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Goal: Novel View Synthesis

Input: 
Sparsley sampled 

images of the scene

Learn scene 
representation

Novel view synthesis 
of the scene
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Learning radiance field representation of scene:

Spatial Location

Viewing direction

Output Density

Output Color

Novel View Synthesis

3



Accumulated transmittance along ray :

Volume Rendering

Given color and density                      , we calculate the 
color of every camera ray using:

Camera ray:

Near and far 
bounds

Color (r,g,b) at 
r(t)

Volume density: Probability of a ray 
terminating at an infinitesimal particle at 

location r(t) 
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Accumulated transmittance along ray

Volume Rendering in NeRF

Uniform N samples

Color (r,g,b) at 

Alpha(in traditional alpha composting)

Distance between adjacent samples

Given color and density                      , we calculate the 
color of every camera ray using:
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Neural Radiance Fields

Training NeRF:

1) March camera rays through the scene to generate a sampled set of 3D points
2) Use those points and their corresponding 2D viewing directions as input to the neural

network to produce an output set of colors and densities
3) Use classical volume rendering techniques to accumulate those colors and densities into a 

2D image
4) Minimize error between rendered color and GT color 6



Neural Radiance Fields

Tannick et al. ECCV 20
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Novel view synthesis using NeRF
Generated results are blurry
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Why blurry results?
Can coordinate based MLP learn high-frequency details?

Tannick et al. NeurIPS 20
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Why blurry results?
Coordinate based neural network fail to learn high frequency details for all kind of 

data including RGB image, 3D shape, density , etc

RGB 3D Shape Density Radiance 
field

(density, color)
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Tannick et al. NeurIPS 20



Solution:
• In naive setting, the bandwidth of the Neural Tangent Kernel limits the spectrum of 

the recovered/learned function.
• Using a Fourier feature mapping transforms the neural kernel into a stationary 

kernel in our low-dimensional problem domains and increase the spectrum.

Coordinate input e.g. pixel 
location for images, 3D 

point for NeRF
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Tannick et al. NeurIPS 20



Fourier Features in Coordinate MLPs
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RGB 3D Shape Density Radiance 
field

(density, color)
Tannick et al. NeurIPS 20



Positional Encoding in NeRF
With fourier features/positional encoding, NeRF learns high frequency details.
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Tannick et al. NeurIPS 20



Positional Encoding in NeRF

Mueller et al. SIGGRAPH 22 14

With fourier features/positional encoding, NeRF learns high frequency details.

Without positional  encoding



Mueller et al. SIGGRAPH 22

Without positional  encoding With positional  encoding
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Positional Encoding in NeRF
With fourier features/positional encoding, NeRF learns high frequency details.



Geometry in NeRF
Scene geometry can be approximated using threshold

Tannick et al. ECCV 20 16



Limitations of NeRF
1. Scene specific and only static scene can be modeled.

GT image of a 
dynamic scene

Image generated 
with NeRF
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Limitations of NeRF
2. No editing and control

• Learned scene cannot be modified.
• Scene is memorized within the network
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Limitations of NeRF
3. Generalization

• Scene specific models.
• Large number of images are needed
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Limitations of NeRF
4. Expensive training: 

• Training is slow(10 hours-up to few days)
• Inference is also not real time
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Limitations of NeRF
5. Surface extracted is not accurate and depends on threshold.
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Limitations of NeRF
1. Scene specific and only static scene can be modeled.

GT image of a 
dynamic scene

Image generated 
with NeRF
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What about dynamic scenes? 

Pumarola et al. CVPR‘21
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What about dynamic scenes? 
Learn radiance field given 3d point, viewing direction and time

Spatial Location

Viewing direction

Output Density

Output Color

Time
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Can we learn this mapping directly
using NeRF?

