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Fig. 1: We present COUCH. A dataset and model to synthesizes controllable,
contact-based human-chair interactions.

Abstract. Humans interact with an object in many different ways by
making contact at different locations, creating a highly complex motion
space that can be difficult to learn, particularly when synthesizing such
human interactions in a controllable manner. Existing works on synthe-
sizing human scene interaction focus on the high-level control of action
but do not consider the fine-grained control of motion. In this work, we
study the problem of synthesizing scene interactions conditioned on dif-
ferent contact positions on the object. As a testbed to investigate this
new problem, we focus on human-chair interaction as one of the most
common actions which exhibit large variability in terms of contacts. We
propose a novel synthesis framework COUCH that plans ahead the mo-
tion by predicting contact-aware control signals of the hands, which are
then used to synthesize contact-conditioned interactions. Furthermore,
we contribute a large human-chair interaction dataset with clean annota-
tions, the COUCH Dataset. Our method shows significant quantitative
and qualitative improvements over existing methods for human-object in-
teractions. More importantly, our method enables control of the motion
through user-specified or automatically predicted contacts. Our dataset,
model and code will be available at [1].
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1 Introduction

To synthesize realistic virtual humans which can achieve goals and act upon the
environment, reasoning about the interactions and in turn contacts, is necessary.
Reaching a goal, like sitting on a chair, is often preceded by intentional contact
with the hand to support the body. In this work we investigate a motion synthesis
method which exploits predictable contact to achieve more control and diversity
over the animations.

Although most applications in VR/AR, digital content creation and robotics
require synthesizing motion within the environment, it is not considered in the
majority of works in human motion synthesis [40,41,39,33]. Recent work does
take the environment into account but is limited to synthesizing static poses [23,58].
Synthesising dynamic human motion coherent with the environment is a sub-
stantially harder task [47,22,26,48,49] and recent works show promising results.
However, these methods do not reason about intentional contacts with the en-
vironment, and can not be controlled with user provided contacts.

Thus, in this work, we investigate a new problem: synthesizing human mo-
tion conditioned on contact positions on the object to allow for controllable
movement variations. As a testbed to investigate this new problem, we focus on
human-chair interactions as one of the most common actions, which are of crucial
importance for ergonomics, avatars in virtual reality or video game animation.
Contact-driven motion synthesis is a more challenging learning problem com-
pared to conditioning only on coarse object geometry [47,22]. First, the human
needs to approach the chair differently depending on the contacts, regardless
of the starting position, walking around it if necessary. Second, a chair can be
approached and contacted in many different ways; we can directly sit without
using our hands, or we can first support the body weight using the left/right or
both hands with different parts of the chair. Furthermore, individual styled free-
interactions can be modelled such as leaning back, stretching legs, using hands
to support the head, and so on.

Contact driven motion allows for providing more detailed instructions to the
virtual human such as approaching to sit on the chair, while supporting the body
with the left hand and placing it on the armrest, as illustrated in Figure 1. Given
the contact and the goal, the full-body needs to coordinate at run-time to achieve
a plausible sequence of pose transitions. Intuitively, this emulates our planning
of motion as real humans: we plan in terms of goals and intermediate object
contacts to reach; the full-body then moves to follow such desired trajectories.

To this end, we propose COUCH, a method for controllable contact driven
human-chair interactions, which is composed of two core components: 1) Con-
trolNet is responsible for motion planning by predicting the future control signal
of the body limbs which guides the future body movement. Our spatial-temporal
control signal consists of dynamic trajectories of the hands towards the contact
points and the local phase, an auxiliary continuous variable that encodes the
temporal information of a limb during a particular movement (e.g. the left hand
reaching an armrest). 2) PoseNet conditions on the predicted control signal
to synthesise motion that follows the dynamic trajectories, ensuring the con-
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tact point is reached. At runtime, COUCH can operate in two modes. First, in
an interactive mode where the user specifies the desired contact points on the
target object. Second, in a generative mode where COUCH can automatically
sample diverse intentional contacts on the object with a novel neural network
called ContactNet. Training and evaluating COUCH calls for a dataset of rich
and accurate human chair interactions. Existing interaction 3D datasets [47] are
captured with Inertial Sensors, and hence do not capture the real body motion
and the contacts with the real chair geometry – instead synthetic chairs are
fit to the avatar as post-process in those works. Hence, to jointly capture real
human-chair interactions with fine-grained contacts, we fit the SMPL model [37]
and scanned chair models to data obtained from multiple Kinects and IMUs.
The dataset (the COUCH dataset, Table 4) consists of 3 hours (over 500 se-
quences) of motion capture (MoCap) on human-chair interactions. Moreover it
features multiple subjects, accurately captured contacts with registered chairs,
and annotation on the type of hand contact. Our experiments demonstrate that
COUCH runs in real-time at 30 fps, COUCH generalizes across chairs of var-
ied geometry, and different starting positions relative to the chair. Compared
to SoTA models (trained on the same data) adapted to incorporate contacts,
our method significantly outperforms them in terms of control by improving the
average contact distance by 55%.

