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Abstract

We address the task of estimating the 3D shapes of novel
shape classes from a single RGB image. Prior works are ei-
ther limited to reconstructing known training classes or are
unable to reconstruct high-quality shapes. To solve those
issues, we propose Generalizing Implicit Networks (GIN)
which decomposes 3D reconstruction into 1.) front-back
depth estimation followed by differentiable depth voxeliza-
tion, and 2.) implicit shape completion with 3D features.
The key insight is that the depth estimation network learns
local class-agnostic shape priors, allowing us to generalize
to novel classes, while our implicit shape completion net-
work is able to predict accurate shapes with rich details by
learning implicit surfaces in 3D voxel space. We conduct
extensive experiments on a large-scale benchmark using 55
classes of ShapeNet and real images of Pix3D. We qualita-
tively and quantitatively show that the proposed GIN sig-
nificantly outperforms the state of the art on both seen and
novel shape classes for single-image 3D reconstruction. We
also illustrate that our GIN can be further improved by us-
ing only few-shot depth supervision from novel classes.

1. Introduction
Humans have the remarkable ability to recognize and

imagine the 3D shapes of an arbitrary object presented in
a single RGB image, even when the object has not been
seen before. Such generalization ability is important be-
cause new object categories could appear in the real world.
The goal of this work is to develop a single RGB-image
3D reconstruction method that generalizes well to unseen
shapes within and beyond the training classes.

Single-image 3D reconstruction has been revolutionized
by neural implicit models [24, 35, 27, 50] because they are
not limited by resolution like earlier voxel-based methods.
The idea is to represent the 3D shape with implicit networks
which classify 3D points as being inside or outside the sur-
faces, based on the image. While results on seen classes are
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remarkable, specially in terms of achieved details, a natural
question is whether they generalize to novel classes.

Our experiments show that generalization of those meth-
ods is poor. Most neural implicit models encode the full
image into a single global latent vector [24, 27], thereby
loosing geometric structure crucial for sharing information
across classes (e.g., man-made shapes look locally similar
and have similar attributes). The single global vector makes
those models behave more like a classification into a set
of known templates [39], which completely fails for novel
classes. Another class of models make 3D predictions based
on pixel-aligned features [51], but they do not reason about
shapes in 3D, which makes learning about symmetries and
common object shapes hard. There exist works that com-
plete 3D shapes by reasoning in 3D [8, 28], but they require
3D pointclouds as input. Motivated by David Marr’s [23]
studies of perception, earlier models [45, 54] have proposed
to split the reconstruction process into 2.5D sketch and 3D
completion to improve generalization, but these models are
based on voxels, and hence limited by resolution.

In this paper we propose GIN, a novel neural implicit
model which generalizes well on novel classes. Inspired
by early work [23, 45, 54], we also predict depth as an in-
termediate representation, but we couple it with a powerful
3D reasoning network based on neural fields. Specifically,
GIN consists of two differentiable steps: depth prediction,
and 3D implicit reconstruction based on partial depth point-
clouds. Since depth is a local prediction task, the informa-
tion across classes can be effectively leveraged – intuitively,
each pixel counts as one training data point. In the second
step, we propose to extract local voxel features by unpro-
jecting depth into a 3D voxel grid and applying 3D convo-
lutions, obtaining a multi-scale feature volume. The occu-
pancy for each 3D point is then predicted based on deep
features extracted at continuous locations of the volume.
This allows GIN to reason about object shape globally and
locally, while being invariant to image texture and appear-
ance. Such built in invariance allows us to learn from fewer
examples, and thereby generalizes better than SOTA, as ev-
idenced by our exhaustive experiments.