Learn radiance field given 3d point, viewing direction and time

Ground truth NeRF + time
25

Pumarola et al. CVPR‘21



Proposed solution: D-NeRF
Learn canonical shape and radiance field in the canonical shape
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Pumarola et al. CVPR‘21



Proposed solution: D-NeRF

Ground truth D-NeRF NeRF + time
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Learn canonical shape and radiance field in the canonical shape

Pumarola et al. CVPR‘21



28

Pumarola et al. CVPR‘21



D-NeRF: Visualization of learned scene
representation
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Pumarola et al. CVPR‘21
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Conclusion:Dynamic Scenes with D-
NeRF
• Disentangle time dependent deformation from neural 

rendering network.



Conclusion:Dynamic Scenes with D-
NeRF
• Disentangle time dependent deformation from neural 

rendering network.
• Correspondence between canonical shape and 

deformed shape is defined by

32



Conclusion:Dynamic Scenes with D-
NeRF
• Disentangle time dependent deformation from neural 

rendering network.
• Correspondence between canonical shape and 

deformed shape is defined by
• Time varying shading effects are modeled.  
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Limitations of NeRF:
2. No editing and control

• Learned scene cannot be modified.
• Scene is memorized within the network
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Limitations of NeRF
3. Generalization

• Scene specific models.
• Large number of images are needed
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Control-NeRF
Control NeRF for scene manipulation and rendering

Lazova et al. WACV‘23
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Control-NeRF
• Prior Work: Scene is memorized within the neural network, which makes 

compositing of scenes and editing hard.
• Key Idea: Decouple scene representation from neural rendering network.

Learned 
volumetric 

scene 
representation

Rendering 
network 37

Lazova et al. WACV‘23



1. Scene representation:

• Given a set of input images                           from training scenes

• Where              is set of training scenes and

• Scene representation network learns a volumetric feature
  
• where is the spatial resolution of grid which feature vector of 

length .

Control-NeRF

Learned 
volumetric feature 

for scene s 
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is the 
spatial resolution

 is length of feature 
vector

Lazova et al. WACV‘23



Control-NeRF
2. Neural rendering network with feature volumes

:Volumetric feature at query point p
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Lazova et al. WACV‘23



Control-NeRF
Training and Inference
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Lazova et al. WACV‘23



Control-NeRF: Training
1. Multi-resolution Volume training

• Hierarchical training process is used to compute the volumes in a coarse-to-fine manner.
• Train low resolution(16^3) volume till convergence.
• Upsample the learnt feature volume and train till convergence

• Improved training time.
• High-quality image synthesis and manipulation. 
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Lazova et al. WACV‘23



Control-NeRF: Training
2. Multi Scene training

• Efficient training strategy: Sample one training scene and train for N 
iterations, before saving the volume grid

42
Lazova et al. WACV‘23



Control-NeRF: Training
3. Generalization to Novel Scenes

• Fix neural rendering network and learn feature volume for novel scene.
• Given sufficient training scenes, the learnt radiance function can be 

applied to optimize for novel scenes more efficiently.
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Lazova et al. WACV‘23



Control NeRF: Scene editing and manipulation
• Scene editing and composting with Control-NeRF:
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Lazova et al. WACV‘23



• Scene editing and composting with Control-NeRF:
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Lazova et al. WACV‘23

Control NeRF: Scene editing and manipulation
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Limitations of NeRF:
4. Expensive training: 

• Training is slow(10 hours-upto few days)
• Inference is also not real time
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Neural Graphics Primitive
• An object (shape and appearance) represented by queries to a neural network. 

e.g. images, SDF, NeRF

Mueller et al. SIGGRAPH‘22
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Making NeRF(NGPs) faster
1. Smaller neural network

• Standard MLP with L layer, M neurons each, ReLU activations and no biases .For a 
constant batch size, the cost is:

• Compute: 

• Memory:

49
Mueller et al. SIGGRAPH‘22



1. Smaller neural network

• Standard MLP with L layer, M neurons each, ReLU activations and no biases .For a 
constant batch size, the cost is:

• Compute: 

• Memory:

Entire neural network implemented as single (CUDA) kernel

Making NeRF(NGPs) faster
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Mueller et al. SIGGRAPH‘22



