Virtual Humans – Winter 23/24

Lecture 12_1 – Human Synthesis in a Scene

Prof. Dr.-Ing. Gerard Pons-Moll
University of Tübingen / MPI-Informatics

In this lecture...

• Synthesising static humans in static scenes.

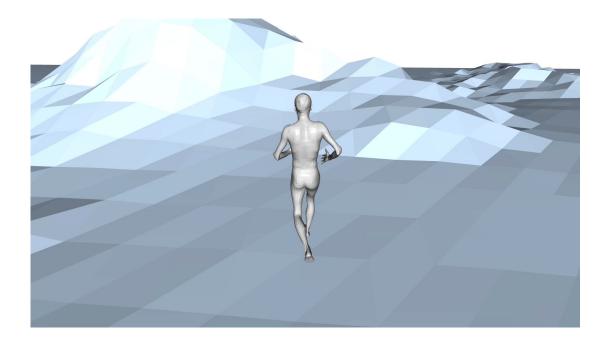
Representing human-scene contacts.

• Refresher on generative models, VAE, cVAE.

• Synthesising motion in an uneven terrain.

Goal: Awaken Virtual Humans

Perceive: We should be able to reconstruct **real** 3D humans jointly with the objects and the scene they interact with



Generation: Virtual humans should be able to move and interact with objects and scenes like real humans

So far we have seen...

- We can capture human-object interaction (BEHAVE)
- We can reconstruct HOI from images (PHOSA, CHORE)

- Can we also generate "human-object/scene" interaction?
- Why is "synthesis" of HOI useful?

What do we need to synthesise HOI?

We need to understand the 3D scene.

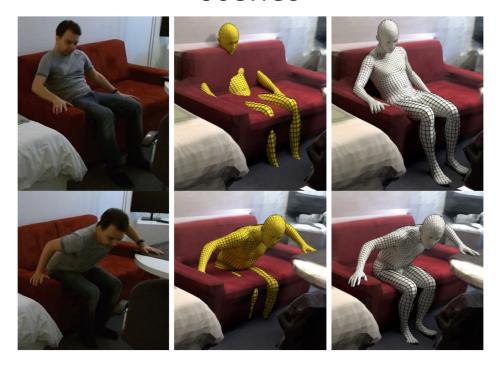
 Reason about affordance: A chair affords sitting, but also standing on it, grabbing it, etc

- Reason about function: The main function of a chair is to sit on it.
- We need to synthesise 3D humans conditioned on the 3D scene.

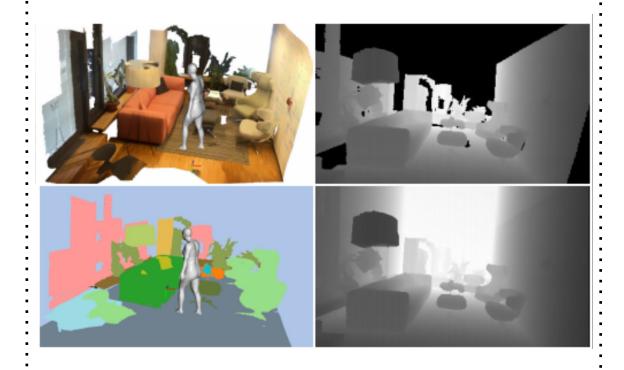
Can we synthesise static 3D humans, given a static 3D scene?

Is there data to learn such a model?

