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b) Inserting objects from one scene into another

T-rex inserted inside the garden scene Second T-rex added to the scene

a) Original scenes c) Copying and moving objects within the scene

Figure 1: Given a set of posed input images, our model allows for novel view synthesis (a) and controlled scene editing. For
example, inserting objects from one scene into another (b); or multiplying, moving or deleting objects within the scene (c)

Abstract

We present Control-NeRF1, a method for performing
flexible, 3D-aware image content manipulation while en-
abling high-quality novel view synthesis, from a set of posed
input images. NeRF-based approaches [23] are effective for
novel view synthesis, however such models memorize the ra-
diance for every point in a scene within a neural network.
Since these models are scene-specific and lack a 3D scene
representation, classical editing such as shape manipula-
tion, or combining scenes is not possible. While there are
some recent hybrid approaches that combine NeRF with ex-
ternal scene representations such as sparse voxels, planes,
hash tables, etc. [16, 5, 24, 9], they focus mostly on effi-
ciency and don’t explore the scene editing and manipulation
capabilities of hybrid approaches. With the aim of explor-
ing controllable scene representations for novel view syn-
thesis, our model couples learnt scene-specific 3D feature

1https://virtualhumans.mpi-inf.mpg.de/control-nerf/

volumes with a general NeRF rendering network. We can
generalize to novel scenes by optimizing only the scene-
specific 3D feature volume, while keeping the parameters
of the rendering network fixed. Since the feature volumes
are independent of the rendering model, we can manipu-
late and combine scenes by editing their corresponding fea-
ture volumes. The edited volume can then be plugged into
the rendering model to synthesize high-quality novel views.
We demonstrate scene manipulations including: scene mix-
ing; applying rigid and non-rigid transformations; insert-
ing, moving and deleting objects in a scene; while produc-
ing photo-realistic novel-view synthesis results.

1. Introduction

Scene manipulation and rendering are long-standing
problems in graphics, with the goal of creating the de-
sired visual content and providing immersive abilities to
explore it. Traditionally, the process consists of acquiring

https://virtualhumans.mpi-inf.mpg.de/control-nerf/


textured meshes of objects and scenes, followed by combin-
ing them using specialized software and hardware to reach
the desired composition, and finally, rendering the scene
using graphical pipelines. Acquiring, composing and ren-
dering are non-trivial problems that require time and ex-
perience, and, hence, are not readily available for amateur
users. Impressive progress in Novel View Synthesis (NVS)
sparkled by the recently introduced Neural Radiance Fields
(NeRF) [23], represents an attractive vehicle for scene ma-
nipulation and rendering. However, NeRF and most follow-
up works suffer from two main shortcomings, limiting their
use for creative applications. First, they require per-scene
training, and second, the scene is represented by a neu-
ral network, which makes editing and manipulation diffi-
cult. Recent work has shown how to generalize NeRF to
novel scenes [54], but those works have not demonstrated
editing and control. Other recent work have shown edit-
ing capabilities by learning per object NeRF models or de-
composing a single scene into foreground objects and back-
ground [39, 58, 17]. However, these models are either ob-
ject or scene specific, or work on synthetic scenes without
realistic background [16], limiting its applicability. What
is missing is a neural representation and model which al-
lows to represent multiple real scenes, while allowing intu-
itive control. This would retain the realism and simplicity of
neural rendering models, while keeping the versatility and
intuitive control of traditional computer graphics represen-
tations (meshes, volumes and textures). In this work, we
present Control-NeRF, a novel approach which can repre-
sent multiple scenes, and allows intuitive control and edit-
ing. We learn a latent representation of the scene, encoded
as a spatially disentangled feature volume (i.e., in which
the point features describe the content and radiance at that
point in the scene), coupled with a neural rendering function
that computes the radiance and density conditioned on the
point feature. This decouples the rendering network from
the neural scene representation which results in several ad-
vantages. First, the model can be trained on multiple scenes
at once, producing different scene representations for each
of them, while learning a general rendering network. Sec-
ond, once the model is learned, new scene representations
can be learned while holding the rendering network fixed
(desirable if, for example, we want to stream scenes with-
out having to re-train or transmit the rendering network).
Third, as we show in the experiments, the learned represen-
tations are aligned with the real 3D scenes, which allows
for intuitive manipulation such as displacing, rotating and
transforming objects, integrating objects from other scenes,
or simply combining scenes, see Fig. 1. Most importantly,
because each scene has its own representation and the ren-
dering network is shared across scenes, editing and compo-
sition can be done post-hoc without re-training. We demon-
strate that learning Control-NeRF efficiently on real scenes