Positional Encoding in NeRF
2. Input encoding

Without positional  encoding With positional  encoding
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Mueller et al. SIGGRAPH‘22



Positional Encoding in NeRF

Is it possible to further improve the results with input 
encoding?
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Mueller et al. SIGGRAPH‘22

Without positional  encoding With positional  encoding

2. Input encoding



Making NeRF(NGPs) faster
2. Input encoding: Multiresolution Hash Encoding
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Making NeRF(NGPs) faster
2. Input encoding: Multiresolution Hash Encoding

Multiresolution grids:
• Automatic level of details
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Making NeRF(NGPs) faster

• Task agnostic
• Fast query and computation
• Table size T control quality vs. memory
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Mueller et al. SIGGRAPH‘22

2. Input encoding: Multiresolution Hash Encoding



Making NeRF(NGPs) faster

• Linear interpolation for continuous query.
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Mueller et al. SIGGRAPH‘22

2. Input encoding: Multiresolution Hash Encoding



Instant NeRF training
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Instant SDF training
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Conclusion: Instant-NGP
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Limitations of NeRF
5. Surface extracted is not accurate and depends on threshold.
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Surface Rendering v/s Volume Rendering
Surface Rendering
(Implicit Surfaces)

High quality geometry
Clear surface definition

Mask supervision required
Texture mapping is blurry
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Volume Rendering
(Radiance fields)

Surface is approximated

Without mask supervision
High quality novel views and sharp 
textures/colors
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Surface Rendering
(Implicit Surfaces)

High quality geometry
Clear surface definition

Mask supervision required
Texture mapping is blurry

Surface Rendering v/s Volume Rendering



Best of both worlds
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Surface Rendering
(Implicit Surfaces)

High quality geometry
Clear surface definition

Mask supervision required
Texture mapping is blurry

Volume Rendering
(Radiance fields)

Surface is approximated

Without mask supervision
High quality novel views and sharp 
textures/colors



Unifying Implicit Surfaces and Radiance Fields

Oechsle et al. ICCV‘21
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NeRF Volume rendering:

NeRF Volume rendering with density
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Oechsle et al. ICCV‘21

Unifying Implicit Surfaces and Radiance Fields



NeRF Volume rendering with density
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Unifying Implicit Surfaces and Radiance Fields

Oechsle et al. ICCV‘21



NeRF Volume rendering with density

Key Idea: For solid objects,                                         , corresponds to an 
occupancy field        at i th sample.
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Unifying Implicit Surfaces and Radiance Fields



NeRF Volume rendering with density

Key Idea: For solid objects,                                         , corresponds to an 
occupancy field        at i th sample.

Given occupancy of surface, we can now render the same scene with surface 
rendering.
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Unifying Implicit Surfaces and Radiance Fields



Key Idea:

• Volume rendering in early stage:
• Optimization without mask

• Surface rendering in later stage:
• Level-set surfaces
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Unifying Implicit Surfaces and Radiance Fields
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Unifying Implicit Surfaces and Radiance Fields
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Unifying Implicit Surfaces and Radiance Fields
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Unifying Implicit Surfaces and Radiance Fields



Volume Rendering                                                            Surface 
Rendering
                                                          decreases
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Unifying Implicit Surfaces and Radiance Fields

Oechsle et al. ICCV‘21
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Unifying Implicit Surfaces and Radiance Fields

Oechsle et al. ICCV‘21
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Unifying Implicit Surfaces and Radiance Fields



Dynamic NeRFs:
• TöRF Attal et al., NeurIPS 2021
• NSFF, Li et al., CVPR 2021
• …….. 

NeRF from few images:
•  PixelNeRF, Yu et al., CVPR 2021
• …….

NeRF + implicit surfaces:
• NeUS, Wang et al., NeurIPS 2021
• VolSDF, Yariv et al., NeurIPS 2021
• …………

• ……………. Many more
Checkout NeuralFields: https://neuralfields.cs.brown.edu/

More on NeRF
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https://neuralfields.cs.brown.edu/

