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In the following, we provide more implementation de-
tails (Sec. 1) and results. In Sec. 2, we ablate the number
of renderings per training shape, showing that the perfor-
mance first improves as the number of renderings increases
but saturates after 25 renderings. In Sec. 3, we present the
class-wise comparison on ShapeNet, demonstrating that our
improvement is uniform over most of classes. Finally, in
Sec. 4, we provide more qualitative comparison on syn-
thetic renderings of ShapeNet, real images of Pix3D and
single-view human reconstruction, empirically confirming
that our method generalizes better than competitors.

1. Implementation details

In this section, we provide implementation details for re-
producing reported results.
Depth estimation network. Our depth estimation network
follows a U-Net architecture [6] with a ResNet-18 [2] being
the backbone. The encoder is a ResNet-18 [2] which en-
codes the input image into 512 features maps of size 7× 7.
The decoder is the reverse of the encoder with transposed
convolutional layers, producing an estimated depth map of
size 224×224. The network has a single shared encoder and
two different decoders for predicting front and back depth
maps respectively. The original input image is with 256
spatial resolution and we resize it into 224. We optimize
the berHu loss [4] for both front and back depth (equally
weighted). We chose Adam [3] as the optimizer and use
learning rate 0.0001 and batch size 128. We select the num-
ber of training epochs by inspecting the validation loss on
seen classes. Note that novel classes are completely ex-
cluded during training and hyperparameter tuning.
Implicit shape completion network. Our shape encoder
network takes as input a voxel grid (resolution 1283) and
compromises 11 3D convolutional layers. We consider 7
intermediate feature maps (L = 7) at 0, 1, 3, 5, 7, 9,
11 layers. When extracting point-aligned multi-scale fea-
tures, we take in account the query point p = (x, y, z)
itself and its 6 surrounding points by adding a small dis-

placement ϵ = 0.0722 to its x, y, z coordinates, i.e.,
{(x+ ϵ, y, z), (x− ϵ, y, z), . . . , (x, y, z− ϵ])}. The implicit
decoder takes as input the point features and consists of 4
fully connected layers with ReLU being the non-linearity.
We chose Adam [3] as the optimizer and use learning rate
0.0001 and batch size 8. In every batch, we sample 50000
query points per shape (refer to the main paper query for
point sampling). We select the number of training epochs
by inspecting the validation loss on seen classes.
Dataset statistics. For seen classes, We follow the data
splits provided by SDFNet [7]. There are 28008/3883/7481
watertight meshes for training/validation/test (some meshes
are deleted because there are errors when converting the
original mesh into the watertight one). SDFNet [7] use
all shapes of novel classes for testing. In contrast, we
generate a data split on novel classes for few-shot learn-
ing studies. Specifically, we randomly split all shapes into
10243/420/2020 training/validation/test.
Distance between a novel class and all seen classes. In
Fig. 4 (right) of the main paper, we show that the recon-
struction results are correlated with the distance between
the given novel class and all seen classes. Formally, we de-
fine the distance as the following,
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CD(mn,ms), (1)

where CD denotes the Chamfer distance, Cyn
is the set of

meshes from novel class yn, mn is a mesh from a novel
classes, T is the training set of all seen classes, and ms is a
mesh from the training set. Essentially, for every mesh from
the novel class yn, Eq. 1 computes its minimum distance
to the training set followed by averaging those minimum
distances.

2. Ablating number of renderings

In all of our previous experiments, we follow SDFNet [7]
to render 25 images from random view points for each
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Figure 1. Our method differs fundamentally with existing class of methods. (a) ONet [5] directly compress the input image into a 1D
latent representation, thus losing spatial structure. (b) DISN [8] learns input aligned features that allows it to retain more details but it
does not leverage depth. (c) SDFNet [7] leverages intermediate depth but still compress the image into 1D vector. (d) Our GIN leverages
intermediate depth, and unprojects it to 3D enabling 3D reasoning, which is key for details and generalisation.

5 10 25 50 10
0

20
0

# of renderings per shape

40.5
41.0
41.5
42.0
42.5

FS
 o

f n
ov

el
 c

la
ss

es

Finetuning results in 5-shot 42-way

Figure 2. Number of renderings per shape vs F-score (FS) on novel
classes. We conduct this experiment on the 5-shot learning setting
where we have access to 5 training shapes per novel class. It shows
that increasing the number of renderings does not lead to a perfor-
mance boost after 25 renderings, which explains the choice of 25
renderings used in other experiments.

Figure 3. Class-wise comparison with SDFNet on novel classes of
ShapeNet where novel classes are ordered by descending similari-
ties (defined in Eq. 1) to seen classes. We observe that our method
significantly outperforms the best baseline (SDFNet) in 38 out of
42 novel classes, indicating that the improvement is uniform over
most classes, particularly the ones dissimilar to seen classes.

training shape. In this experiment, we study the im-
pact of the number of renderings per shape. Specifically,
we render each shape from R uniformly sampled view-
points (θazimuth ∈ [0◦, 360◦), θelevation ∈ [−50◦, 50◦)).
As this experiment is expensive to run, we conduct it un-
der the few-shot learning setting (specifically 5-shot) where

we have access to 5 training shapes per novel class. We
then render R = {5, 10, 25, 50, 100, 200} images for each
training shape of novel classes. In Fig. 3 (left), we observe
that increasing the number of renderings does not lead to a
performance boost after 25 renderings, which explains the
choice of 25 renderings used in other experiments.

