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Goal
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• Fixed recording volume
• Requiring line of sight

Markerless

• Long setup times
• Expensive equipment

Motion Capture – Optical Tracking
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[Elhayek et al. 2017, MARCOnI] [Mehta et al. 2017, VNect]

Marker-based



Motion Capture – Inertial Sensors 
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• Intrusive
• 17 sensors

[Roetenberg et al. 2007]

Number of IMUs

• 6 – 13 sensors
• 1 – 8 cameras

[Malleson et al. 2017]

[von Marcard et al. 2018]

Cameras

• offline

[von Marcard et al. 2017]

Compute Time



DIP - Requirements
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Small number of IMUs
(setup time, user instrumentation)

No cameras
(line-of-sight, occlusions)

Reconstruct full pose in real-time



Underconstrained Pose Space
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pose
different

Underconstrained Pose Space



Underconstrained Pose Space
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pose
different

orientation 
measurement

nearly identical



Sparse Inertial Poser (SIP)
[von Marcard et al. 2017]
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6 IMU 
measurements

SMPL pose parameters
[Loper et al. 2015]



SMPL
[Loper et al. 2015]
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Sparse Inertial Poser (SIP)
[von Marcard et al. 2017]
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SOP
orientation only

SIP
orientation + acceleration

offline optimization

slow (order of min/sec)



Loss FunctionArchitectureData

Achieving Real-Time Performance

SMPL
pose parameters
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optimization

accelerations and 
orientations



Data

Achieving Real-Time Performance
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accelerations and 
orientations



How to Get Data?

Only few IMU databases available.

Need poses in unified format.
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Synthesize It!
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MoSh++
[in preparation]

CMU HumanEva

JointLimit and more

AMASS
Synthesis

http://dip.is.tue.mpg.deAcceleration 
(derived from positions via 

finite differences)

Orientation
(derived from SMPL forward 

kinematics)



Coordinate frames involved
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Local sensor frameFrame of IMU 
system (inertial)

Body Centric frame Bone frame 
(body part)



Orientation
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1) IMU readings need to be transformed 
to body coordinate frame F^T

2) Compensate for an assumed constant sensor to 
body part / bone offset

Sensor to bone offset calculation, usually in 
the frame 0

Transform IMU reading to bone orientations

Head sensor aligned with body in frame 0 



Orientation 
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Question: what problem do you foresee if we train a 
network directly to predict pose from bone 
transformations as described below? 

Hint: Think of a motion performed facing north vs 
facing south



Normalization
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Normalize all sensors to the 
root sensor.

Done per frame.

Only 5 sensors are actually 
fed into the model.

normalize



Network Design
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Loss FunctionArchitectureData

SMPL
pose parameters

accelerations and 
orientations



Network Design
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Architecture



Reference Feedforward NN

Failed Attempt I
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Reference WaveNet
[van den Oord et al. 2016]

Failed Attempt II
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Method – Stacked BiRNN
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inputs

1st layer

2nd layer

outputs

[BiRNN: Schuster and Paliwal 1997]



Method – Stacked BiRNN
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Network Design
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Loss FunctionArchitectureData

SMPL
pose parameters

accelerations and 
orientations



Network Design
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Loss Function

SMPL
pose parameters



Loss Function

30[BiRNN: Schuster and Paliwal 1997]



Loss Function
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Dense Dense

SoftPlus

SMPL 
pose

 

SMPL 
pose

Pose Log-Likelihood

 

Pose, we used      earlier in 
the lecture 

Question: What happens to the likelihood if the 
predicted variance is high?
Question: When will the network predict high 
variance?



Loss Function
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Dense Dense

SoftPlus

SMPL 
pose

accel-
eration

 

SMPL 
pose

accel-
eration

Acceleration Reconstruction Log-Likelihood

 



Offline Mode
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Online Mode

34

 

 

 

 

 

 

 

 

  



35

Results



TotalCapture (offline)
[Trumble et al. 2017]
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Reference SOP Ours (DIP)



TotalCapture (offline)
[Trumble et al. 2017]
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SIP Ours (DIP)



Playground (offline)
[von Marcard et al. 2017]
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SOP SIP Ours (DIP)



Metrics on TotalCapture [Trumble et al. 2017]
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mean joint angle error mean positional error

SOP
SIP
Ours (offline)

TotalCapture





 46.59°

❖

❖ 50.04°

⧫

⧫ 40.51°

Avg: 16.73°



Real-Time Performance

System should work with real data in real-time.

Not a given as noise characteristics might by very different. 
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DIP-IMU Dataset

Recorded our own dataset with 17 Xsens
sensors.

Feed SIP fully-constrained pose to produce 
reference SMPL poses (SIP-17).

10 subjects, roughly 90 min. of data.
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http://dip.is.tue.mpg.de



Fine-Tuning for Domain Adaptation
Domain adaptation problem 

severe on DIP-IMU.
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After fine-tuning on subset of 
DIP-IMU.

Reference
(SIP-17)

Ours
(before fine-tuning)

Reference
(SIP-17)

Ours
(after fine-tuning)



44



45

20 past &
5 future frames

runs at 29 fps
latency ~85 ms
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20 past &
5 future frames

runs at 29 fps
latency ~85 ms
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20 past &
5 future frames

runs at 29 fps
latency ~85 ms



Summary

Possible to capture motions in real time with sparse set of IMUs.

Training on large synthetic dataset.

Domain adaptation still difficult.

We release code and data.
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http://dip.is.tue.mpg.de



Thank You!

Deep Inertial Poser

Learning to Reconstruct Human Pose from Sparse Inertial 
Measurements in Real Time
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http://dip.is.tue.mpg.de
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Extensions and recent works
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TransPose: Global translation and 
physical constraints
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Key ideas to improve DIP:
1) Predict joints from leaf to root hierarchically
2) Predict and enforce foot contact to the ground

Yi et al. Siggraph’21



Trasformer Inertial Poser
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Key ideas:
1) Predict stationary points to constraint motion
2) Infer plausible terrain

Example of predicted terrainArchitecture

Jiang et al. SA’22



PIP: Physical Inertial Poser
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Key idea:
1) Predict Motion with a neural model
2) Refine estimate with physics based optimization (need to figure external forces 

as well as body joint torques)

Yi et al. CVPR’22
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