requires a careful coarse-to-fine strategy — in which the
optimized feature volume dimensions are progressively in-
creased — and a total variation regularizer on the feature
volume representation. In our evaluations, we demonstrate
that our approach allows for NVS using a single model
for multiple real training scenes while being comparable to
scene specific models. We also demonstrate how to effi-
ciently generalize to novel scenes by optimizing the scene
representation while keeping the rendering network fixed.
Finally, we demonstrate various creative manipulation tasks
such as compositing of different real scenes, displacing and
rotating objects, and inserting objects. In summary, our pri-
mary contributions are:

• We demonstrate that the learned scene representations
are aligned with the real 3D scenes allowing for easy,
simple and creative 3D-aware editing without having
to retrain the model.

• We show that techniques such as multi-resolution
training and total variation regularization are essential
for efficiently optimizing the 3D volume containing
the scene.

• Extensive evaluations, demonstrating our method sig-
nificantly outperforms competing approaches in terms
of the types of manipulations possible and quality of
results.

• We will release our code and trained models for re-
search purposes.

2. Related Work
Novel View Synthesis. Novel-view-synthesis (NVS) is

a widely studied problem in the area of image-based render-
ing. Most NVS methods are focused on warping or blend-
ing the input images and inpainting the occluded regions.
Recent NVS efforts [33, 34, 1, 10, 31] have achieved high
quality results relying on geometry proxies, such as rough
reconstructions, depth maps or point-clouds to warp the in-
put images to the target view. Many works use the ability
of generative networks to to hallucinate occluded regions
from one or a few images [48, 41, 21], which can be com-
plemented with the use of appearance flow [64, 27, 45].
However, in case of large viewpoint transformations, best
results are attained only for simple/synthetic scenes, or by
using a large number of input images. Other techniques, e.g.
multiplane images [63, 57], have proven suitable for large-
scale scenes like those captured in real photographs. Most
of these frameworks, however, focus only on NVS and typ-
ically provide little or no ability to edit the scene content
(e.g., adding or deforming objects).

Implicit Surface and Appearance Representations.
The use of implicit surfaces [20, 28, 4, 6] for geometry



and appearance reconstruction has proven popular in recent
works, with their ability to capture detailed objects with
varying topology at arbitrary resolutions. Methods such as
PIFu [36] use these to capture the surface and texture of
dynamic humans from monocular images, an approach that
was refined and improved in [37, 15, 11] to allow for higher
fidelity and realtime performance capture. Methods like
these can be used for NVS simply by rendering the obtained
reconstructions. However, while they achieve impressive
results for individual objects, they struggle to capture the
full geometry and appearance of complex real scenes.

Volumetric Representations. Explicit voxel grids [13]
have recently been employed for various tasks related to im-
plicit surface and appearance representation, including gen-
erative modeling of 3D objects [51, 65], shape and appear-
ance reconstruction from images [12, 52, 46, 26, 14]. Other
recent works, such as [40] have explored the use of latent
representations with a volumetric structure to implicitly en-
code a scene’s appearance and structure for neural render-
ing. They use multiple images of static objects to learn a
feature volume that can be resampled to a given camera’s
viewpoint. Also, [18] use multiple calibrated images of
static and dynamic scenes to learn a latent volumetric rep-
resentation that can be used for rendering of novel views,
including time varying effects (e.g. human motion). How-
ever, these works do not allow for interactive editing or ma-
nipulation of the scene, and are typically scene specific, re-
quiring separate networks for each captured scene. Some
methods, such as [26] train a network which infers a latent
volumetric representation of previously unseen images that
can be spatially transformed to allow for NVS and editing.
However, the image quality of the manipulated objects is
relatively low, and it only works on simple scenes.