The contributions of our work can be summarized as follows:

– We propose COUCH, the first method for synthesizing controllable contact-
based human-chair interactions. Given the same input control, the COUCHmodel
can achieve diverse sitting motions. By specifying different control signals,
the user enables control over the style of interaction with the object. Results
show our method outperforms the state of the art both qualitatively and
quantitatively.

– To train COUCH, we captured a large-scale MoCap dataset consisting of 3
hours (over 500 sequences) of human interacting with chairs different styles
of sitting and free movements. The dataset features multiple subject, real
chair geometry, accurately annotated hand contacts, and RGB-D images.

– To stimulate further research in controllable synthesis of human motion, we
will release the COUCH model and dataset.

2 Related Work

Scene agnostic human motion prediction. Synthesizing realistic human
motion has drawn much attention from the computer vision and graphics com-
munities. However, many methods do not take the scene into account. Existing
methods on short (∼1 sec) [40,20,41,16,54,51,5,55,24] and long (>1 min) [28,18]
term 3D human motion prediction aim to produce realistic-looking human mo-
tion (typically walking and its variants). There also exists work on conditional
motion generation based on music [33]. These methods have two major limita-
tions, i) except for work that use generative models [36,21,19,6,25], these methods
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are largely deterministic and cannot be used to generate diverse motions and ii)
this body of work is unfortunately agnostic to scene geometry [32,39], which is
critical to model human scene interactions. Our method on the other hand can
generate realistic motion and interactions, taking into account the 3D scene.

Affordance and Static Scene Interactions. Although the focus of our work
is to model human-scene interactions over time, we find the works predicting
static affordances in a 3D scene [34] relevant. This branch of work aims at pre-
dicting static humans in a scene [58,57,23] that satisfies the scene constraints.
More recently there have been attempts to model fine-grained interactions (con-
tacts) between the hand and objects [15,50,9,31].

The aforementioned methods focus on predicting static humans / human
poses that satisfy the scene constraints in case of affordances or grasping an
object in case of hand-object interactions. But these methods cannot produce a
full sequence of human motion and interaction with the scene. Ours is the first
approach that can model fine-grained interactions (contacts) between an object
in the scene and the human.

Dynamic Scene Interactions. Although various algorithms have been pro-
posed for scene-agnostic motion prediction, affordance prediction as well as the
synthesis of static human-scene interaction, generating dynamic human-scene
interactions is less explored. Recent advances include predicting human motion
from scene images [10], and using a semantic graph and RNN to predict hu-
man and object movements [14]. More recently, Wang et al. [52] introduce a
hierarchical framework that generates ‘in-between’ locations and poses on the
scene and interpolates between the goal poses. However, it requires a carefully
tuned post-optimization step over the full motion synthesis to solve the discon-
tinuity of motion between sub-goals and to achieve robust foot contacts with
the scene. Alternatively, Chao et al. [13] use a reinforcement learning based ap-
proach by training a meta controller to coordinate sub-controllers to complete a
sitting task. An important category of human-scene interaction involves perform-
ing locomotion on uneven terrains. The Phase-functioned Neural Network [27]
first introduced the use of external phase variables to represent the state of the
motion cycle. Zhang et al. [56] applies same concept for quadruped motion and
further incorporates a gating network that segments the locomotion modes based
on foot velocities. Both works show impressive results thanks to the mixture of
experts [17] styled architectures.

The most relevant work to us, are the Neural State Machine (NSM) [47] and
SAMP [22]. While NSM is a powerful method and models human-scene inter-
actions such as sitting, carrying boxes and opening doors, it does not generate
motion variations for the same task and object geometry. SAMP predicts diverse
goal locations in the scene for the virtual human, which is then used to drive
the motion generation. Our work takes inspiration from these works, but it is
demonstrated qualitatively and quantitatively from our experiments that nei-
ther of the work enables control over the style of interaction (Section 5.2). Our
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Right handed contacts

Contacts with both hands

Fig. 2: (A) The COUCH dataset captures a diverse range chair interaction with
an emphasis on hand contacts. It consists of RGB-D images, corresponding Mo-
Cap in the SMPL [37] format, chair geometry and annotations on types of hand
interaction. (B) COUCH dataset captures natural modes of interactions with
a chair, as demonstrated by the heatmaps of contact clusters. Most common
contacts while sitting, include right hand support or both hands.

work focus on controllable, fine-grained interactions given on contacts on the
object. To the best of our knowledge, no previous work has tackled the problem
of generating controllable human-chair interactions.

