the predictions.
For VPoser, we optimize the latent vector z of VAE, where
z is initialized from the VAE encoding of predicted pose or
θ̂. More specifically zinit = fVE(θ̂), where fVE is encoder
of VPoser. For Pose-NDF, FM-Dis, and Our prior optimiza-
tion, we simply optimize for θ and the variable is initialized
using θ̂. We also optimize for SMPL shape (β) parameters
in both setups. For the evaluation metric, we have used PA-
MPJPE (Procrustes aligned-MPJPE), PA-PVE (Procrustes
aligned-per-vertex error).

D. Additional Results

We now provide additional qualitative and quantitative re-
sults.
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Figure 9. IK Solver for one arm and one leg occluded: Given partial observation, where one leg and one arm are occluded, we perform
3D pose completion. We observe that VPoser [51] based optimization generates realistic, yet very limited diversity in poses. Pose-NDF [63]
generates more diverse, but unrealistic poses. FM-Dis also generates limited diversity in poses. NRDF generates diverse and realistic poses
as compared to the aforementioned pose priors.

D.1. IK solver from partial surface markers or body
joints

We show more IK results from partial observations. For
surface markers, we observe that for Occ. Single Arm and
Visible end-effectors setup, our model generates more di-
verse poses based on APD. We also show qualitative re-
sults in Fig. 10. Note that despite the numerical diversity of
VPoser, it exhibits fewer diverse poses for occluded legs
compared to NRDF. As depicted in Fig. 11, the legs of
VPoser tend to move together without interaction between
them, which could also result in a large APD value. In
contrast, our method demonstrates more diverse leg poses,
including bending of knees. We provide results for an-
other setup in Fig. 9, where one arm and one leg are oc-
cluded. Given that body joints are more underconstrained
and challenging, we further evaluate our IK solver on par-
tial body joint observations. Tab. 5 and Fig. 12 illustrate the
IK results, showcasing that our method achieves accurate
IK while maintaining more diversity.

D.2. Monocular 3D Pose Estimation from Images

We provide more qualitative results for 3D pose estimation
from images in Fig. 13.

D.3. More Pose Generation Results

Fig. 6 shows additional generation results from different
methods. Note that poses generated by GMM can appear
unrealistic and can have implausible bends around joints
such as elbow or shoulder joints, as shown in Fig. 6 (top-
right). VPoser [51] tends to generate more standing and less
diverse poses. This is attributed to Gaussian assumption of
the latent space. FM-Dis also generates less diverse poses,
close to mean poses and some times results in unrealistic
poses as well. Pose-NDF [63] generates diverse poses, in
terms of bends around knees, elbows etc. but at the same
time, it results in implausible poses. This is attributed to
the inaccurate distance field of Pose-NDF. GAN-S [27] also
tends to generate less diverse pose, as compared to Pose-
NDF. We also compare with a diffusion-based model GF-
Pose [25]. We retrain GFPose on AMASS dataset and call
it GFPose-A. Since this is joint-location based model, we
observe that the generated results might have inconsistent
bone lengths, as highlighted in Fig. 6. We also retrain GF-
Pose on quaternions, denoting as GFPose-Q, which simi-
larly generates less diverse and unrealistic poses.

We further show more results for hand and animal pose
generation in Fig. 7.



V
P

o
se

r-
R

an
d
o
m

Example 1 Example 2 Example 3

P
o
se

-N
D

F
F

M
-D

is
O

u
rs

Figure 10. IK Solver for visible end-effectors: Given partial observation, where only end-effectors are visible (yellow markers), we
perform 3D pose completion. We observe that VPoser [51] based optimization generates realistic, yet very limited diversity in poses or
almost similar poses. Pose-NDF [63] and FM-Dis result unrealistic poses for such sparse observations. NRDF generates diverse and
realistic poses as compared to the aforementioned pose priors.

D.4. Error Distribution vs. Pose Difficulty
Poses generated by VPoser [51] exhibit a tendency to clus-
ter around mean poses, given it is based on Gaussian as-
sumptions. In this subsection, we explore the correlation
between location error and pose difficulty in partial Inverse
Kinematics (IK) tasks. The observed relationship is visu-
ally depicted in Fig. 8. It’s noteworthy that as the ground
truth pose becomes less common (indicated by larger Neg-
ative Log-Likelihood (NLL) values), the difference between
Mean Per Joint Position Error (MPJPE) of VPoser and
NRDF tends to increase. However, NRDF consistently
maintains a smaller error, remaining under 1.5 cm. The
first column of Fig. 9 (foot part of VPoser) also shows that
VPoser fails to meet the observations when the given pose
is uncommon.
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Figure 11. IK Solver for occluded legs: Given partial observation, where only one leg is occluded, we perform 3D pose completion. We
observe that VPoser [51] based optimization generates realistic, yet very limited diversity in poses or almost similar poses. Pose-NDF [63]
results unrealistic poses. FM-Dis generates almost similar poses and has no diversity. NRDF generates diverse and realistic poses as
compared to the aforementioned pose priors.

O
u

rs
P

o
se

-N
D

F
V

P
o

se
r-

R
an

d
o

m

Occ. Single Arm Only End Effectors Visible Occ. Legs

Figure 12. IK Solver from partial/sparse joints: Given partial observation (black joints), we perform 3D pose completion. We observe
that VPoser [51] based optimization generates realistic, yet less diverse poses. Pose-NDF [63] generates more diverse, but sometimes
unrealistic poses, especially in case of very sparse observations. NRDF generates diverse and realistic poses in all setups.
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Figure 13. 3D pose and shape estimation from images: (Top): We refine the results of SMPLer-X [18] network prediction using NRDF
based optimization pipeline.
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