This paper makes the following contributions. First, we
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propose a hybrid method, named Generalizing Implicit Net-
works (GIN), consisting of two cascaded modules which
sequentially predict front-back depth maps and estimate
shapes with implicit surfaces which reason in 3D. Combin-
ing those modules is new because applying those compo-
nents in isolation (prior works) does not generalize well
to novel shape classes. Secondly, we quantitatively and
qualitatively demonstrate that the proposed GIN signifi-
cantly outperforms the SOTA on seen classes as well as
novel classes on ShapeNet. Despite trained only on syn-
thetic renderings, our GIN shows strong generalization abil-
ity on real images of Pix3D. We also illustrate that our GIN
is able to further improve novel classes using only few-
shot depth supervision, which motivates our title “Any-Shot
GIN”. Finally, we shed new light into the single image 3D
reconstruction problem by conducting extensive ablations
and analysis such as comparing model components and the
choice of coordinate system, and evaluating the importance
of the depth versus 3D shape reasoning.

2. Related work
Here we describe related works in three groups: 3D

reconstruction, reconstructing novel shape classes and
zero/few-shot learning for 2D recognition.
3D reconstruction and completion. Voxel is probably
the most popular shape representation due to its simplic-
ity [29, 36, 11, 46, 47, 44]. However, they were limited
by the output resolution due to the memory requirement.
Another important set of works use meshes as the output
representation [4, 15, 14, 17, 43, 30]. Unfortunately, most
of them are limited to generate meshes with simple topol-
ogy [43], therefore do not generalize well to novel classes.

Recent advances in 3D reconstruction have been
achieved by learning neural fields to represent object sur-
faces [27, 7, 24, 51, 8, 16, 33, 34, 9, 53]. The pioneer
works [24, 27, 7] encode the input image as a global fea-
ture vector and learn a decoder to predict the occupancy
or signed distance of query points. This, however, only
represents surfaces of closed shapes, and was generalized
to include color via the NeRF [26] representation and to
represent also open-surfaces via the NDF [10] representa-
tion. Moreover, local shape features have been incorpo-
rated into the input encoding to better capture surface de-
tails [51, 8, 33, 34, 16, 55, 21, 9, 52]. Specifically, we build
on the feature encoding of [8]: incomplete 3D shapes are
encoded into rich, multi-scale feature fields and decoded
via an MLP into occupancy. Our work also utilizes im-
plicit representation but differs from existing works in three
aspects: (1) we address a different problem to reconstruct
novel shape classes from single RGB image, (2) we explic-
itly use depth maps as an intermediate representation, (3)
we extract local features in 3D voxel space, capturing rich
surfaces details in 3D.

Reconstructing novel shape classes. Despite its impor-
tance, there are only a few prior works in single-image
3D reconstruction of novel shape classes. GenRe [54]
was the first approach to reconstruct novel shapes classes,
consisting of three cascaded networks, i.e., depth estima-
tion network, spherical map inpainting network and voxel
refinement network. Built upon GenRe, GSIR [42] im-
proves its shape representation with cuboids [18]. Both
GenRe [54] and GSIR [42] are voxel-based methods which
are limited by the output resolution. In contrast, our
method uses implicit surfaces which allow to generate high-
resolution shapes. Recently, SDFNet [40] proposes to
incorporate depth maps into an implicit shape networks.
While SDFNet [40] encodes the input depth map as a global
vector, we extract local shape features to capture surface de-
tails. Although Ray-ONet [3] learns local features in image
feature space, our method lifts depth maps into 3D and ex-
tract local features in voxel feature space.

Zero/few-shot learning for 2D recognition. Most of
zero/few-shot works address 2D recognition tasks where
the goal is to predict the class labels of novel classes given
an input image [1, 48, 6, 13]. In contrast, our main focus
is to reconstruct 3D shapes of novel classes from a RGB
image. In general, zero-shot recognition relies on seman-
tic embeddings, e.g., annotated attributes [20] or word em-
beddings [25] to transfer knowledge from seen to novel
classes. On the other hand, few-shot recognition explores
meta-learning [13, 31] and metric learning [41, 6] to learn
novel classes efficiently.