3 The COUCH Dataset

Large scale datasets of human motion such as AMASS [38] and H3.6m [29] have
allowed us to build models of human motion. Unfortunately these datasets only
contain sequences of 3D poses but no information about the 3D environment,
making these datasets unsuitable for learning human interactions. On the other
hand, datasets containing human-object interactions are either restricted to just
hands [9], contain only static human poses [50,23] without any motion, or have
little variation in motion [47].

We present a multi-subject dataset of human chair interactions. Our dataset
consists of 6 different subjects interacting with chairs with over 500 motion
sequences. We collect our dataset using 17 wearable Inertial Measurement Units
(XSens) [4], from which we obtain high-quality pose sequences in SMPL [37]
format using Unity [30]. The total capture length is 3 hours.

Motion capture with marker-based capture systems is restrictive to captur-
ing human-object interactions because markers often get occluded during the
interactions leading to inaccurate tracking. IMU-based systems are prevalent
for large-scale motion capture, however, the error from its calibration can lower
the accuracy of the motion. We propose to combine IMUs with Kinect-based
capture system as an efficient trade-off between scalability and accuracy. Our
capture system is lightweight and can be generalized to capture many human
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Table 1: Comparison with existing motion capture datasets for human chair
interactions. The COUCH dataset features registered real chairs models, multiple
subject, and RGB-D data. The types of hand contact are also annotated.

Features NSM[47] SAMP[22] Ours

Real Objects ✗ ✓ ✓

Multiple Subjects ✗ ✗ ✓

Contact Types ✗ ✗ ✓

RGB-D ✗ ✗ ✓

scene interactions. We use the SMPL registration method similar to [8,44,7] to
obtain SMPL fits for our data. The dataset is captured in four different indoor
scenes. The average fitting error for the SMPL human model, and the chair scans
to the point clouds from the Kinects are 3.12 cm and 1.70 cm, respectively (in
Chamfer distance). More details about data capture can be found in supp. mat.

Diversity on Starting Points and Styles. We capture people approaching
the chairs from different starting points surrounding the chairs. Each subject
then performs different styles of interactions with the chairs during sitting. This
includes, one hand touching the arm of the chair, both hands touching the arm-
rests of the chair, one hand touching the sitting plane of the chair before sitting
down, and no hand contacts. It also includes free interactions such as crossing
legs or leaning forward and backward on the chairs. To ensure the naturalness
of motion, each subject is only provided with high-level instruction before cap-
turing each sequence and was asked to perform their styles freely. Annotations
of the direction of the starting points relative to the chair as well as the type of
hand contact are included in the dataset.

Objects. Our dataset contains three different chair models that vary in terms of
their shapes, as well as a sofa. The objects are 3D scanned [3,2] before registering
into the Kinect captured point clouds. To generalize the synthesized motion to
unseen objects, we perform data augmentation as in [47].

Contacts. Studying contact-conditioned interaction calls for accurate contacts
to be annotated in the dataset. Since we capture both the body motion and the
object pose, it is possible to capture contacts between the body and the object.
We detect the contacts of five key joints of the virtual human skeleton, which are
the pelvis, hands, and feet. We then augment our data by randomly switching
or scaling the object at each frame. The data augmentation is performed on
30 instances from ShapeNet [12] over categories of straight chairs, chairs with
arms, and sofas. At every frame, we project the contacts detected from the
ground truth data to the new object, and apply full-body inverse kinematics to
recompute the pose such that the contacts are consistent, keeping the original
context of the motion.
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Fig. 3: Given user specified or model generated contacts, our proposed method
which consists of the ControlNet and the PoseNet, auto-regressively synthesizes
contact satisfying motion.

4 Method

We address the problem of synthesising 3D human motion that is natural and
satisfies environmental geometry constraints and user-defined contacts with the
chair. COUCH allows fine-grained control over how the human interacts with
the chair. At run-time, our model operates in two modes. First, a generative
mode where COUCH can automatically sample diverse intentional contacts on
the object with our proposed generative model. Second, an interactive mode
where the user specifies the desired contact points on the target object.
The input to our method is the current character pose, the target chair geometry
as well the target contacts for the hands that need to be met. Our method takes
these inputs and predicts the future poses that satisfy the desired contacts auto-
regressively.