Hybrid Latent and Geometric Representations. Other
recent approaches combine explicit representations of a
scene’s geometry with a latent representation to exploit neu-
ral rendering techniques. Some methods learn neural tex-
tures [49] used in conjunction with UV-maps to allow for
realistic image synthesis and manipulation. The learnt tex-
tures, however, are specific to the corresponding objects and
scenes used during training, and thus cannot generalize to
new scenes without retraining. In NPBG [1], given several
images of a scene with a corresponding 3D point cloud, neu-
ral descriptors are fitted to points, which are then used with
the input data to learn to infer novel views of the scene.
This work requires a point cloud of the scene, obtained us-
ing multi-view stereo or depth sensor data as part of the
training process. Therefore the overall quality of the final
results depends heavily on the quality of the reconstruction.

Neural Radiance Fields. Neural Radiance Fields
(NeRF) [23] builds on prior work on implicit surface rep-
resentations by introducing a sophisticated MLP architec-
ture trained to produce an estimate of the density and out-

going radiance throughout the scene. Volume rendering
techniques are used to enforce consistency with the training
images, which enables the inference of high-quality novel
views of the scene. Subsequent efforts have addressed var-
ious limitations of this work and extended it to new appli-
cations, e.g. accelerating its training and rendering perfor-
mance and quality [47, 16, 32, 25, 54, 9, 44]; extending
it to large-scale scenes [19, 61]; allowing for the capture
and synthesis of dynamic scenes with non-rigid regions, in-
cluding human heads and bodies [29, 30, 55]; relighting the
captured content [2, 3, 42]; camera and body pose estima-
tion [43, 59]; and NVS with unknown camera parameters
[56]. Some works [50, 60, 7] use projected features from
images into a space that may be queried in a manner sim-
ilar to [36, 15]. With a NeRF-like radiance function they
demonstrate the ability to perform NVS using a single or
few input images. However the overall quality and com-
plexity of the synthesized images is limited, and they do
not enable general manipulations of the scene, as in our
method. Recently there have been few works that combine
voxel grids and neural radiance fields. [16] use sparse voxel
fields to learn local radiance fields for improved rendering
performance. For the given scene they build the voxels by
pruning the voxel grid at training time. They can also do
local shape editing and build scenes by compositing sepa-
rate objects together. While this method shows impressive
results on individual objects, they struggle to deal with real
scenes with complex background and front facing scenes,
where the scene is not observed from all sides. Another
similar work, [58] has introduced a method that learns an
object-compositional neural radiance field. They learn sep-
arately a scene branch to encode the scene appearance and
individual object branches for all the object in the scene.
This method allows for object-level editing, such as moving
and transforming the objects in the scene. However unlike
our method it is scene-specific and does not support moving
objects across multiple scenes. For a more comprehensive
survey of work in this area, please refer to [8].

3. Control-NeRF
We present our novel-view synthesis method, Control-

NeRF, (Figure 2) that is based on feature volumes and Neu-
ral Radiance Fields [23] and allows for scene editing, mix-
ing and manipulation. We decouple geometry/appearance
from rendering by learning dense feature volume as repre-
sentation for every scene and a single rendering model that
generalizes across scenes. The rendering model takes a fea-
ture vector sampled from the volume and predicts density
and color value. As shown in [23], these predictions are
used as input to a volume rendering function that accumu-
lates the point along a ray to generate a pixel color.