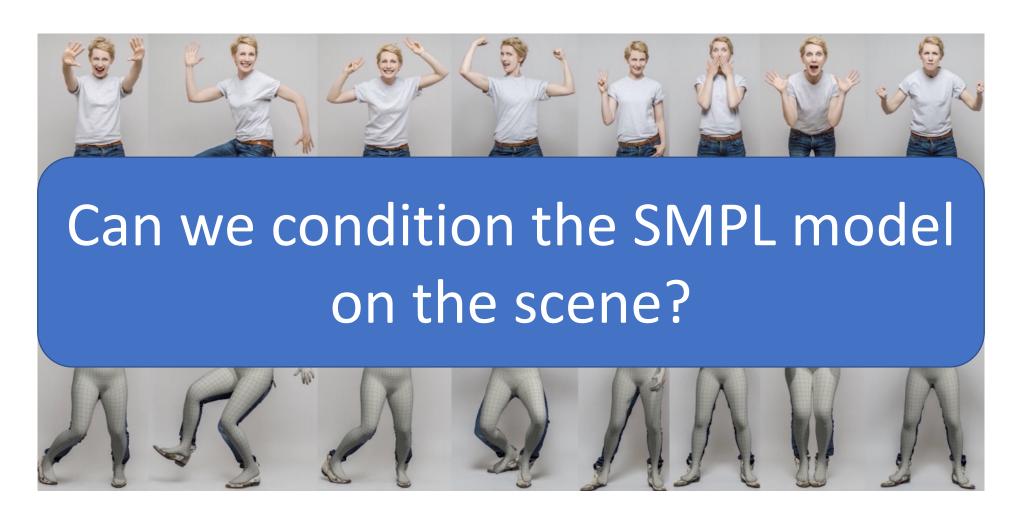
PROX (Hassan et al., ICCV 2021)
pseudo GT SMPL-X meshes in 3D
scenes



PROX-E (Zhang et al., CVPR 2021) semantic labels on top of PROX



Problem: Current body models such as SMPL do not factor in the scene

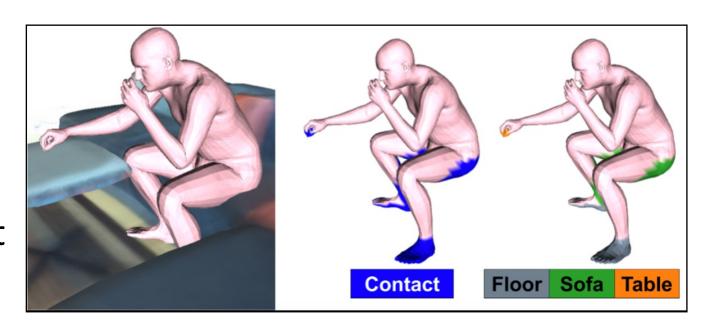


To condition SMPL on scene, we need contacts

Key idea:

Based on the pose:

- Predict contact vertices.
- Predict likely objects in contact



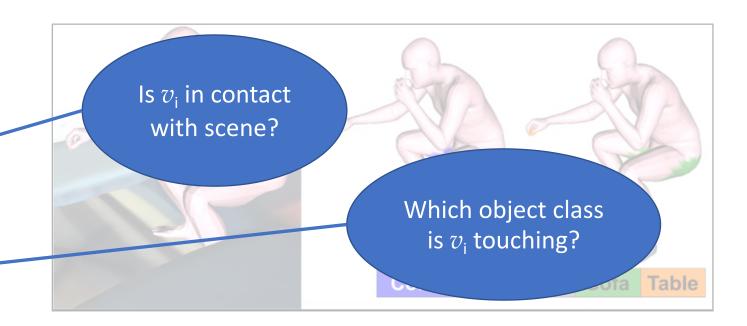
Representing contacts, C

Body, scene vertices: V_b, V_s

$$C = \{ [f_s, f_c]_i \mid v_i \in V_b \}$$

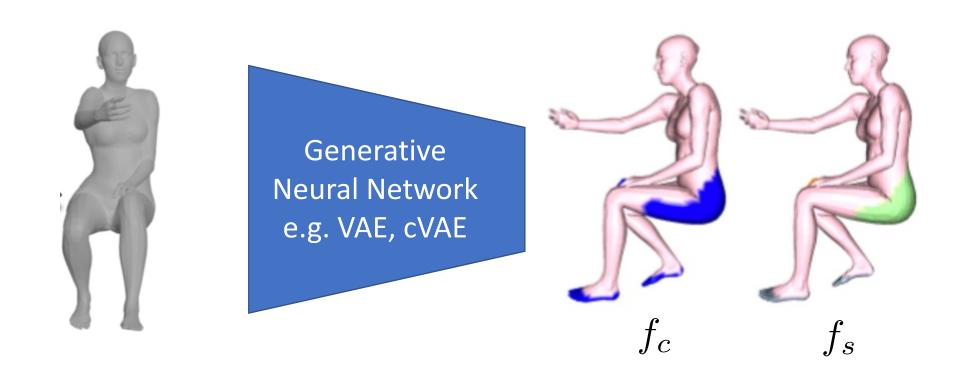
$$f_c \in \{0,1\}^{|V_b|}$$

$$f_s \in \{0, 1\}^{|V_b| \times L}$$



L is the number of objects in scene.