3. Generalizing Implicit Networks (GIN)

We identify three key problems in existing works on sin-
gle image based 3D reconstruction. First, works using voxel
shape representation [54, 45], are restricted by output reso-
lution and typically produce lower quality details. Second,
implicit surfaces based methods alleviate this problem but
directly regressing a 3D shape from a single RGB image
gives the network the option to reason about shape structure
via recognition [24, 51, 39], harming the generalization on
novel shape classes. Lastly, these works often compress the
3D information into a global vector [24, 40] thus losing 3D
structure and surface details. To address these issues, we
propose to factorize the problem into front-back depth esti-
mation and implicit shape completion for better generaliza-
tion to novel shape classes. To capture surface details, we
further propose to lift depth maps into 3D and extract point-
aligned multi-scale features directly in voxel feature space.
Fig. 1 shows an overview of our method.

Problem formulation. Let T = {mk}Kk=1 be our training
set, consisting of K meshes. Each mesh mk is associated
with 2D-renderings, i.e., color and depth, from J different
view-points. Furthermore, each training mesh belongs to



seen shape classes Ys = {car, ship, ...}. Our goal is to
learn a parametric function f that is able to predict the 3D
shapes from a single RGB image belonging to novel classes
Yn = {bookshelf, suitcase, ...}. Note that the seen classes
and novel classes are completely disjoint, i.e., Ys∩Yn = ∅.

3.1. Front-Back Depth Estimation

The first component of our model predicts front and
back depth maps from an RGB color image. Using depth
as an intermediate representation has several advantages.
First, depth contains essential geometric information shared
across different classes which facilitates knowledge transfer
from seen to novel classes. Furthermore, depth estimation
encourages the networks to focus on using geometric cues
rather than recognition [39, 45].

Given an input RGB image I , we learn convolutional
neural networks Ψf and Ψb to predict its front and back
depth maps respectively. Here the front depth map refers to
the per-pixel ray-distance to the visible object surfaces from
the viewpoint of the input image, while the back depth map
is defined via the last surface intersection from the same
viewpoint. We adopt a U-Net [32] architecture for depth
estimation. The networks Ψf and Ψb share the same image
encoder while they have two separate decoders.
Loss function. Instead of optimizing the L2 loss like [54],
we choose to minimize the following continuous version of
the reverse Huber (berHu) loss [19],

LberHu(D̂f , Df ) =

{
|D̂f −Df |, |D̂f −Df | ≤ t
(D̂f−Df )

2+t2

2t otherwise.

where D̂f = Ψf (I) denotes the predicted front depth and
Df is its ground truth. t is a constant that controls where
the switch from L2 and L1 occurs. Following [19], we set
t = 0.2 ∗ maxi(|D̂i

f − Di
f |), where i indexes all pixels in

the current batch. Compared to the L2 loss, the berHu loss
yields larger gradients at small errors by switching to L1,
which is beneficial for small-error regions. Similarly, the
back depth estimator Ψb optimizes the same berHu loss.

3.2. Implicit Shape Completion

The depth maps contain only partial object surfaces. The
second part of our method is a shape completion network
with implicit shape representation to recover the missing
information. Given a latent representation c of the input
observation, e.g., voxel grids, we aim to learn an implicit
network f(c, p) : C × R3 → [0, 1] that predicts the occu-
pancy at a continuous query point p ∈ R3. Thereby, the 3D
surface is implicitly represented as the decision boundary
of the classifier. In this section, we describe three important
elements of our shape completion, i.e., depth voxelization,
point-aligned multi-scale features i.e., the latent encoding c,
and the implicit shape decoder.