3. Class-wise comparison

We show class-wise comparison with the best base-
line SDFNet [7] in Fig. 3 (right). We order the novel
classes in the x-axis by their descending similarities to seen
classes. We observe that our method significantly outper-
forms SDFNet in 38 out of 42 novel classes, indicating that
the improvement is uniform over most of classes, particu-
larly the ones dissimilar to seen classes (right side of the
x-axis).

4. Qualitative results

In this section, we provide more qualitative comparison
on the test set of both novel and seen classes. All methods
i.e., Ours, ONet [5] and DISN [8] are trained on 13 seen
classes on ShapeNet. For each method, we visualize the re-
constructed meshes (2563 resolution) given a single RGB
image as the input. In addition, we also show more qualita-
tive results on real images of Pix3D dataset.
Reconstructing unseen shapes of seen classes. We first
compare with ONet [5] and DISN [8] on seen classes, which
is the standard setting for single-image 3D reconstruction.
As shown in Fig. 4, our results are obviously more consis-
tent with the input image than competitors. For example,
our reconstructed sofa (the first row) does not have handles,
resembling the input image. In contrast, the results of DISN
and ONet incorrectly hallucinate the handles, which seem to
be retrieved from training shapes. Our advantage becomes
more clear for challenging cases e.g., lamp in the third row.
These results empirically demonstrate that our method is
able to outperform SOTA under the standard single-image
3D reconstruction setting.
Reconstructing unseen shapes of novel classes. In Fig.5,
our results again attain good consistency with the input im-
ages of novel classes, while DISN and ONet lack structural
details in the input. Moreover, we observe that results of
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Figure 4. Qualitative results of seen classes on ShapeNet. We visualize the reconstructed meshes (2563 resolution) given a single RGB
image as the input. All the methods i.e., Ours, DISN [8], and ONet [5], are trained on the 13 seen classes on ShapeNet. Our results are
obviously more consistent with the input image than competitors. For example, our reconstructed sofa (the first row) does not have handles,
resembling the input image. In contrast, the results of DISN and ONet incorrectly hallucinate the handles, which seem to be retrieved from
training shapes. Our advantage becomes more clear for challenging cases e.g., lamp in the third row.

DISN and ONet degrade significantly on novel classes com-
pared their results to seen classes. For example, our method
recovered the feet and pedals of the piano (the first row),
while DISN and ONet generated cuboids without any de-
tails. Furthermore, our method reconstructed the shape of
the bed (the fourth row), while results of ONet and DISN
look more like a sofa, which is a training class. These re-
sults empirically indicate that our method generalizes better
to diverse unseen shapes of novel classes.

Qualitative results on real images of Pix3D. In Fig.6, our
methods once again achieve the best results on real images.
For example, our method reconstruct handle and feet of
the chair (the second row), while SDFNet, ONet and Mar-
rNet generate meshes that are inconsistent with the input
image. Moreover, our method reconstructed the shape of
the desk (the fifth row), while the second best method i.e.,
SDFNet, produces a table surface with holes. Also, ONet
consistently fails on real images as it always outputs a chair
or sofa shape which is a training class. These results empir-

ically demonstrate that our method generalizes well to real
images despite being trained only on synthetic renderings.

Qualitative results on single-view human reconstruc-
tion. We explore the generalization limit of our method by
evaluating it on articulated human shapes from Human [1]
dataset. In this experiment, the input is a partial 3D point
cloud (around 5000 points on the visible side) obtained
from a depth camera. The task is to reconstruct human
shapes from the input point cloud using our shape comple-
tion model trained solely on ShapeNet. This is extremely
challenging because human shapes are significantly dissim-
ilar to the object shapes of ShapeNet. As shown in Fig. 7,
our method is able to recover the visible details and gener-
ate reasonable surfaces at the backside region (occluded).
These results once again demonstrate the strong generaliza-
tion capability of our approach.
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Figure 5. Qualitative results of novel classes on ShapeNet. We visualize the reconstructed meshes (2563 resolution) given a single RGB
image as the input. All the methods i.e., Ours, DISN [8], and ONet [5], are trained on the 13 seen classes on ShapeNet. Our results attain
good consistency with the input images, while DISN and ONet lack structural details in the input. For example, our method recovered
the feet and pedals of the piano (the first row), while DISN and ONet generated cuboids without any details. Moreover, our method
reconstructed the shape of the bed (the fourth row), while results of ONet and DISN look more like a sofa, which is a training class.
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Figure 6. Qualitative results on real images of Pix3D. We visualize our estimated depth and reconstructed meshes (2563 resolution except
MarrNet is with 1283) given a single real color image as the input. All the methods are trained on synthetic renderings of ShapeNet, then
evaluated on real images, which is particularly challenging due to the substantial domain gap between synthetic renderings and real images.
Our qualitative results are significantly better than other methods on real images, implying the strong generalization performance of our
method.
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Figure 7. Single-view shape completion of articulated human bod-
ies from partial point clouds (note that the back is completely oc-
cluded). Our model is trained on the 13 ShapeNet classes e.g.,
cars, chairs, and airplanes, and has never seen any human shapes.
For three point clouds, we show our reconstructions from two dif-
ferent viewpoints.


