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In this lecture…

• Recap of deep generative models

• Introduction of Diffusion Models

• Applications of Diffusion Models 
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Goal: Generate Virtual Humans
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Generate Appearance Generate Motion



So far we have seen…

• We can capture human appearance (NeRF, 3DGS)

• We can capture human motion (MoCap, Registration)

• We can capture human-object interaction (Behave, PHOSA, CHORE)

• Can we also generate the appearance and motion of ”human”?

• Why is "synthesis" of Virtual Human useful?
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Generative Models
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GAN
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VAE
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Diffusion Models
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Trilemma: Quality, Diversity Speed
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Diffusion Model for Image Generation
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• Diffusion model is SOTA on image generation

- Stable Diffusion
- Mid-Journey
- Flux
- …



Diffusion Model for Image Generation

• Diffusion model is useful for image editing
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Diffusion Model for Image Generation

• Diffusion model is useful for image editing
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Diffusion Model for Image Generation

• Diffusion model is applicable for other non-visual domains
• Generate motion from text
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Diffusion Model for Image Generation

• Diffusion model is applicable for other non-visual domains
• Generate 3D point cloud
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Diffusion Probabilistic Models

• Diffusion model aims to learn the reverse of noise generation procedure
• Forward step: (Iteratively) Add noise to the original sample

• → The sample 𝑥! converges to the complete noise 𝑥𝑇 (e.g., ∼𝒩(0, 𝐼))

• Reverse step: Recover the original sample from the noise
• → Note that it is the “generation” procedure
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Diffusion Probabilistic Models

• Diffusion model aims to learn the reverse of noise generation procedure
• Forward step: (Iteratively) Add noise to the original sample

• → Technically, it is a product of conditional noise distributions 𝑞(𝐱t|𝐱t-1)

• Usually, the parameters 𝛽t are fixed (one can jointly learn, but not beneficial)

• • Noise annealing (i.e., reducing noise scale 𝛽t < 𝛽t-1) is crucial to the performance
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Diffusion Probabilistic Models

• Diffusion model aims to learn the reverse of noise generation procedure
• Forward step: (Iteratively) Add noise to the original sample

• → Technically, it is a product of conditional noise distributions 𝑞(𝐱t|𝐱t-1)

• Reverse step: Recover the original sample from the noise
• → It is also a product of conditional (de)noise distributions 𝑝θ(𝐱t-1|𝐱t)

• • Use the learned parameters: denoiser 𝝁θ (main part) and randomness 𝚺θ
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Diffusion Probabilistic Models

• Diffusion model aims to learn the reverse of noise generation procedure
• Forward step: (Iteratively) Add noise to the original sample

• Reverse step: Recover the original sample from the noise

• Training: Minimize variational lower bound of the model 𝑝θ(𝐱0)
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Diffusion Probabilistic Models

• Diffusion model aims to learn the reverse of noise generation procedure
• Training: Minimize variational lower bound of the model 𝑝θ(𝐱0)

• → It can be decomposed to the step-wise losses (for each step 𝑡)
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Diffusion Probabilistic Models

• Diffusion model aims to learn the reverse of noise generation procedure
• Training: Minimize variational lower bound of the model 𝑝θ(𝐱0)

• → It can be decomposed to the step-wise losses (for each step 𝑡)

• Here, the true reverse step 𝑞(𝐱t-1|𝐱t, 𝐱0) can be computed as a closed form of 𝛽t

• Note that we only define the true forward step 𝑞(𝐱t|𝐱t-1)
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Diffusion Probabilistic Models

• Diffusion model aims to learn the reverse of noise generation procedure
• Network: Use the image-to-image translation (e.g., U-Net) architectures

• Recall that input is 𝐱t and output is 𝐱t-1, both are images

• • It is expensive since both input and output are high-dimensional

• • Note that the denoiser 𝜇θ(𝐱t, t) conditioned by step 𝑡
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Diffusion Probabilistic Models

• Diffusion model aims to learn the reverse of noise generation procedure
• Sampling: Draw a random noise 𝒙T then apply the reverse step 𝑝θ(𝐱t-1|𝐱t)

• It often requires the 1000 reverse steps (very slow)
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Diffusion Probabilistic Models

• Diffusion model aims to learn the reverse of noise generation procedure
• Sampling: Draw a random noise 𝒙T then apply the reverse step 𝑝θ(𝐱t-1|𝐱t)

• Early and late steps change the high- and low-level attributes, respectively
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Denoising Diffusion Probabilistic Models

• DDPM reparametrizes the reverse distributions of diffusion models
• Key idea: The original reverse step fully creates the denoiser 𝜇θ(𝐱t, t) 

• However, 𝐱t-1 and 𝐱t share most information, and thus it is redundant

• → Instead, create the residual 𝜖θ(𝐱t, t) and add to the original 𝐱t

• Formally, DDPM reparametrizes the learned reverse distribution as

• and the step-wise objective 𝐿t-1 can be reformulated as
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Denoising Diffusion Implicit Models

• DDIM roughly sketches the final sample, then refine it with the reverse 
process
• Motivation:

• Diffusion model is slow due to the iterative procedure

• GAN/VAE creates the sample by one-shot forward operation

• ⇒ Can we combine the advantages for fast sampling of diffusion models?

• Technical spoiler:
• Instead of naïvely applying diffusion model upon GAN/VAE,

• DDIM proposes a principled approach of rough sketch + refinement
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Denoising Diffusion Implicit Models

• DDIM roughly sketches the final sample, then refine it with the reverse 
process
• Key Idea:

• Given 𝐱t, generate the rough sketch 𝐱0 and refine 𝑝θ(𝐱t-1|𝐱t)

• Unlike original diffusion model, it is not a Markovian structure
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Non-Markovian Original Diffusion



• DDIM roughly sketches the final sample, then refine it with the reverse 
process
• Key Idea: Given 𝐱t, generate the rough sketch 𝐱0 and refine 𝑝θ(𝐱t-1|𝐱t)

• Formulation: Define the forward distribution 𝑞(𝐱t-1|𝐱t, 𝐱0) as

then, the forward process is derived from Bayes’ rule

Denoising Diffusion Implicit Models
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• DDIM roughly sketches the final sample, then refine it with the reverse 
process
• Key Idea: Given 𝐱t, generate the rough sketch 𝐱0 and refine 𝑝θ(𝐱t-1|𝐱t)

• Formulation: Forward process is

and reverse process is

Denoising Diffusion Implicit Models
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• DDIM significantly reduces the sampling steps of diffusion model
• Creates the outline of the sample after only 100 steps (DDPM needs thousands)

Denoising Diffusion Implicit Models
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Takeaways

• New golden era of generative models

• Competition of various approaches: GAN, VAE, flow, diffusion model

• Diffusion model seems to be a nice option for high-quality generation
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