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In this lecture, we will learn ...

* 3D Gaussian Splatting (3DGS) [Kerbl & Kopanas ‘23]

* Applications of 3DGS and addressing its limitations (i.e.,
dynamic scene, compression, surface reconstruction...)

* Synthetizing/animating photorealistic humans using 3DGS



In this lecture, we will learn ...

* 3D Gaussian Splatting (3DGS) [Kerbl & Kopanas ‘23]



Goal: Reconstructing 3D world from images and videos

Input images

https://3dgstutorial.github.io/






3D Gaussian Splatting (3DGS) [Kerbl & Kopanas ‘23]

* Splat-based representation
e Use 3D Gaussians instead of points or a mesh.
* |t does not include any neural network.
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Parametrization of 3D Gaussian

How to
parametrize 3D
Gaussian?



Parametrization of 3D Gaussian
_1(\Ty-1

3D Gaussian parametrized by:

3D point (mean) p

Covariance 2

Opacity alpha

Color ¢ — RGB values or spherical

Gaussian? harmonics (SH) coefficients.

How to
parametrize 3D



How to optimize a covariance matrix 2?

* Not all symmetric matrices are covariance matrices and gradient updates
can easily make them invalid.

* The covariance matrix 2 of a 3D Gaussian is analogous to describing the
configuration of an ellipsoid.

* 2 has a physical meaning if its a positive-semi definite matrix. So factorize
as follows:
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3x3

Covariance z — RSSTRT

Matrix

Diagonal scaling
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for scale)

3x3 Rotation
martrix



Projection of a covariance matrix Z into 2D
3x3

Covariance Z — RSSTRT

Matrix

Diagonal scaling
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for scale)

3x3 Rotation
matrix



Projection of a covariance matrix Z into 2D
3x3

Covariance Z — RSSTRT

Matrix

Diagonal scaling
maitrix (3 parameters
for scale)

woee 3 = JWE WY

Jacobian of the affine
approximation of the Viewing
projective Transformation
transformation

3x3 Rotation
matrix



Image Formation Model of NeRF
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Image Formation Model of 3D Gaussian Splatting
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NeRF vs Gaussian Splatting
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Adaptive Control of the Gaussians

Under
Reconstruction

Optimization
Continues




Adaptive Control of the Gaussians

Under
Reconstruction

Optimization
Continues

Over
Reconstruction

Optimization
Continues




Optimization

L=(1-0)L1+ALD-ssIMm



https://3dgstutorial.github.io/
Optimization

L=(1-0)L1+ALD-ssIMm

How to go from 5 FPS to 100+ FPS?
(Using the GPU efficiently)



https://3dgstutorial.github.io/
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How to go from 5 FPS to 100+ FPS?
(Using the GPU efficiently)

* 1. Tiling
* Split the image in 16x16 Tiles — helps threads to work coll

* 2. Single global sort
* GPU sorts millions of primitives fast.
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» Camera Point view

» 3D Gaussians

Capture

Menu Views
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VSync On



Ground Truth i InstantNGP Plenoxels
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Limitations and its follow-up works

* 3DGS has a high storage cost.
* Compression
* 3DGS is a novel view synthesis method (mostly static scenes).
* Extending into dynamic scenes - Dynamic 3DGS
* Unlike meshes, 3DGS does not provide a clean/compact surface.

 Surface Reconstruction (How to obtain surface from gaussian
primitives?)



Limitations and its follow-up works

* 3DGS has a high storage cost.
* Compression



https://3dgstutorial.github.io/

Storage cost of a 3DGS Scene

* 59 x 4 bytes to represent a single Gaussian

 Millions of them!
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3DGS Compression — Follow-up works

 Compact3D: Smaller and Faster Gaussian Splatting with Vector
Quantization

 EAGLES: Efficient Accelerated 3D Gaussians with Lightweight Encodings
(ECCV 2024)

* LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction
and 200+ FPS (NeurlPS 2024)

e Compact 3D Gaussian Representation for Radiance Field (CVPR 2024)

 Compressed 3D Gaussian Splatting for Accelerated Novel View Synthesis
(CVPR 2024)

* Reducing the Memory Footprint of 3D Gaussian Splatting (13D ’24)



3DGS Compression — Follow-up works

* EAGLES: Efficient Accelerated 3D Gaussians with Lightweight Encodings
(ECCV 2024)



https://efficientgaussian.github.io/

EAGLES: Efficient Accelerated 3D Gaussians with
Lightweight Encodings (ECCV 2024)
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* Key components:
* Quantized embeddings
* Coarse-to-fine training
* Influence pruning