Depth voxelization. One of our key contributions is to ex-
tract local and global shape features in 3D which requires
the input to be a 3D voxel grid. To this end, we unproject
front and back depth maps into a combined 3D point cloud
in the viewer-centered coordinate, which requires only the
intrinsic camera parameters. We assume that camera intrin-
sics are fixed, same as prior work [33, 34, 54, 51]. After-
wards, we convert the unordered and irregular point cloud
into a regular 3D grid V ∈ [−0.5, 0.5]N
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where N denotes
the voxel resolution. To make the voxelization differen-
tiable, we compute the value of each voxel cell by averaging
the distance between all points inside this voxel to its center
followed by negating the value and adding one. If a voxel
does not contain any point, we set it to be zero.
Point-aligned multi-scale features. In order to learn de-
tailed shape structures, we follow [8] to extract a rich encod-
ing of the input voxel V with 3D convolutions. Our shape
encoder network Φ consists of L layers of standard 3D con-
volution, non-linearity, batch norm, and max-pooling. Ap-
plying the encoder on the input voxel yields a multi-scale
feature pyramid F1, . . . , FL with growing receptive fields.
While early layer features, e.g., F1 capture local informa-
tion (shape details), the deeper layer features, e.g. FL, en-
code global structures. For an intermediate layer l with
feature maps Fl of Cl channels, we extract a Cl-dim fea-
ture vector by trilinearly interpolating Fl at the query point
p ∈ R3. In addition, we also take into account the con-
text information by extracting features for the 6 surrounding
points of the query point p. Afterwards, we concatenate fea-
tures from those 7 points (including the query point itself)
to produce the point-aligned feature Fl(p) ∈ R7∗Cl . We re-
peat the above process for each intermediate layer and con-
catenate them to obtain the point-aligned multi-scale feature
denoted as Φ(V, p) = cat({Fi(p)}Li=0).
Implicit shape decoder. Given the point-aligned multi-
scale features, our implicit shape decoder f(Φ(V, p)) pre-
dicts the occupancy of the query point p, i.e., the occupancy
is 1 if p is inside the surface otherwise 0. While ONet and
DISN feed the query point p i.e., the x, y, z coordinates to
the decoder, our implicit decoder only relies on the local
shape features of query points Φ(V, p), preventing the net-
work from memorizing the points of training shapes.
Loss function. Since it is a binary classification problem,
we minimize the following binary cross-entropy loss de-
fined for a single query point,

LCE(o, ô) = −o log ô− (1− o) log(1− ô) (1)

where ô denotes the predicted occupancy and o is the
ground truth occupancy of the query point p.
Discussion. Our novelty lies in the combination of using
depth as an intermediate representation, encoding local and
global shape features in 3D voxel space, and decoding with
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Figure 1. Overview of our proposed method GIN for single-image reconstruction of novel classes. Given an input image I , we first
predict its front and back depth maps, i.e., D̂f and D̂b with depth estimation networks, i.e., Ψf and Ψb with a shared encoder. Then
we unproject the depth maps into 3D points followed by voxelizing them into a 3D voxel grid V in viewer-centered coordinate system.
Afterwards, we apply 3D convolutions and extract point-aligned multi-scale features by trilinearly interpolating intermediate feature maps
{F1, F2, . . . , FL} at query point p. Finally, our implicit decoder predicts the occupancy ô of the query point p.

an implicit network. We empirically show that prior works
that apply those techniques in isolation do not generalize
well to novel shape classes (Tab. 1). To our knowledge,
such a combination has not been proposed before, and in
particular not for reconstructing novel shape classes.

3.3. Training and Inference

Here we describe training and inference pipelines. More
implementation details are provided in supplement.
Training pipeline. We adopt a two-stage training algo-
rithm. At the first stage, we train the depth estimation net-
work and shape completion network separately using the
ground truth depth maps and shapes. Afterwards, we fine-
tune the depth estimation and shape completion networks in
an end-to-end manner.
Viewer-centered supervision. While many prior
works [24, 51, 8] are trained with 3D shapes in the
canonical view, we train our network with viewer-centered
supervision where the ground truth shape is present in the
view point of the input image. This has two advantages, i)
we don’t need to estimate camera pose at inference time
and ii) our desired output is pixel aligned. We found that
networks trained with the viewer-centered supervision
generalizes better to novel categories (see Tab. 2).
Query point sampling. To train the implicit network,
we combine two different point sampling strategies with
equal probabilities (0.5). The first strategy samples points
near surfaces by adding a Gaussian noise to the surface
points, i.e., p = ps + n with ps being a surface point and
n ∼ N (0, 0.01). In addition, we sample continuous points
uniformly from the unit 3D cube, i.e., p ∼ U(−0.5, 0.5).
Inference. At the test time, given a single RGB image, we
want to reconstruct the 3D surface of the object shown in the
image. First, we predict its front and back depth maps using
the learned depth estimation networks. Then we convert the
depth maps into 3D voxel grids as described in Sec. 3.2. Af-
terwards, we construct a 3D grid at desired resolution and

compute occupancies of all grid points with the learned im-
plicit shape completion network. Finally, we transform the
resulting occupancy grid into a mesh by running the classi-
cal marching cubes algorithm [22]. It is worth noting that
our method does not need to estimate the camera pose be-
cause it predicts 3D shapes in viewer-centered coordinate.