4.1 Key Insights

Synthesising natural human motion subject to environmental constraints is a
challenging task [47,22,27], particularly when also satisfying a set of desired con-
tacts. To this end, we first divide our motion synthesis task into motion planning
and motion prediction. We derive our intuition from the way humans execute
complex interactions e.g., to sit on the chair, we first prepare a mental model
of how we will sit (place a hand on the arm-rest and sit, place a hand on the
sitting plane and sit or just sit without using the hands etc.) and then we move
our bodies accordingly. We propose two neural networks ControlNet fCN(·), and
PoseNet fPN(·), for motion planning and motion prediction respectively.
Furthermore, we observe that it is useful to perform detailed hand motion plan-
ning only when we are close to the chair right before sitting and not when we
are far off. Thus, we decompose the motion synthesis into approaching and sit-
ting. The approaching motion can be generated directly with PoseNet but both
networks are required for sitting, ControlNet and PoseNet, for generating the
sitting motion that satisfies the given contacts.
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4.2 Motion Planning with ControlNet

ControlNet is the core of our method and plays an important role in motion
planning, that is predicting the future control signals of the key joints which
are used to guide the body motions. At a high level, the contact-aware control
signal contains the local phases and the future locations of the key joints (in our
case, the two hands). The local phase is an auxiliary variable that encodes the
temporal alignment of motion for each of the hands and prepares for a future
contact to be made. When the virtual human is ready to make contact with the
chair, and at the beginning of the hand movement, the local phase is equal to 0,
and it gradually reaches the value 1 as the hand comes closer to the contact. The
hand trajectory, on the other hand, encodes the spatial relationship between the
hand joint and the given contact location.

More formally, we define our spatial-temporal control signal at frame i+1 to
be C+

i+1 = {h+
i+1, ϕ

+
i+1}, where h+

i+1 ∈ R2×3×τ+

represents the future position
of the two hand joints relative to their corresponding desired contact point c ∈
R2×3, and their local phases are represented by ϕ+

i ∈ R2×τ+

. We predict the
control signal for τ+ = 7 time stamps sampled uniformly between [0, 1] second
window centered at frame i+ 1.
We use an LSTM based fCN(·) to predict the control signal,

C+
i+1 = fCN(h̃i, ϕi), (1)

where h̃i ∈ R2×3×τ+

denote τ+ points interpolated uniformly on the straight
line from the current hand locations to their desired contact locations c. Intu-
itively, these interpolated positions encourages the ControlNet to predict future
hand trajectories that always reach the given contacts. ϕi ∈ R2×τ denotes the
local phases of the hands over τ = 13 frames sampled uniformly between the
[-1, 1] second window centered at frame i.

The ControlNet is trained to minimize the following MSE loss on the future
hand trajectories and the local phase, which is formulated as follows:

Lcontrol = λ1∥h+
i+1 − ĥ+

i+1∥
2
2 + λ2∥ϕ+

i+1 − ϕ̂+
i+1∥

2
2 + λ3Lreg. (2)

Here, h+
i+1, ϕ

+
i+1 are the network predicted future trajectories and local phases.

ĥ+
i+1, ϕ̂

+
i+1 are the corresponding GT. We also introduce an additional regular-

ization term Lreg = ∥h+
i+1 − h̃i∥2. Please see supplementary for implementation

details regarding the network architectures and training.

4.3 Motion Synthesis with PoseNet

ControlNet generates important signals that guide the motion of the person such
that user-defined contacts are satisfied. To this end, we train PoseNet fPN(·),
that takes as input the control signals predicted by the ControlNet along with
the 3D scene and motion in the past and predicts full body motion.
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Ji+1,T
+
i+1,G