Contacts can be sampled on SMPL vertices



Refresher on VAE / cVAE

Variational Bayesian inference

The Bayes theorem
$$p(Z|X) = \frac{p(X|Z) \cdot p(Z)}{p(X)}$$
 Marginal likelihood

- X is the evidence, our observations from the system, the data.
- Z is the **hypothesis**, our assumptions on what causes the observations, the latent variables.
- The likelihood can represent the model of the system.
- In Bayesian inference, we calculate the **posterior** to infer the reasons.

Refresher on VAE / cVAE

Variational Bayesian inference

The Bayes theorem
$$p(Z|X) = \frac{p(X|Z) \cdot p(Z)}{p(X)}$$
 Marginal likelihood

- In most cases, the posterior does not have a closed form and is computationally intractable.
- Variational Bayesian inference uses another simpler distribution to approximate the posterior.
- Two key questions:
 - > How to define the approximate posterior?
 - > How to perform approximation?

Refresher on VAE / cVAE

Variational Bayesian inference

$$D_{KL}(q_{\phi}(Z|X)||p(Z|X)) = \int_{Z}^{\text{Approximate posterior}} \frac{q_{\phi}(Z|X)}{p(Z|X)} \, dZ$$
 Kullback-Leibler divergence

- The approximate posterior has a known form with unknown parameters.
- The Kullback-Leibler (KL) divergence measures the difference between two distributions.
 - ➤ Non-negative and convex
 - ➤ Non-symmetric measure
- To perform inference, we minimise the KL-divergence.

Refresher on VAE / cVAE

Variational autoencoding:

learn the generative model and approximate posterior simultaneously.

$$D_{KL} (q_{\phi}(Z|X)||p_{\theta}(Z|X))$$

$$= \int_{Z} q_{\phi}(Z|X) \cdot \log \left(\frac{q_{\phi}(Z|X)}{p_{\theta}(Z|X)}\right) dZ$$

$$= \int_{Z} q_{\phi}(Z|X) \cdot \log \left(\frac{q_{\phi}(Z|X)p_{\theta}(X)}{p_{\theta}(X|Z)p_{\theta}(Z)}\right) dZ$$

$$= \log p_{\theta}(X) + \int_{Z} q_{\phi}(Z|X) \cdot \log \left(\frac{q_{\phi}(Z|X)}{p_{\theta}(Z)}\right) dZ - \int_{Z} q_{\phi}(Z|X) \cdot \log p_{\theta}(X|Z) dZ$$

$$(3)$$

$$= \log p_{\theta}(X) + D_{KL} \left(q_{\phi}(Z|X) || p_{\theta}(Z) \right) - E_{Z \sim q_{\phi}(Z|X)} [\log p_{\theta}(X|Z)] \tag{5}$$

(4)

Refresher on VAE / cVAE

Variational autoencoding:

learn the generative model and approximate posterior simultaneously.

$$\log p_{\theta}(X) - D_{KL} \left(q_{\phi}(Z|X) || p_{\theta}(Z|X) \right) = E_{Z \sim q_{\phi}(Z|X)} [\log p_{\theta}(X|Z)] - D_{KL} \left(q_{\phi}(Z|X) || p_{\theta}(Z) \right)$$

Maximise it for machine learning

Minimise it for variational inference

$$\log p_{\theta}(X) \ge E_{Z \sim q_{\phi}(Z|X)}[\log p_{\theta}(X|Z)] - D_{KL}(q_{\phi}(Z|X)||p_{\theta}(Z))$$

Evidenced lower-bound (ELBO)

Refresher on VAE / cVAE

Variational autoencoding: evidenced lower-bound (ELBO) loss

The reconstruction term

$$E_{Z \sim q_{\phi}(Z|X)}[\log p_{\theta}(X|Z)]$$

Encoding/inference decoding/generation

- Encoding is inference. Given a sample X, we derive the inference posterior and draw a latent variable Z.
- Decoding is generation. Given a latent variable Z, we generate a sample X'.
- Maximizing this term is equivalent to minimising the difference between X and X'.
- This term is used for data reconstruction. In practice, we can use L1 or L2 distance.