4. Experiments

Here we first describe baselines and evaluation settings.
In Section 4.1, we compare with SOTA quantitatively and
qualitatively. In Section 4.2, we ablate our model compo-
nents, back depth, choice of coordinates, and show per-class
performance analysis. Finally, we present results in few-
shot single-image 3D reconstruction setting in Section 4.3.
Dataset. We follow the SDFNet [40] benchmark because it
is the largest scale evaluation benchmark for single-image
3D reconstruction. The benchmark utilizes the ShapeNet-
Core.v2 [5] dataset which consists of over 50K meshes
from 55 object categories. It treats the 13 largest categories
as seen classes and the remaining 42 categories as novel
classes. Within each class, the shapes are randomly split
into training, validation, and test sets. In addition, we also
test our model, trained on synthetic renderings of ShapeNet,
on real images from Pix3D [37], mainly consisting of fur-
niture images from the IKEA website.
Data generation. To generate synthetic renderings for
ShapeNet, we adopt the rendering code provided by
SDFNet [40] to generate images in Blender [12]. Specifi-
cally, each shape is rendered from J = 25 different view
points uniformly sampled from θazimuth ∈ [0◦, 360◦),
θelevation ∈ [−50◦, 50◦). Our viewpoints are the same
as for SDFNet (2DOF setting). We normalize each
mesh to fit inside a unit cube after the viewpoint rota-
tion such that the resulting depth maps are in a normalized
range ([−0.5, 0.5]). The distance to the camera is fixed to
be 2.2, which is standard for single-image 3D reconstruc-
tion [11, 24, 54]. The rendering pipeline in total results in
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Figure 2. Qualitative comparison on ShapeNet. We visualize the reconstruction results from a single RGB image of novel classes. All the
methods are trained on the 13 seen classes on ShapeNet. Our results are obviously more consistent with the input image than competitors.

over 1.3M images of size 256×256. In addition to the RGB
images, we also render their corresponding depth images.
We compute watertight meshes using the code provided by
DISN [51]. For a fair comparison, these watertight meshes
are used as ground-truth for all methods.
Metric. As our goal is to evaluate the quality of surface
reconstruction, we use the widely-used F-Score (FS) [39],
Chamfer distance (CD) [2], and normal consistency (NC)
which are reliable metrics for measuring the distance be-
tween object surfaces [39]. In all of our experiments, the
distance is computed with 100K points sampled from pre-
dicted and ground-truth mesh pairs. We follow SDFNet [40]
to report the FS at distance threshold 0.01. We compute the
FS, CD, and NC within each class and report the mean.
Evaluation protocol. Unless otherwise specified, we train
a single model on all the training examples of seen classes.
The network is then evaluated on the unseen shapes from
both seen and novel classes. All the 25 random views per
training shape are used for training, while only a random
view per test shape is selected for evaluation. For the meth-
ods that predict 3D shapes in the camera view, i.e., ours,
GenRe [54] and SDFNet [40], we rotate the ground truth
mesh to the input viewpoint for evaluation.

4.1. Comparison with SOTA

In the following, we compare with SOTA baselines on
ShapeNet and Pix3D quantitatively and qualitatively .
Baselines. We compare our method against the following
state-of-the-art baselines. GenRe [54] and SDFNet [40] de-
fine the state-of-the-art in single-image 3D reconstruction
for novel classes. MarrNet [45] and GenRe [54] also predict

Seen Classes Novel Classes
Method CD ↓ NC ↑ FS ↑ CD ↓ NC ↑ FS ↑
GenRe [54] 0.153 0.60 0.12 0.172 0.61 0.11
MarrNet [45] 0.116 0.68 0.15 0.127 0.69 0.13
ONet [24] 0.081 0.78 0.25 0.145 0.72 0.15
DISN [51] 0.070 0.77 0.33 0.124 0.72 0.20
SDFNet [40] 0.050 0.79 0.42 0.080 0.76 0.31
GIN (ours) 0.042 0.79 0.47 0.056 0.79 0.40