This section of the paper is organized as follows. In
Sec. 3.1, we briefly review the general framework used
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Figure 2: Our method learns a volumetric representations for multiple scenes simultaneously. Left in the figure we show
visualizations of the learned feature volumes. We query the volume along the ray and predict color and density based on
the obtained features. The pixel color is derived using volume rendering, similar to [23]. At training time the volume and
the rendering network are trained jointly. For novel scenes, the rendering network is fixed and only the scene volume is
optimized. As shown on the right, these volumes can be edited and mixed and for the purpose of scene editing.

for performing novel view synthesis using neural radiance
fields. Sec. 3.2 describes how we make use of learnt fea-
ture volumes to condition the radiance field output on a
given scene. In Sec. 3.3, we describe the losses and the
training procedure for optimizing the network parameters
and per-scene feature volumes. We also show how to learn
feature volumes for novel scenes not seen at training time.
(Sec. 3.3.4). Sec. 3.4 describes how we can use the learnt
feature volumes for arbitrary creative scene manipulations
and render the result.

3.1. Background

Most works based on Neural Radiance Fields [23] pre-
dict radiance and color for a pair of point and viewing angle
direction of a single scene:

FΘ : (γ(p), γ(d)) → (c, σ) (1)

where c ∈ R3 is an RGB value indicating the radiance
from point p ∈ R3 in direction d ∈ R3, and σ ∈ R is
the density value p, indicating how much the radiance con-
tributes to view rays intersecting the scene at that point. Op-
tionally, one can use γ which is a positional encoding [53]
used to allow this network to better capture high-frequency
details. Images are rendered one pixel at a time, using vol-
umetric sampling techniques, querying the MLP at points
along the camera ray r(t) = o + td (where o indicates the
camera origin and t indicates the distance from the origin
along the ray) corresponding to that pixel. By integrating
the radiance values at a point using its density, the appropri-
ate color values can be computed.

The problem with NeRF based approaches is that the
scene is memorized within the neural network, which makes

compositing of scenes and editing hard.

3.2. Formulation

To allow realistic editing, our method decouples the
scene representation from the neural rendering network. In-
stead of memorizing a mapping from scene point and view-
ing directions to radiance with an MLP as in Eq. 1, we learn
a scene-specific volume of deep features. Then a rendering
network maps from deep features extracted at continuous
locations of the volume, to radiance and color.

Scene Representation Given a set of input RGB images
I = {Iis}

Ns
i=1 from M training scenes s ∈ S , M = |S|,

we seek to learn a latent volumetric representation Vs ∈
RWHDF for each scene s, with a spatial resolution of
W ×H ×D and a feature vector of length F in each cell,
which can be both rendered from novel views and edited
to allow for novel manipulations of the scene content while
still allowing for high-quality view synthesis. We use a res-
olution of W = H = D = 128 and a feature vector of
length F = 64 in our experiments.

Rendering Network The rendering network is a learned
mapping from a deep feature vs ∈ R64 to radiance and
color. The deep feature describes the local shape and ap-
pearance of the corresponding position p = (x, y, z) in
scene s extracted from a scene-specific volume of deep fea-
tures. Mathematically,

FΘ : (S(Vs,p)), γ(d)) → (c, σ) (2)

where the feature vector vs is obtained by sampling of the
feature volume vs = S(Vs,p), where S indicates the trilin-



ear resampling operation. As in NeRF the density FΘ is in-
tegrated along rays r to produce pixel colors – this operation
is denoted by Ĉ(r, Vs,Θ). In contrast to equation 1, the for-
mulation in equation 2 allows us to optimize the volume Vs

for each scene, while simultaneously learning the parame-
ters of the density network FΘ : (vs, γ(d)) → (c, σ). After
this initial training stage, the parameters Θ of this render-
ing module are fixed. For every novel scene, we only opti-
mize its feature volume Vs. This will allow us to combine
and edit scenes by manipulating their respective feature vol-
umes Vs, and render the result using the general rendering
module Ĉ.