Refresher on VAE / cVAE

Variational autoencoding: evidenced lower-bound (ELBO) loss

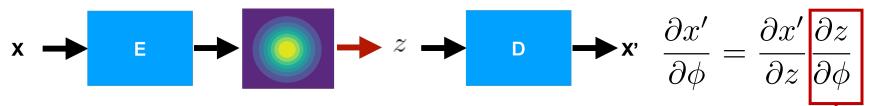
The KLD term $D_{KL}\left(q_{\phi}(Z|X)||p_{ heta}(Z)
ight)$ Inference posterior Latent prior

- The inference posterior has a known form with unknown parameters.
- The latent prior can be either pre-defined or learned from data.
- When both of them are Gaussian, the KLD term has a closed form.
- When this term is 0, the inference posterior is independent of X, leading to posterior collapse.

Refresher on VAE / cVAE

Variational autoencoding: the reparameterization trick

- We maximize the ELBO to train the VAE, via back-propagation.
- However, the sampling operation is non-differentiable.
- With re-parameterization, the gradients back-propagates without passing the sampling operation.

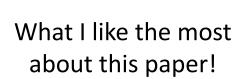


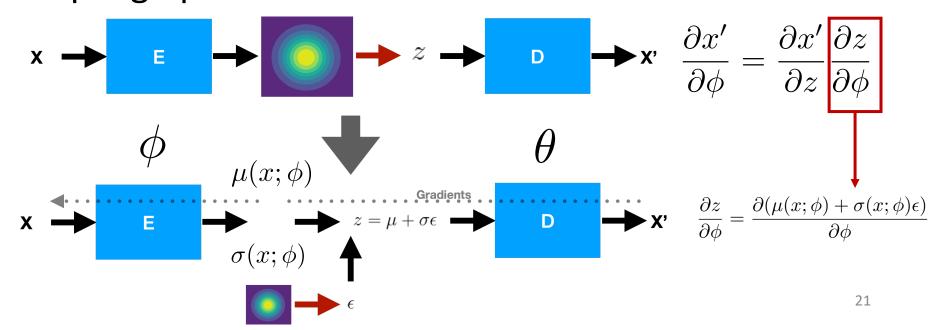
What I like the most about this paper!

Refresher on VAE / cVAE

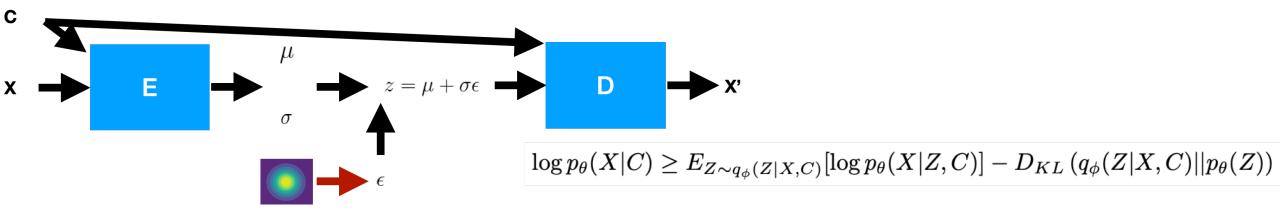
Variational autoencoding: the reparameterization trick

- We maximize the ELBO to train the VAE, via back-propagation.
- However, the sampling operation is non-differentiable.
- With re-parameterization, the gradients back-propagates without passing the sampling operation.



