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In this lecture...

* Synthesising static humans in static scenes.

* Representing human-scene contacts.

* Refresher on generative models, VAE, cVAE.

* Synthesising motion in an uneven terrain.
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So far we have seen...

* We can capture human-object interaction (BEHAVE)

* We can reconstruct HOI from images (PHOSA, CHORE)

* Can we also generate "human-object/scene" interaction?

* Why is "synthesis" of HOI useful?
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What do we need to synthesise HOI?

 We need to understand the 3D scene.

* Reason about affordance: A chair affords sitting, but also standing
on it, grabbing it, etc

e Reason about function: The main function of a chair is to sit on it.

* We need to synthesise 3D humans conditioned on the 3D scene.



Can we synthesise static 3D humans, given a
static 3D scene?

Hassan et al. CVPR'21



Is there data to learn such a model?

PROX (Hassan et al., ICCV 2021) . PROX-E (Zhang et al., CVPR 2021)

pseudo GT SMPL-X meshesin3D : :  semantic labels on top of PROX
scenes L




Problem: Current body models such as SMPL
do not factor in the scene
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Can we condition the SMPL model
on the scene?
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To condition SMPL on scene, we need contacts

Key idea:
Based on the pose:

* Predict contact vertices.

* Predict likely objects in contact

Hassan et al. CVPR'21 10



Representing contacts, C

Body, scene vertices: V}, V.

C = {[fs, fc]z ’?Ji S %} Is v; in contact

with scene?

\a
fc S {Ov 1} Which object class

is v; touching?

fs c {071}|Vb|><L —
L is the number of objects in scene.

Hassan et al. CVPR'21 11



Contacts can be sampled on SMPL vertices

Generative
Neural Network

e.g. VAE, cVAE

Hassan et al. CVPR'21
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Slide credit: Siyu Tang

Refresher on VAE / cVAE

Variational Bayesian inference
Likelihood Prior

Posterior | |
. pX|Z)-p(Z2)
The Bayes theorem p(Z X = ' —
21%) p(X)

Marginal likelihood

* X is the evidence, our observations from the system, the data.

* Z is the hypothesis, our assumptions on what causes the
observations, the latent variables.

* The likelihood can represent the model of the system.

* |n Bayesian inference, we calculate the posterior to infer the reasons.



Slide credit: Siyu Tang

Refresher on VAE / cVAE

Variational Bayesian inference
Likelihood Prior

Posterior ‘ ‘ |
. pX[Z)-p(Z)
The Bayes theorem P Z X — .

Marginal likelihood

* |n most cases, the posterior does not have a closed form and is
computationally intractable.

* Variational Bayesian inference uses another simpler distribution to
approximate the posterior.

* Two key questions:
» How to define the approximate posterior?
» How to perform approximation? .



Slide credit: Siyu Tang

Refresher on VAE / cVAE

Variational Bayesian inference

Approximate posterior, .- :
ol Z|1 X
(M\))M

Dt (q,(Z1X))|Ip(Z1X) = [ q,(Z|1X)-1og [ 22
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Kullback-Leibler divergence

* The approximate posterior has a known form with unknown
parameters.
* The Kullback-Leibler (KL) divergence measures the difference
between two distributions.
» Non-negative and convex
» Non-symmetric measure

* To perform inference, we minimise the KL-divergence. .



Slide credit: Siyu Tang

Refresher on VAE / cVAE

Variational autoencoding:

learn the generative model and approximate posterior simultaneously.

D1 (g94(Z]X)||pe(Z] X)) (1)
vt (29
= [ auta 105 (55T ) 2 ®

q4(Z1X)

po(2) )dz—/z%(ZlX)-logpe(X|Z)dZ

(4)
= logpe(X) + Dk (Q¢(Z|X)||p0(z)) - EZNQ¢(Z|X) log po(X|Z)] (5)
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Slide credit: Siyu Tang

Refresher on VAE / cVAE

Variational autoencoding:

learn the generative model and approximate posterior simultaneously.

log po(X) =Dk (9621 X)|pe(Z|X)) = Ezngy(zx)l0g po(X|2)|=Dr1 (45(Z]X)|Ipo(2))

Maximise it Minimise it

for machine learning for variational inference l

log pg(X) = Eznyg,(z)x)l0gpe(X|Z)] — Drr (94(Z]|X)||pe(Z))
Evidenced lower-bound (ELBO)
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Slide credit: Siyu Tang

Refresher on VAE / cVAE

Variational autoencoding: evidenced lower-bound (ELBO) loss

The reconstruction term E VA ~qg¢ (Z | X ) [log p 0 (X ‘ Z )]

Encoding/inference decoding/generation

* Encoding is inference. Given a sample X, we derive the inference posterior
and draw a latent variable Z.

* Decoding is generation. Given a latent variable Z, we generate a sample X'

* Maximizing this term is equivalent to minimising the difference between X
and X'.