+
i+1,Φi+1, j̃

p

i+1, T̃i+1, bi+1 = fPN(C+
i ,Ji,Ti,Gi, Ii,Ei,Φi), (3)

where C+
i is the control signal generated by the ControlNet. We represent the

current state of motion for the human model: Ji = (jpi , j
v
i , j

r
i ) contains root

relative position jpi ∈ Rj×3, rotation jvi ∈ Rj×6 and velocity jri ∈ Rj×3 of each
joint at frame i. We use j = 22 joints for our human model. Ti = (tpi , t

d
i , t

a
i )

contains the root positions tpi ∈ Rτ×3 and rotation tdi ∈ Rτ×6 for τ = 13
frames sampled uniformly between the [-1, 1] second window centered at frame
i. tai ∈ Rτ×3 are the soft labels which describe current action over ours three
action classes, namely, idle, walk, and sit. Inspired by Starke et al., [47], we also
use intermediate goals Gi = (gp

i , g
d
i , g

a
i ), where gp

i ∈ Rτ×3, gd
i ∈ Rτ×6 are the

goal positions and orientations at frame i. ga
i ∈ Rτ×3 are the one-hot labels

describing the intended goal action.
To accurately capture the spatial relation between the person and the chair, we
voxelize the chair into an 8×8×8 grid and store at each voxel its occupancy (R)
and the relative vector between the root joint of the person and the voxel (R3).
This allows us to reason about the distance between the person and different
parts of the chair. We flatten this grid to obtain our chair encoding Ii ∈ R2048

at time-step i.
In order to explicitly reason about the collisions of the person with the chair,
we voxelize the region around the person into a cylindrical ego-centric grid and
store the occupancies corresponding to the chair (if it is inside the grid). We
flatten the occupancy feature to obtain Ei ∈ R1408. It is important to note that
although Ii and Ei are scene encodings that serve different purposes. Ii is chair-
centric and entails information about how far is the person from the chair and
the geometry of the chair, while Ei is ego-centric and detects collisions in the
surrounding of the human model. In addition, we also introduce an auxiliary
variable Φ ∈ [0, 1] as in [41,27], which encodes the global phase of the motion.
When approaching the goal, the represents the timing within a walking cycle,
for sitting the phase equals 0 when the person is still standing and reaches 1
when the person has sat.
The components of the output of the network differs from the input to a small
extend by additionally predicting j̃

p

i+1 are the joint positions relative to future
root 1 second ahead. To ensure the human model can reach the chair, we in-

troduce the goal-relative root trajectory T̃i+1 = {t̃pi+1, t̃
d

i+1} which include the
root positions and forward directions relative to the chair of frame i + 1. The
rest of the components remain consistent with the input include the the future
pose Ji+1, future root trajectory T+

i+1, the future intermediate goals G+
i+1, and

the future global phase Φi+1. The PoseNet fPN(·) adopts a mixture-of-experts
[27,22,47,48] and is trained to minimize the standard MSE loss.

4.4 Contact Generation with ContactNet

From the user’s perspective, it is useful to automatically generate plausible con-
tact points on any given chairs. To this reason, we propose ContactNet. The
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network adopts a conditional variational auto-encoder[46] architecture (cVAE)
which encodes the chair geometry I introduced in Section 4.3 and the contact
positions c ∈ R2×3 to a latent vector z. The decoder of the network then recon-
structs the hand contacts ĉ ∈ R2×3. Note, the position of each voxel in the scene
representation I in this case is computed relative to the center of the chair in-
stead of the character’s root. During training, the network is trained to minimize
the following loss,

Lcontact = ∥ĉ− c∥22 + βKL(q(z|c, I)∥p(z)), (4)

where KL denotes the Kullback-Leibler divergence. During inference, given the
scene representation I of a novel chair, we sample the latent vector z from the
uniform Gaussian distribution N (0, I), and use the decoder to generate plausible
hand contacts c ∈ R2×3.

4.5 Decomposition of Approaching and Sitting Motion

Detailed hand motion planning is only required when the human model is close
enough to the chair right before sitting as sitting requires synthesizing more
precise full-body motion, especially for the hands, such that the person makes
the desired contacts and sits on the chair. For this reason, we decompose our
synthesis into approaching and sitting by only activating the ControlNet during
the sitting. When the ControlNet is deactivated the control signal or when a
“no contact” signal is present the control signal for the corresponding hand is
zeroed.

5 Evaluation

Studying contact-conditioned interaction with chairs requires accurately labelled
contacts and a diverse range of styled interactions. The COUCH dataset is cap-
tured to meet such needs. We evaluate our contact constrained motion synthesis
method on the COUCH dataset qualitatively and quantitatively. Our method is
the first approach that allows the user to explicitly define how the person should
contact the chair and we generate natural and diverse motions satisfying these
contacts. As such we evaluate our method on three axis, (i) accuracy in reaching
the contacts, (ii) diversity and (iii) naturalness of the synthesised motion. For
qualitative results, we highly encourage the readers to see our supplementary
video. It can be seen that our method can generate diverse and natural motions
while reaching the user-specified contacts. We quantitatively evaluate the accu-
racy of contacts and motion diversity on a total of 120 testing sequences on six
subject-specific models trained on corresponding subsets of our COUCH dataset.
Note that we evaluate raw synthesized motion without post-processing.
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Fig. 4: We demonstrate qualitatively and quantitatively (Tab. 2) that motion
generated by our approach satisfies the contacts much better than the baselines,
NSM+Control [47] and SAMP+Control [22].

