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Motivation

Contributions

• A new method which sequentially predicts front-back 
depth, projects depth into 3D and estimates shapes 
with implicit surfaces which reason in 3D


• A new state-of-the-art on both seen and novel shape 
classes for single-image 3D reconstruction


• Insights: using depth for learning implicit surfaces 
enhances generalization; projecting depth into 3D to 
extract 3D features preserve shape details


• Good few-shot learner: novel classes can be further 
improved by using only few-shot depth supervision
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Qualitative Results

https://virtualhumans.mpi-inf.mpg.de/gin/
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Method: Generalizing Implicit Networks (GIN)

Few-Shot Learning Results

Quantitative Results

Input Image SDFNet OurONet

• Task: 3D reconstruction from a single RGB image  


• Setting: train on 13 ShapeNet classes and evaluate on 
a large number of novel/unseen classes


• Weakness of previous methods

• MarrNet [3] and GenRe [5] are limited by resolution due to voxel repre. 

• ONet [1] has no explicit regularization -> overfit to training classes

• SDFNet [2] fails to predict details due to global shape encoding

Table 1: Comparisons on 
ShapeNet. We report 
Chamfer distance (CD), 
normal consistency (NC) and 
F-score (FS). All methods are 
trained on 13 seen classes 
and evaluated on both seen 
and novel classes.

Table 2: Ablations on 
ShapeNet. BD: back-view 
depth, VC: viewer-centered, 
OC: object-centered 
coordinates. PAMSF: point-
aligned multi-scale features

• Our GIN outperforms SOTA in all metrics, improving SDFNet by 5% on 
seen classes and 9% on novel classes in terms of F-Score 


• Depth and PAMSF are both crucial for achieving the best performance


• Viewer-centered supervision enhances generalization on novel classes 

• Left figure: fine-tune each class separately vs fine-tune all classes together, 
showing that the depth allows our method to benefit more from the 
geometric knowledge shared across shape categories.


• Right figure: the effect of using different supervision signals, indicating that 
our method can be further improved using only few-shot depth supervision

• Training: first, train the depth estimation network and shape completion network separately using the ground 
truth depth maps and shapes in viewer-center coordinate, afterwards, fine-tune both networks end-to-end. 


• Inference: predict front-back depth -> back-project them to 3D voxel space -> estimate occupancies of all 
grid points at desired resolution -> obtain a mesh with Marching Cube algorithm
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