* This term is used for data reconstruction. In practice, we can use L1 or L2
distance.
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Slide credit: Siyu Tang

Refresher on VAE / cVAE

Variational autoencoding: evidenced lower-bound (ELBO) loss

The KLD term Dkr (q¢(Z|X)||p9(Z))

Inference posterior Latent prior

* The inference posterior has a known form with unknown parameters.
* The latent prior can be either pre-defined or learned from data.
* When both of them are Gaussian, the KLD term has a closed form.

* When this term is 0, the inference posterior is independent of X,
leading to posterior collapse.
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Refresher on VAE / cVAE

Variational autoencoding: the reparameterization trick

* We maximize the ELBO to train the VAE, via back-propagation.
* However, the sampling operation is non-differentiable.

* With re-parameterization, the gradients back-propagates without
passing the sampling operation. ?
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Refresher on VAE / cVAE

Variational autoencoding: the reparameterization trick

* We maximize the ELBO to train the VAE, via back-propagation.
* However, the sampling operation is non-differentiable.

* With re-parameterization, the gradients back-propagates without
passing the sampling operation.
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Conditional VAE

M—»

R

log po(X|C) 2 Eznq,(z\x,c)ll0gpe(X|Z,C)] — Dk (95(Z|X, C)|lpe(2))

* The condition 'c' can be action labels, motions from the past, or the
scene context.

* The condition is concatenated with both the encoder and the decoder.
* The cVAE is widely used for motion modelling.

22



Contacts can be sampled on SMPL vertices

Generative
Neural Network

e.g. VAE, cVAE

Hassan et al. CVPR'21
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Sampled contacts using cVAE

Contact Semantics

Hassan et al. CVPR'21
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Fitting SMPL to scene using sampled contacts

Optimise SMPL pose and translation

E(Q,t) _ Lafford 4+ J pen + Jres

Lafford _ ch . de2 - )\ZCCE(f;fés)

f. Target contacts predicted by NN
fd Distance between current SMPL and scene
fs Target object predicted by NN

fds Current contacting object



Fitting SMPL to scene using sampled contacts

Optimise SMPL pose and translation

E(Q,t) _ Lafford 4+ J pen + Jres
LP = % (fa)?

fi<0

fa Signed distance between current SMPL and scene



Fitting SMPL to scene using sampled contacts

Optimise SMPL pose and translation

E(Q,t) _ Lafford 4+ J pen + Jres

L8 = |10 — Oinit]|°

Current pose should not deviate too much from initialisation.



We can optimise static SMPL conditioned on scene
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What about dynamic poses?

That is a much harder problem, let’s dive into it!



Given 3D terrain and type of motion, synthesize a
sequence of 3D poses

PFNN. Holden et al. SIGGRAPH'17 30



Challenges
1. How to obtain data to learn such a model?
2. How do we encode the motion and terrain?

3. How do we perform inference?

PFNN. Holden et al. SIGGRAPH'17



1. How to obtain data to learn such a model?

e Capturing data with varying terrain is hard.
» Record a subject walking and climbing stairs/ stool.
* Optimize the the terrain to fit the captured motion.

PFNN. Holden et al. SIGGRAPH'17 32



2. How to encode motion and terrain?
Jt7 é?TtaTtlaHt)A¢:f(Jt—1a é—laTt—la t— 17Ht 17¢t

/ Phase
Joint locations / \ \ \

i Root Height
Joint velocity | |Root Trajectory Velocit g
(xy-location) y

e The motion is encoded as location
and velocity of root and joints.

* The terrain is encoded as the height
at sampled points around trajectory.

PFNN. Holden et al. SIGGRAPH'17 33



What is phase, @7

* The phase ® is an auxiliary variable that cycles between 0 and 2.

* It represents the progress of one walking cycle,
e.g. 0 could be a foot lift off and 2 is when we again land the foot.

* Without phase, motion is stiff and has foot sliding artefact.

StandardINeuraliNetwork StiffilUnnatural’Motion]

PFNN. Holden et al. SIGGRAPH'17 34



3. How to predict future motion?
JtajéaTtaTtlyHt)A¢:f(Jt—17 é—l)Tt—la t— 17Ht 17¢t

/ Phase
Joint locations / \ \ \

i Root Height
Joint velocity | |Root Trajectory Velocit g
(xy-location) y

* Future motion is predicted auto-
regressively as a function of past
predictions.

* f(.) is a neural network with MLPs.

PFNN. Holden et al. SIGGRAPH'17 35




Synthesised motion on challenging terrain

A Source: [Holden et al. 2017]

PFNN. Holden et al. SIGGRAPH'17 36



akeaways

* Current models like SMPL do not model humans as a function of scene.
* To synthesise humans in static scene, we need contacts.

* Contacts encode which body point touches which scene point.

* One way to generate contacts is using generative modelling e.g. VAE.

* Motion synthesis can me modelled as as a auto-regression task with
past motion and terrain as input.