Table 1. Comparison with SOTA on ShapeNet. We report Chamfer
distance (CD), normal consistency (NC) and F-score (FS) at dis-
tance threshold 0.01. All methods are trained on 13 seen classes
and evaluated on both seen and novel classes.

depth but are based on voxels. ONet [24] and DISN [51]
are representative methods with implicit shape representa-
tion. We directly take results of GenRe and SDFNet from
[40] because we use the same renderings and data splits. We
obtain the results of other methods by running the publicly
released codes on our renderings.
Reconstructing unseen shapes of seen classes. We first
conduct evaluation on the seen classes, which is the stan-
dard evaluation setting used in single-image 3D reconstruc-
tion [24, 51]. As shown in Tab. 1 (Seen Classes columns),
our method achieves the best CD and FS. In particular, our
results exceed the second best method, i.e., SDFNet by
16.0% and 5% in terms of CD and FS respectively. This
empirically indicates that extracting local shape features is
critical for the performance.
Reconstructing unseen shapes of novel classes. Further-
more, we compare with different methods on 42 novel
classes that are excluded from the training set. This is a
highly challenging task because it is not possible to learn
class-specific shape priors of novel classes from training
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Figure 3. Qualitative comparison on real images from Pix3D [37]. All models are trained on the synthetic renderings of ShapeNet. Our
results are significantly better aligned with the inputs than the baselines.

data and accomplishing this task requires strong generaliza-
tion abilities. The results are presented in Tab. 1 (Novel
Classes columns). We have the following observations.
First, our method significantly outperforms all baselines
by a wide margin, surpassing the second best method
SDFNet [40] by 30.0% and 9% in terms of CD and FS re-
spectively. Secondly, while all methods suffer from a per-
formance drop from seen to novel classes, our method has
the smallest drop among implicit methods, which indicates
the strong generalization ability of our approach.

Qualitative results on novel classes of ShapeNet. We
present qualitative results in Fig. 2. Our results are obvi-
ously more consistent with input images while competitors
either fail to recover input details or output shapes with
wrong topology. For example, our method is able to re-
construct the handle of the suitcase (1-st row), the struc-
tural details of the bike (2-nd row), the empty shelves of
the bookcase (3-th row), and the handle of the mug (the
fourth row). However, competitors like SDFNet [40] or
ONet [24], always produce overly smooth surfaces. This
is because our method extracts point-aligned multi-scale
shape features to capture details, while SDFNet encodes the
input with a global feature vector where detailed informa-
tion is lost. DISN [51] attempts to learn local features from
2D image features, but resulting in global topology errors.
These results confirm the importance of using depth as an
intermediate representation, learning local shape features in
3D voxel space and decoding with implicit networks.

Qualitative results on real images. We further evaluate
how our model trained on synthetic renderings, generalizes
to real images from Pix3D [37]. Note that this is a highly
challenging setting due to the substantial domain gap be-
tween synthetic renderings and real images. To reduce the

gap and increase the training data diversity, we apply strong
data augmentations on synthetic renderings i.e., color jitter-
ing, adding lighting noise and overlaying synthetic render-
ings with real background images from SUN [49]. For a
fair comparison, all the methods are trained on the same
synthetic renderings of the 13 ShapeNet classes. Some
qualitative results are shown in Fig. 3 where the first two
rows (bed and sofa) are seen classes and last two rows (bed
and desk) are novel classes. Despite only trained on syn-
thetic ShapeNet, we find that our method generates signifi-
cantly better reconstructions with rich details than the base-
lines, validating the domain transferability of our approach.
More qualitative results can be found in the supplement.