5.1 Baselines

To our best knowledge, the most related work to ours are the Neural State
Machine (NSM) [47] and the SAMP [22] since they both synthesize human-
scene interactions. However, neither of the methods allows the use of fine-grained
control over how the interaction should take place. We adapt these baselines for
our task by additionally conditioning on the contact positions and refer to these
new baselines as NSM+Control and SAMP+Control. Quantitative results are
reported for both the original baselines and their adapted version. For each of
the methods, we train subject-specific models with the corresponding subset of
our COUCH dataset using the code provided by the authors. Our experiments,
detailed below, show that naively providing contacts as input to existing motion
synthesis approaches does not ensure that the generated motion satisfies the
contacts. Our method, on the other hand, does not suffer from this limitation.

5.2 Evaluation on Control

In order to evaluate how well our synthesised motion meets the given contacts,
we report the average contact error (ACE) as the mean squared error between
the predicted hand contact and the corresponding given contact. We use the
closest position of the predicted hand motion to the given contact as our hand
contact.
Since ACE might be susceptible to outliers and inspired by the literature on
object detection [35,43,42,11], we also report average contact precision (AP@k),
where we consider a contact as correctly predicted if it is closer than k cm.



12 Zhang et al.

Fig. 5: COUCH can also be extended by specifying a series of contacts for to
automatically synthesize more complex interactions. The past poses are indicated
by blue skeletons.

We compare our method with NSM+Control and SAMP+Control in Table
2. It can be observed that COUCH outperforms prior methods by a significant
margin. Prior methods are trained to condition on the contact positions, however
it is found (Figure 4) to be not sufficient as the contact input can be easily
ignored during auto-regressive prediction. As a result the contact constraints
are often not met. This highlights the importance of motion planning in form
of trajectory predictors in order to reach the desired contacts. Our ControlNet
provides valuable information on how to synthesise motion such that the given
contacts are satisfied. Our motion prediction network PoseNet uses these control
signals to generate contact constrained motions.

Table 2: Evaluation on degree of control. COUCH is shown to be more control-
lable compared to the baseline methods. The distance from given contact points
and the joint position are measured. The success rate of control is also reported.

Method Distance to Contact↓ AP@ 3 cm↑ AP@ 5 cm↑ AP@ 7 cm↑ AP@ 9 cm↑

NSM [47] 10.69 15.52 38.20 46.05 56.61
SAMP [22] 11.96 6.54 14.57 20.94 50.83

NSM+Control [47] 10.52 17.46 35.7 48.4 57.93
SAMP+Control [22] 12.09 7.20 15.2 23.2 48.80

Ours 4.73 47.97 78.86 87.8 91.87

5.3 Evaluation on Motion Diversity

Diversity is an essential element for our motion synthesis, since a chair can be
approached and interacted with in different ways. To quantify diversity, we eval-
uate using the Average Pairwise Distance (APD) [55,58,22] on the synthesized
pose features of the virtual human Ji = (jpi , j

v
i , j

r
i ). defined as:

APD =
1

N(N − 1)

N∑
i=1

N∑
j ̸=i

D(J′
i,J

′
j), (5)
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where N is the total number of frames in all the testing sequences. Note that
for evaluation, the virtual human is initialized at different starting points and is
instructed to approach and sit on randomly selected chairs with randomly sam-
pled contact points from the dataset, and motion is synthesized for 16 seconds
for each sequence. We compare the diversity of synthesized motion in Table 3
and it can be seen that using explicit contacts allows our method to generate
more varied motion.

Table 3: Evaluation on the diversity of the synthesized motion. APD is measured
for segmented motion of approaching and sitting. Our approach attains the best
score compared to the baselines.

Method Approach Sit

NSM [47] 5.15 5.76
SAMP [22] 5.34 5.81

NSM+Control [47] 5.07 5.80
SAMP+Control [22] 5.21 5.88

Ours 5.55 6.02

Ground Truth 5.69 6.30

5.4 Controlling with a series of Contacts.

A useful application of our approach is to automatically generate a motion se-
quence with a series of desired contacts in the context of animation, character
control, when executing a set of complex actions. For instance, the person can
be instructed to first sit with their hands on the armrest, then lift the arms to
support the head before bringing the hands back to the armrest, see Figure 5)
and the supplementary video. Our approach can be adapted for this task by iter-
atively providing the new goal locations for the hands as input after the present
locations are reached.