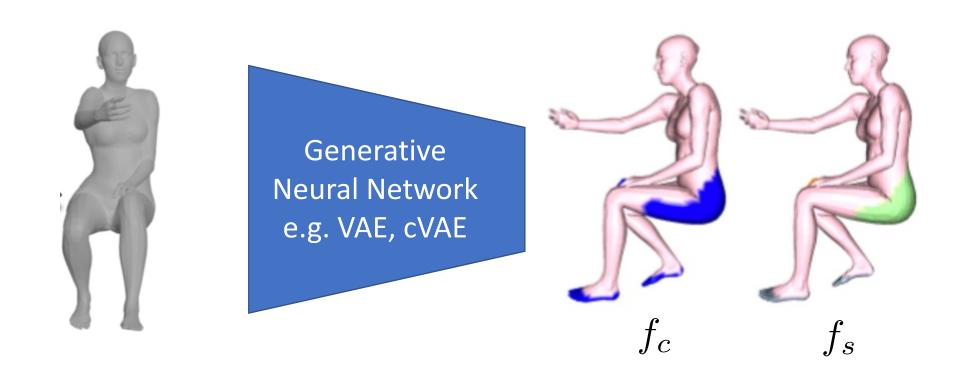


Conditional VAE

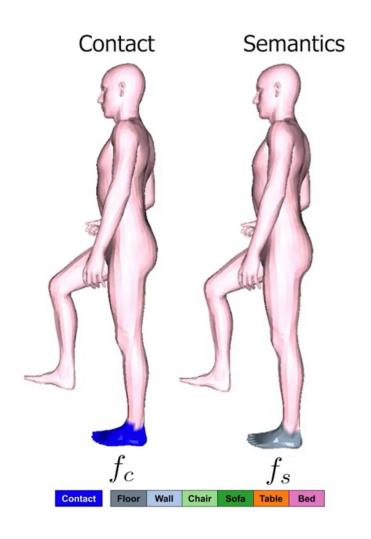


- The condition 'c' can be action labels, motions from the past, or the scene context.
- The condition is concatenated with both the encoder and the decoder.
- The cVAE is widely used for motion modelling.

Contacts can be sampled on SMPL vertices



Sampled contacts using cVAE



Fitting SMPL to scene using sampled contacts

Optimise SMPL pose and translation

$$E(\theta, t) = L^{\text{afford}} + L^{\text{pen}} + L^{\text{reg}}$$

$$L^{\text{afford}} = ||f_c \cdot f_d||_2 + \lambda \sum_i CCE(f_s^i, f_{ds}^i)$$

- f_c Target contacts predicted by NN
- f_d Distance between current SMPL and scene
- $f_{\scriptscriptstyle S}$ Target object predicted by NN
- f_{ds} Current contacting object

Fitting SMPL to scene using sampled contacts

Optimise SMPL pose and translation

$$E(\theta, t) = L^{\text{afford}} + L^{\text{pen}} + L^{\text{reg}}$$

 $L^{\text{pen}} = \sum (f_d)^2$

 f_d Signed distance between current SMPL and scene

Fitting SMPL to scene using sampled contacts

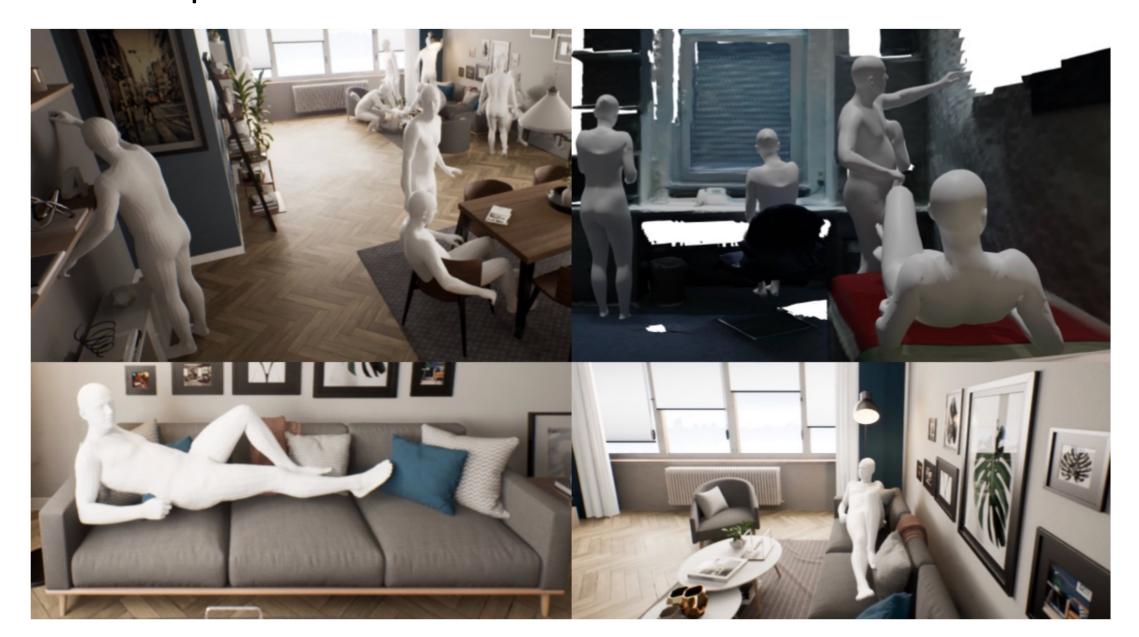
Optimise SMPL pose and translation

$$E(\theta, t) = L^{\text{afford}} + L^{\text{pen}} + L^{\text{reg}}$$

$$L^{\text{reg}} = ||\theta - \theta_{\text{init}}||^2$$

Current pose should not deviate too much from initialisation.