4.2. Model Analysis

In this section, we ablate different components of our
method and analyze per-class performance.
Impact of depth estimation and point-aligned multi-
scale features. We ablate the two important modules of our
method by: (1) replacing the depth estimation network with
a 3D CNN that directly predicts the 3D voxel shapes; (2)
replacing point-aligned multi-scale features module with a
2D CNN that extracts features from estimated depth images.
In Tab. 2, we observe that both changes (Ours w/o PAMSF
and Ours w/o Depth) lead to a significant performance drop
compared to our full method, implying the importance of
using depth as an intermediate representation and learning
local features in 3D.
Impact of back depth. We show the impact of using back-
view depth (BD) in Tab. 2. If the input to our implicit shape
completion network is the oracle depth, removing BD leads
to a significant performance drop. This is expected because
the oracle front and back depth almost provide a complete



Seen Classes Novel Classes
Method Coordinate CD ↓ FS ↑ CD ↓ FS ↑

EST Depth

Ours VC 0.042 0.47 0.056 0.40
Ours w/o BD VC 0.043 0.48 0.059 0.40
Ours OC 0.042 0.48 0.059 0.38
Ours w/o Depth VC 0.060 0.35 0.086 0.25
Ours w/o PAMSF VC 0.056 0.36 0.073 0.28

Oracle Depth
Ours VC 0.012 0.91 0.015 0.87
Ours w/o BD VC 0.022 0.77 0.030 0.71
Ours OC 0.012 0.91 0.019 0.83

Table 2. Ablation studies on using estimated depth (EST Depth),
ground truth depth (oracle depth), back-view depth (BD) and
choices of coordinate system: viewer-centered (VC) and object-
centered (OC) coordinates. We also ablate the depth es-
timation (Depth) module and point-aligned multi-scale fea-
tures (PAMSF). We report the Chamfer distance (CD) and F-
score (FS) on both seen and novel classes.

Ground truth Ours Ours w/o BD

Figure 4. Qualitative results of ablating the back-view depth (BD)
estimation. Without BD, the invisible side of the reconstruction
does not have reasonable surfaces qualitatively.

object surface. If the estimated depth is used, using BD
leads to a slight reduction in CD. Moreover, comparing the
qualitative results in Fig. 4, we observe that BD yields a
more globally coherent surface on the invisible side which
may not be reflected quantitatively.
Impact of coordinate system. Furthermore, we study how
the choices of coordinate systems affect the generalization
ability. While many prior methods [24, 51, 27, 38] predict
shapes in an object-centered (OC) coordinate system, i.e.,
a canonical view, our method uses a viewer-centered (VC)
coordinate system. As shown in Tab. 2, while OC achieves
comparable results with VC on seen classes, VC general-
izes significantly better to novel classes than OC consis-
tently. Intuitively, OC aligns all the ground truth meshes
to a canonical view which makes it easier to fit the train-
ing data. However, as a canonical view for novel classes
is not defined, OC does not generalize well to the object
categories that are not seen during training.
Per-class F-score vs depth error. In Fig. 5, we show per-
class F-score and depth estimation RMSE of both seen and
novel classes. We have the following observations. First,
our depth estimation network generalizes well to novel
classes e.g., most of novel classes have a depth RMSE lower
than 0.04, laying a good foundation for our shape comple-
tion network. Moreover, the per-class F-scores are strongly
correlated with the depth RMS, i.e., a lower depth RMSE
tends to have a higher F-score.

In addition, compared to the seen classes, we observe
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Figure 5. Per-class depth error vs F-score of our method. We report
root-mean-squared error (RMSE) for depth estimation. It shows
that F-score strongly correlates with the depth RMSE.
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Figure 6. Qualitative results of 4 novel classes from easy to diffi-
cult. CD to seen classes indicates the distance of a given class to
seen classes (smaller distance means higher similarity).

that results of novel classes have a higher deviation, rang-
ing from 0.23 to 0.67 in terms of F-score. We speculate that
this is related to their similarities to seen classes. Formally,
for each novel class with shapes, we estimate its dissim-
ilarity to seen classes by computing its Chamfer distance
to the training set. Indeed, we found that the novel class
F-score is strongly correlated with its dissimilarity to train-
ing classes (Pearson correlation -0.66). In Fig. 6, we show
that the qualitative results gradually become worse with an
increasing dissimilarity to seen classes. Nevertheless, our
results are able to capture input details while ONet tends
to output a over-smooth shape. These results again confirm
that learning local features in 3D voxel space is crucial.