5.5 Contact Prediction on Novel Shapes

Apart from user-specified contacts, we can additionally generate the contacts
on the surface of a given chair using our proposed ContactNet. This allows us
to generate fully automatic and diverse motions for sitting. To measure the
diversity of the generated contacts from ContactNet, we compute the Average
Pairwise Distance (APD) among the generated hand contact positions cj with
unseen chair shapes. A total number of 200 unseen chairs are chosen, and each
10 contact positions are predicted for both hands.

APD =
1

2LN(N − 1)

2∑
k=1

L∑
l=1

N∑
i=1

N∑
j ̸=i

∥X ′
i −X ′

j∥22 (6)

L = 200 is the number of objects andN = 10 is the number of contacts generated
per object. The APD on contact positions is 11.82 cm which is comparable to
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Fig. 6: ContactNet enables sampling of diverse contact positions across various
chair shapes. These contacts can be used by our ControlNet and PoseNet to
generate fully automatic and diverse motions.

the ground truth dataset which has an APD of 14.07 cm. As shown qualitatively
in Figure 6, we can generate diverse and plausible contact positions on chairs,
which can generalize to unseen shapes.

6 Conclusion

We propose COUCH, the first method for synthesising controllable contact-
driven human-chair interactions. Given initial conditions and the contacts on the
chair, our model plans the motion of the hands, which drives the full body poses
to satisfy contacts. In addition to the model, we contribute the COUCHdataset
for human chair interactions which includes a wide variety of sitting motions
approaching and contacting the chair in different ways. It consists of 3 hours
of motion capture with 6 subjects interacting with registered 3D chair models,
captured in high quality with IMUs and Kinects. Experiments demonstrate that
our method consistently outperforms the SoTA by improving the average contact
accuracy by ∼55% to better satisfy contact constraints. In addition to better
control, it can been seen in the supplementary video that our approach generates
more natural motion compared to the baseline methods. In the future, we want
to extend our dataset to new activities and train a multi-activity contact driven
model. In the supplementary, we discuss further future directions in this new
problem of fine-grained controlled motion synthesis. Our dataset and code will
be released to foster further work in this new research direction.
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APPENDIX

In this appendix, we provide additional information about the dataset, imple-
mentation details, post-processing techniques. We also discuss on the current
limitation as future research perspectives.

1 Dataset

1.1 Motion Data

Table 4 shows a break down of our dataset in terms of different types of interac-
tions. Our dataset consists of 3 hours of MoCap with over 500 motion sequences.

Table 4: Distribution of the COUCH dataset with different types of interaction.
Interaction Type Minutes %

Right Hand 36.3 17.3
Left Hand 29.4 14.0
Both Hand 60.5 28.9
No Contact 36.5 17.4

Free Interaction 31.9 15.2
Locomotion 15.1 7.2

1.2 Data Processing

SMPL Fitting. We segment the human in captured RGB images by running
Detectron V2 [53] followed by manual correction with [45] on the segmentation
masks. These masks are then used to segment multi-view depth maps and lift
human point clouds from 2D to 3D. We use FrankMocap [44] to initialize the
SMPL pose from the images and then apply instance specific optimization [7]
to fit the SMPL model to the segmented human point cloud. For more accurate
fitting, we additionally obtain the SMPL shape parameters of each subject from
3D scans using [8].
Synchronization with the IMUs. The fitted SMPL model provides us with
accurate contacts with the scene, however, the fitted motion sequence is prone
to occlusion and drastic body movements, as a result, the fitted motion can be
jittery at times. On the other hand, the pose captured with the IMUs is smooth
over time, but it might not accurately capture the contacts. To this reason, we
synchronize the Kinect captured data with the body sensors by incorporating
the SMPL fitted poses into the IMU pose sequences. After synchronization, we
optimize the joint rotations jri to achieve temporal smoothness via the objective

Ltemp(j
r
i ) =

T−1∑
i=1

∥jri+1 − jri ∥2 +
T−1∑
i=1

∥j̈i∥ (7)
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where j̈i represents the acceleration of the body joints in frame i approximated
by central difference.