Note: As in NeRF, in practice, 2 networks are trained: a
coarse network in which samples are taken from evenly-
spaced intervals along the view ray, and a fine network
which uses the density values from the coarse network to
select sample points more likely to contribute to the corre-
sponding ground-truth pixel color value C(r). In the fol-
lowing, we denote the density integrals of the coarse and
fine networks as Ĉf (r), Ĉc(r) respectively. 2

3.3. Training Strategy and Generalization

3.3.1 Training Losses

Reconstruction Loss. Our primary loss is a straightfor-
ward reconstruction loss on the rendered pixel values. As
in [23], at each iteration we randomly sample and integrate
a subset of the rays Rs from the images for the current scene
s, and compute the mean-squared error between them and
the corresponding pixels in the ground-truth images:

Lr(Rs, Is, Vs,Θ) = Er∼Rs

[∥∥∥Ĉc(r, Vs,Θ)− C(r)
∥∥∥2

2

+
∥∥∥Ĉf (r, Vs,Θ)− C(r)

∥∥∥2

2

] (3)

Using this loss for each training scene (see Sec. 3.3.3),
we jointly optimize the network parameters Θ and the fea-
ture volumes V for all training scenes.

Total Variation Loss. One very useful property that
we want the volumes to exhibit is local smoothness -
neighbouring feature vectors should have similar values.
NeRF [23], has this property by default, since it relies on
R3 (3D locations as input). In order to encourage similar
behaviour for our feature volumes we add regularization. In
our experiments, we found that a more consistent and coher-
ent feature volume was learned if we introduce a total vari-
ation regularization [35] loss to the learned feature volume.
To reduce memory usage and computation, we apply this
loss on the 64-dimensional feature vectors in a randomly
sampled contiguous subregion R ⊂ Vs that is 1/4 of the

2For simplicity, from here on we use Θ to refer to the total learnable
parameters of the 2 rendering networks.

current latent feature volume (see Sec. 3.3.2) for the current
scene s during each training iteration.

Ltv(Vs) = ER∼Vs
[|T (R)|] , (4)

T (R) =
∑
i,j,k

√√√√|Ri+1,j,k −Ri,j,k|2 + |Ri,j+1,k −Ri,j,k|2

+|Ri,j,k+1 −Ri,j,k|2

(5)
Thus, we minimize the following total loss function by

optimizing the parameters Θ and feature volumes V corre-
sponding to the calibrated images I and the corresponding
view rays R for each training scene:

argmin
V,Θ

L(R, I,V,Θ) =

Es∼S [Lr(Rs, Is, Vs,Θ) + λLtv(Vs)]
(6)

where λ = 10−4.

3.3.2 Multi-Resolution Volume Training

As the final volume contains a 64-dimensional feature vec-
tor per cell in the 1283 volume, training the network at this
full resolution is quite intensive. As such, we employ a hi-
erarchical training process to compute these volumes in a
coarse-to-fine manner. This allows for improved training
time while retaining the ability to perform high-quality im-
age synthesis and manipulation. We start training with a
feature volume resolution of 163. The model is trained until
convergence, optimizing both the current feature volume Vs

and rendering module parameters Θ. We then upsample the
learnt feature volume to increase its dimensions by a factor
of 2, and proceed to train until convergence at the new reso-
lution. We use 4 stages in our hierarchical training process,
doubling the feature volume dimensions at each stage until
we reach the target resolution of 1283.

3.3.3 Multi-Scene Training

To allow the rendering module to be employed for multiple
scenes, it needs to be trained in a multiscene scenario. Dur-
ing training we randomly select one of the scenes s ∈ S and
load its feature volume Vs, then train using rays sampled
from this volume for several consecutive iterations, before
saving the feature volume and repeating the process with a
new randomly selected scene. While sampling a new scene
at each training iteration would better approximate the ef-
fect of incorporating samples from multiple scenes at each
step in the optimization, this would require additional over-
head as feature volumes are loaded into GPU memory, then
copied back to be stored for their next use. We empirically



found that 50 consecutive iterations between scene transi-
tions produced a sufficient balance between training perfor-
mance and multi-scene representation capacity.