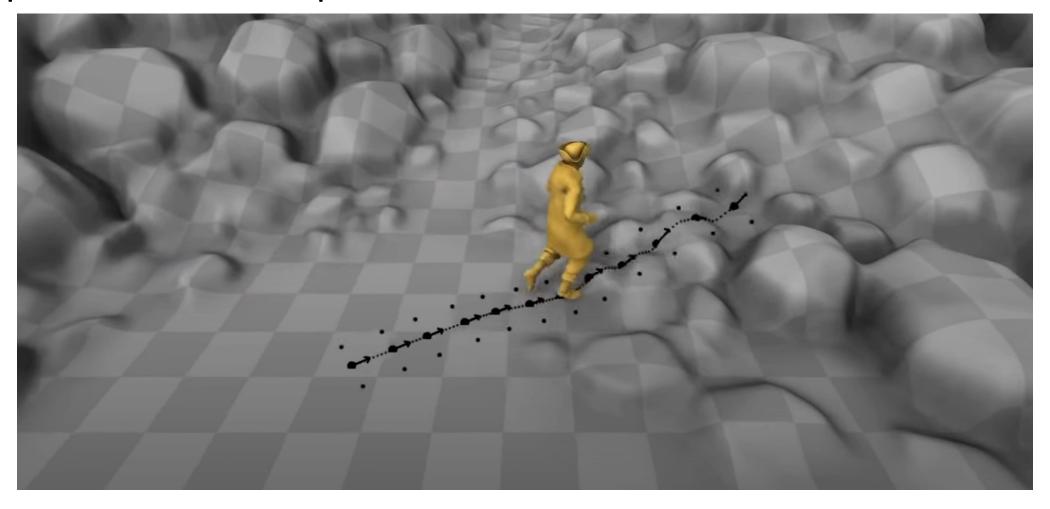
We can optimise static SMPL conditioned on scene



What about dynamic poses?

That is a much harder problem, let's dive into it!

Given 3D terrain and type of motion, synthesize a sequence of 3D poses



Challenges

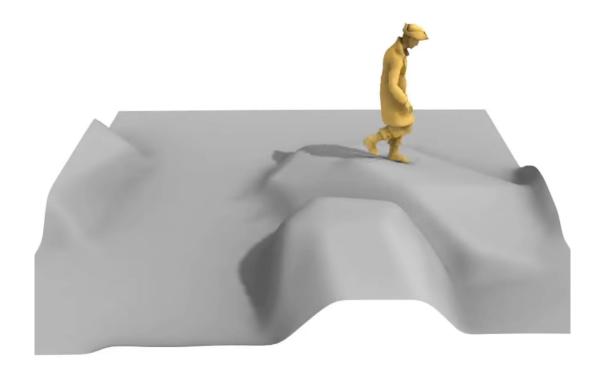
1. How to obtain data to learn such a model?

2. How do we encode the motion and terrain?

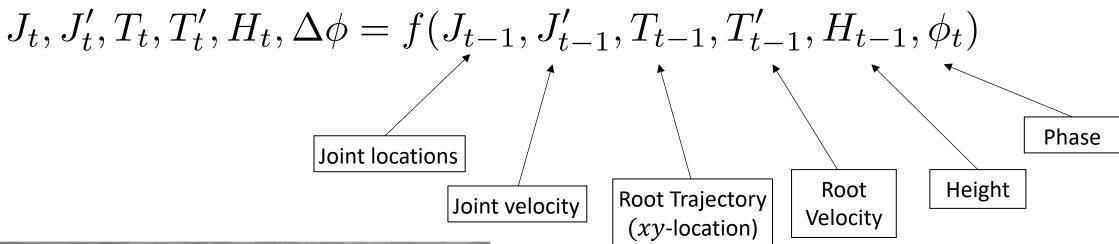
3. How do we perform inference?