We additionally use the binary contact labels of the toes and the heels de-
tected by the IMU sensors to remove foot-sliding on the motion data. To remove
the foot-sliding, we compute the average joint positions over the duration of the
contacts grouped by the positive contact labels. This computation is performed
for all four foot joints. This forms a sequence of target joint positions of the feet
f̃ i ∈ R4×3. We then optimize the objective function

Lslide(j
r
i ) =

T∑
i=1

∥f̃ i − f i∥2, (8)

where f i represents the foot joint positions at frame i. The resulting motion
sequence is temporally smooth and has accurate contacts registered with the
chair models.
Object Processing. To obtain object segmentation, we pre-scan objects using
a 3D scanner [2,3]. We then use multi-view object keypoints, marked by manual
annotators on the images, to fit the pre-scanned chair meshes to the given frame.
The segmentation masks are then obtained by projecting fitted object meshes to
the images. Since the chairs remain static during the capture, we average over
the 6D pose of the fitted chair model during each capture session to obtain the
final transformation of the chair.

2 Training Details

Fig. 7: Our method that combines the ControlNet and the PoseNet.
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2.1 ControlNet

As shown in Figure 7, the contact network is a two-layer LSTM architecture.
Each layer has a hidden dimension of 512. The pose and the control signals (hand
trajectories, and the local phases) are each encoded through a two-layer fully
connected network with of shape {128, 128} before passing through the LSTM.
We apply scheduled sampling on hand trajectories for better model performance.
For the local phases, we always use the ground truth. Each of our training
samples is in a sequence of 60 frames. The ControlNet is trained for 150 epochs
with an Adam optimizer. The initial learning rate is 1e-3 and a cosine learning
rate scheduler was used to decay the learning rate gradually to 5e-6. The full
training of a subject-specific model takes approximately 1 hour on an NVIDIA
V100 GPU.

2.2 PoseNet

Table 5: Details on different encoder networks of the PoseNet.
Networks Architecture

Encoder for C {128,128,128}
Encoder for {J, T} {512, 512, 512}

Encoder for G {128,128,128}
Encoder for I {512, 512, 512}
Encoder for E {256,256,256}

The PoseNet adopts the mixture-of-expert structure [17]. It consists of differ-
ent feature encoders of structures shown in Table 5. The gating network and the
prediction networks are both three-layer fully-connected networks, with hidden
dimensions of 128 and 512 respectively. The number of experts is set to 10. The
PoseNet is trained for 150 epochs with an Adam optimizer. The initial learning
rate is 1e-4 and a cosine learning rate scheduler was used to decay the learn-
ing rate gradually to 5e-6. The full training of a subject-specific model takes
approximately 6 hours on an NVIDIA V100 GPU.

2.3 ContactNet

The ContactNet encodes the scene I through a three-layer fully connected net-
work of shape {512, 512, 64}. The latent vector z of the VAE is of size 6. The
weight of the Kullback-Leibler divergence β is 0.1. We use the Adam optimizer
with a learning rate of 1e-3 and train ContactNet for 150 epochs. The full train-
ing of a subject-specific model takes approximately 10 minutes on an NVIDIA
V100 GPU.
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3 Contact Projection and Trajectory Fitting

To ensure the ContactNet predicts contacts that land exactly on the surface of
the object, we perform a post-processing step, when the distance of the network
predicted contact to the surface is less than a set threshold of 10 cm, we sim-
ply project the contact onto the nearest point on the chair surface. When the
distance is greater than 10 cm, we simply neglect the predicted contact. The
ControlNet predicts the future hand trajectories, and it would be possible to fit
the predicted pose to the predicted hand position from the hand trajectories at
each frame to further improve the satisfaction of the contact constraints. Note,
in the evaluation of the main paper we do not apply such fitting technique.

4 Limitations and Future Direction

We observe the synthesized motion can slightly intersect with the chair. A so-
lution to this problem would be to apply a post-processing step to avoid such
collision. In order to generalize to more different chair shapes, it would be useful
to investigate better ways of encoding the scene geometry while trying to avoid
over-fitting.

Different shaped person can intersect with the same object very differently
even when performing the same motion. The COUCH dataset captures human
interaction with different body shapes. With the dataset, it is possible to study
how to build subject-variant motion synthesis model and how to effectively con-
dition on the body shapes. These are challenges in motion synthesis that have
not been tackled.

Our work on controllable human-chair interaction. It would be useful to ex-
tend the scope of interacted objects, especially considering the cases when the
objects are non-static, when performing motions such as lifting a box, or open-
ing a door. Another possible direction would be to further apply contact-based
control in these interactions.
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