3.3.4 Generalization to Novel Scenes

After the initial training stage in which the parameters Θ of
the radiance network FΘ are trained in conjunction with the
optimization of the M per-scene feature volumes V1,...M ,
we allow for efficient generalization to novel scenes by fix-
ing the parameters Θ and solely optimizing the parameters
of the feature volumes corresponding to these novel scenes.

Given a new set of scenes G not used during the initial
training stage, and a set of images corresponding to each
scene I ′

= {Iig}
Ng

i=1 for each scene g ∈ G, we perform
the optimization process as described above, while only
optimizing the corresponding feature volume V

′

g for each
scene. We employ the hierarchical training strategy defined
in Sec. 3.3.2 , and the losses defined in Eqns. 3 and 4, but
for these scenes only optimize the feature volumes corre-
sponding to each scene g to minimize the total loss:

argmin
V′

L(R
′
, I

′
,V

′
,Θ) =

Eg∼G

[
Lr(R

′

g, I
′

g, V
′

g ,Θ) + λLtv(V
′

g )
] (7)

Given sufficient training scenes, the learnt radiance function
can be applied to optimize for novel scenes more efficiently
than when training to infer the volumes and network param-
eters together as in the initial training process. In our exper-
iments we show that a small number of training scenes (only
6) are sufficient to train a generalizable radiance function.

3.4. Scene Editing and Manipulation

Our volumetric representation of scene-specific content
allows for scene manipulations by editing it’s feature vol-
ume. We can swap features between different feature vol-
umes for mixing scenes, copy features to make duplicates of
an object or zero-out features to make deletions. Rigid and
non-rigid transformations of an object can be applied by re-
sampling the volume. By applying trilinear resampling to
contiguous subregions of the feature volume (or the entire
volume, if global scene deformations are desired), nonrigid
spatial manipulations can be applied. If Vo is the original
feature volume and P ∈ R3WHD is a matrix of 3D coordi-
nates indicating where to sample from for each point in the
modified volume, Vm = S(Vo, P ) will produce a volume
with the desired spatial deformation, where S is the trilinear
sampling operator.

4. Experiments and Results
4.1. Dataset and Implementation Details

For our initial training stage, we use 6 scenes from the
dataset provided by LLFF [22], consisting of a total of 230

PSNR ↑ SSIM ↑ LPIPS ↓
NSVF [16] 20.414 0.536 0.449
NPBG [1] 19.430 0.727 0.242
Ours 25.635 0.853 0.181

Table 1: Quantitative comparison with NPBG [1] and
NSVF [16]. Metrics are computed across test images for
scenes from from LLFF [22] dataset. “Ours” is our method
trained on 6 scenes simultaneously as in our original setup.
Please consult the supplementary for more details.

images (an average of approximately 38 images per scene)
with the cameras’ extrinsic and intrinsic parameters esti-
mated by COLMAP [38]. After this stage, we fix the render-
ing module parameters and optimize the feature volumes for
new scenes individually. We use 2 scenes from this dataset,
withheld during the initial training stage, to demonstrate our
novel scene generalization capabilities (fern and trex, shown
in Figure 1), consisting of a total of 75 images. Please con-
sult the appendix for more details.

4.2. Scene Content Manipulation

Using the scene resampling and editing techniques de-
scribed in Sec. 3.4, we demonstrate various creative ma-
nipulations enabled by our method. In Figure 5 we show
scene manipulation by moving object from one scene into
another. The scenes shown in these examples are real scenes
from the LLFF [22] dataset. In Figure 4, we show single
scene editing by removing objects or making copies of ex-
isting objects. Please keep in mind that all editing results
are obtained only by mixing or shifting the features within
the 3D volumes. No fine-tuning or post-processing steps are
used, as we want to show the 3D editing capabilities of our
method, without any adjustments in image space.