Compression results
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Limitations and its follow-up works

* 3DGS has a high storage cost.
* Compression



Limitations and its follow-up works

* 3DGS has a high storage cost.
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* 3DGS is a novel view synthesis method (mostly static scenes).
* Extending into dynamic scenes - Dynamic 3DGS



https://dynamic3dgaussians.github.io/

Dynamic 3D Gaussians: Tracking by Persistent Dynamic
View Synthesis (3DV 2024)

e Fixed / Consistent over
time:
* 3D Size
e Color
* Opacity

* Changing over time (per
timestep):
* 3D Center
* 3D Rotation




Tracking 3D Gaussians over time
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SuGaR: Surface-Aligned Gaussian Splatting for Efficient
3D Mesh Reconstruction and High-Quality Mesh
Rendering (CVPR 2024)




Density constraint: alighing gaussians with the
true surface

e Gaussians should have limited overlap and be well-spread on the surface.
e Gaussians should be fully opaque or transparent.

* Gaussians should be as flat as possible. (One of the three scaling factors
should be close to zero.)

Zajexp< (P — 1g) 2y (p—ug))
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Representing virtual humans
with Gaussian Splatting



Works on representing digital humans

* Animatable Gaussians (CVPR 24)

* Drivable 3D Gaussian Avatars (3DV 25)
* GART (CVPR 2024)

 Human Gaussian Splatting (CVPR 24)
 HUGS (CVPR 24)

e Gaussian Shell Maps (CVPR 2024)

e GaussianAvatars (CVPR 24)

e Gaussian Head Avatars (CVPR 2024)

e PhysAvatar (ECCV 2024)



Animatable Gaussians

We present Animatable Gaussians, a new avatar representation for
creating lifelike human avatars with highly dynamic, realistic and generalized details
from multi-view RGB videos

Training Data: Multi-view RGB Videos

https://animatable-gaussians.github.io/



Avatars animated motions from Amass
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https://animatable-gaussians.github.io/



Method

1. Reconstruct a character-specific template from multi-view images

2. Keyideaisto predict pose-dependent Gaussian maps through the StyleUNet, and
render the synthesized avatar by LBS and differentiable rasterization.

Driving Pose ©

9

View D1rect10n

LBS &
Render

Implicit

. Reconstruction Rasterization

StyleUNet
Parametric Template
A 3D Gaussian Canonical Posed Synthesized
Front & Back  (esition. Covariance Front e Back 3D Gaussians 3D Gaussians Avatar

Opacity & Color)
Multi-view Images Posed Position Maps Gaussian Maps

Learning Parametric Template Learning Pose-dependent Gaussian Maps



https://animatable-gaussians.github.io/



PhysAvatar: Learning the Physics of Dressed 3D
Avatars from Visual bservations
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https://qingging-zhao.github.io/PhysAvatar



Method

Input

Multi-view video data

<¥

o

Mesh Tracking

I Lrender + AiLiso + AnLnormal T

Esim L

Dynamic Modeling
(Sec. 3.2)

Gradient Based Optimization

DS + oc  L£(©O+66)—L©0)
Simulator 20~ 30
(©)
Appearance Modeling

(Sec. 3.3)

Physics Based —
Rendering =
Engine
G

Test-time Input Motion

( )

©

Output

il

L—» Operation Flow s Gradient Flow  ====/» Test Time Flow }




PhysAvatar: Learning the Physics of Dressed 3D
Avatars from Visual Observations

https://qingging-zhao.github.io/PhysAvatar



GaussianAvatars: Photorealistic Head Avatars with
Rigged 3D Gaussians (CVPR 2024)

* 3D Gaussian splats are
rigged to FLAME

* Parameterizing each splat
by a local coordinate
frame of a triangle

input video

FLAME parameters 3D Gaussian parameters rendering equation loss terms
shape B global scaling s’ = ks -
vertex offset  Av global position  p' = kRu+T i-1 Legn = (1 = DLy + Lp-ssiv
global rotation 7' = Rr C= Z ca; l_[(l —aj)
translation ¢ parent triangle i = ; j=1 ! Lycating = [[max(s, fsmlng)"z
joint poses ] SH coefficient  h Lposition = ||max(11, Gpasmon)”z
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3D Gaussian -«
parent triangle

3D Gaussian h
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3D Gaussian

N

3D Gaussian
local scaling

3D Gaussian
local position l‘

3D Gaussian
local rotation r

opacity a

and scale 3D Gaussians apply adaptive density control

for each triangle center of each triangle during optimization with binding inheritance



igged FLAME model

¥ Render

reset FLAME

Animated Avatar
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