4.3. Analysis in Few-Shot Reconstruction

Previous experiments show that our method generalizes
well to the novel classes that are not observed during train-
ing. While it is expensive to collect a large number of train-
ing shapes, it is often realistic to assume that a few train-
ing shapes are available for novel classes, namely few-shot
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Figure 7. Results of novel classes under the few-shot single-image 3D reconstruction setting. Left: the effect of pretraining on seen classes,
middle: fine-tune each class separately vs fine-tune all classes together, showing that the depth allows our method to benefit more from the
geometric knowledge shared across shape categories, right: the effect of using different supervision signals, indicating that our method can
be further improved by using only few-shot depth supervision.

single-image reconstruction. In this section, we conduct ex-
tensive analyses under this setting to show interesting in-
sights regarding the effect of gradually enlarging training
set, learning strategies, and different level of supervisions.

Experimental setup. We conduct experiments on
ShapeNetv2 [5] and use the same class splits (13/42
seen/novel classes) introduced in Sec. 4. The training set
of seen classes and test set remain unchanged too. In
addition, for each novel class, we randomly draw k =
{5, 10, 20, 50, 100} shapes incrementally from its training
set. Note that we simply take all examples when the num-
ber of available training shapes is smaller than k. In total,
there are over 10K training meshes from 42 novel classes.

Effect of pretraining. We compare two different initial-
izations i.e., random initialization and the model pretrained
on seen classes. We present the results with different num-
bers of training shapes in Fig. 7 (left). The performance
gap tends to decrease with the increasing number of train-
ing shapes. The key message is that it is beneficial to first
pretrain the reconstruction model on some relevant classes
when training data is scarce. In the subsequent experiments,
we always initialize our model with the pretrained one.

Fine-tune each class separately vs fine-tune all classes.
Here we investigate two different learning strategies i.e.,
fine-tune the pretrained model on each novel class sep-
arately (42 models) and fine-tune all novel classes to-
gether (one model). We present the results in Fig. 7 (mid-
dle). For ONet, we observe that fine-tuning each class sep-
arately performs slightly better than fine-tuning all classes,
which is expected because learning to reconstruct a single
class is easier than to reconstruct all classes. In contrast, for
our method, fine-tuning all classes consistently outperforms
fine-tuning each class separately. This can be attributed to
the intermediate depth maps used in our method, encod-
ing class-agnostic priors which facilitate knowledge sharing
across different classes. In the subsequent experiments, we
always fine-tune all classes together.

Depth is almost all you need. Furthermore, we compare
three different supervision signals used to improve novel
classes: (1) using 3D shapes as supervision to fine-tune our
method (2) using only ground truth depth maps as supervi-
sion to fine-tune depth (front only) estimation network (3)
using 3D shapes as supervision to only fine-tune shape com-
pletion network. As shown in Fig. 7 (right), there is a small
performance gap between fine-tuning only depth and fine-
tuning both shape and depth. This is encouraging because
collecting ground truth depth images is far cheaper than 3D
shapes. These experiments demonstrate that just by improv-
ing depth prediction using fine-tuning, we can significantly
improve the reconstruction quality.

5. Conclusion

In this work, we have introduced Generalizing Implicit
Networks (GIN) for single-image 3D reconstruction of
novel shape classes. First, we argue that using depth maps
as an intermediate representation for learning implicit sur-
faces enhances the generalizability, facilitating knowledge
sharing across shape categories. Secondly, we propose to
lift the depth maps into 3D and complete them with an im-
plicit network, preserving the local details and reasoning
globally. We empirically show that our GIN significantly
outperforms the state of the art (e.g., SDFNet), improving
the Chamfer distance by 16.0% and 30.0% on seen and
novel shape classes respectively. Qualitatively, our recon-
struction preserves better surface details contained in the
input image than the competitors (Fig. 2). Although trained
on only synthetic renderings, our GIN generalizes well on
real images (Fig. 3).
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