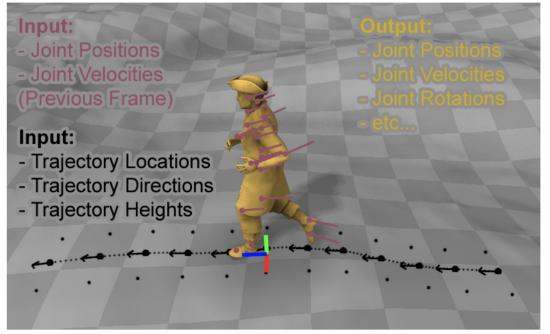
1. How to obtain data to learn such a model?

- Capturing data with varying terrain is hard.
- Record a subject walking and climbing stairs/ stool.
- Optimize the the terrain to fit the captured motion.



2. How to encode motion and terrain?

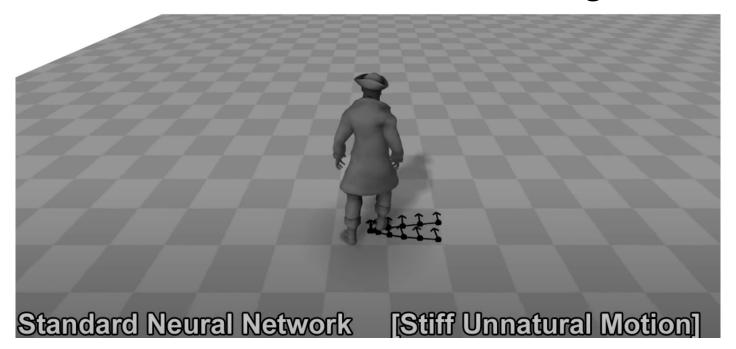




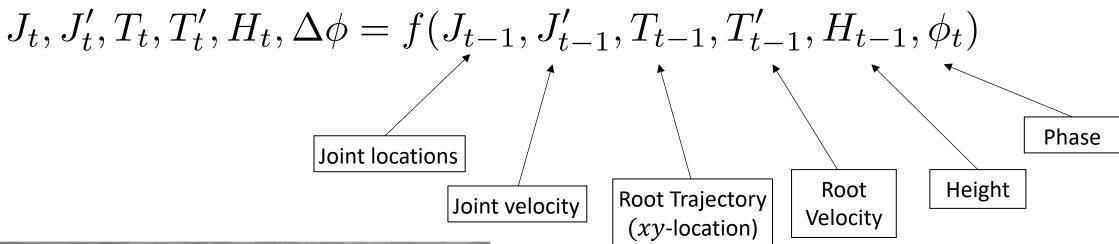
- The motion is encoded as location and velocity of root and joints.
- The terrain is encoded as the height at sampled points around trajectory.

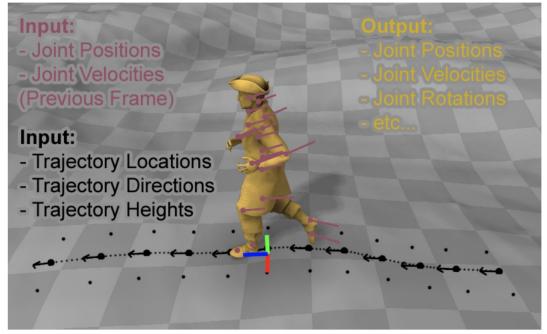
What is phase, Φ ?

- The phase Φ is an auxiliary variable that cycles between 0 and 2π .
- It represents the progress of one walking cycle, e.g. 0 could be a foot lift off and 2π is when we again land the foot.
- Without phase, motion is stiff and has foot sliding artefact.



3. How to predict future motion?





- Future motion is predicted autoregressively as a function of past predictions.
- f(.) is a neural network with MLPs.

Synthesised motion on challenging terrain

Takeaways

- Current models like SMPL do not model humans as a function of scene.
- To synthesise humans in static scene, we need contacts.
- Contacts encode which body point touches which scene point.
- One way to generate contacts is using generative modelling e.g. VAE.
- Motion synthesis can me modelled as as a auto-regression task with past motion and terrain as input.