4.3. Evaluations and Comparisons.

Editing Comparisons. We provide qualitative and quan-
titative comparisons of our approach to scene manipula-
tion to two related methods, Neural Point-Based Graphics
(NPBG) [1] and Neural Sparse Voxel Fields (NSVF) [16].
NPBG uses 3D point clouds of a scene with corresponding
RGB images and camera poses to allow for both realistic
neural rendering of novel views of the scene and copying
content from one scene into another. NSVF uses sparse vox-
els scene representation that is pruned at training time. This
representation is useful for isolated objects, but struggles
with real scenes with complex background.

For our quantitative comparisons we evaluate the novel-
view-synthesis capabilities of our method in comparison
to NPBG and NSVF (Table 1). For the qualitative com-
parisons we evaluate the scene editing capabilities of our
method in comparison to NPBG (Figure 5). While in the-
ory NSVF could perform similar manipulations, the offi-
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Figure 3: Comparison to NSVF [16] in Novel view synthesis. As discussed, NSVF struggles with real frontal scenes, in
which the content is not captured from 360◦.

Original Scene Removing objects Multiplying objects

View 1 View 1View 2 View 2

Figure 4: Replicating and removing object from scenes The first column shows the original scene. The rest of the columns
show the edited scene from two different views. The differences are marked with yellow rectangles in the first view.

cial implementation doesn’t support multi-scene editing or
scene manipulation. Nevertheless in Figure 3 we compare
our method to NSVF in the task of novel view synthesis of
complex real scenes. We could not compare to the recent
method of [58], as there is currently no released implemen-
tation. Using 43 images from the 8 aforementioned scenes
(The 6 initial training scenes and the 2 scenes optimized
with fixed renderer parameters) withheld during the train-
ing process, we compute the Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index (SSIM), and Learned
Perceptual Image Patch Similarity (LPIPS) [62] between
the ground truth and the images synthesized using both

methods. Table 1 contains the results, which show that our
method outperforms [1] and [16] using each metric.

In Fig. 5 we show that, while both approaches can be
used to combine scenes, our approach outperforms [1] when
it comes to editing capabilities. Please consult the sup-
plementary video and document for animated results from
these experiments, as well as further results and details on
our approach and evaluations. We include additional NVS
and manipulation results for various datasets. In all these
scenarios, we only train the feature volumes of the new
scenes while keeping the rendering parameters fixed. We
also provide the results of experiments with non-rigid scene



Original                                        Ours Ours (Zoomed-in)       NPBG (Zoomed-in)                       NPBG

Figure 5: Scene Editing Results. The first column shows the original, unedited scenes. An object from the source scene
is replicated in the target scene. The following columns show novel view of our editing results and results obtained using
NPBG [1]. Please zoom in on these images and consult the supplementary video for more results and animations.

manipulation and articulated animation; an ablation study
evaluating the utility of our approaches key components;
a perceptual study asking users to evaluate our approach
compared to NPBG [1]; and comparisons with the origi-
nal NeRF [23], as well as a modified version of this work
adapted to handle multiple scenes.

5. Conclusion
With Control-NeRF, we explore a promising direction

for flexible 3D scene manipulation using neural radiance
fields. In disentangling the scene representation and ren-
dering, our approach enables practical techniques for effi-
cient scene editing and high-fidelity image synthesis. We
demonstrate a wide range of such edits, e.g. replicating and
removing objects, applying rigid and non-rigid transforma-
tions, and mixing scenes. One limitation is that our edit-
ing method does not explicitly handle shadows and differ-
ent lighting condition between scenes. Thus, if scenes with

vastly different lighting are combined, the results might not
appear as convincing, a challenge we intend to address in
future work. We also intend to explore methods to enhance
our approach with more editing capabilities: modifying the
textures and appearance of scene; changing and adapting to
different lighting, adding shadows; exploring techniques for
more efficient scene optimization and rendering.
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