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A Body Model is a function
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3D Human Motion Capture




Vision-based Motion Capture
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Image based such as SMPLify [Rhodin et al., 2016] [Tome SelfPose et al., 2018]

require external camera
- Limited recording volume
- Certain actvities can not be
captured ;



IMU-based Motion Capture

e IMU = Inertial Measurement Unit

[Roetenberg et al., 2007] [Vlasic et al., 2007]



Inertial sensors

Inertial Measurement Unit (IMU)
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Global orientation w.r.t. global coordinate system:
- Xis magnetic north direction measured by L y

compass
- Yis the direction of gravity measured by
accelerometer



Coordinate frames involved

(a) (b)

Figure 3: (a) Coordinate frames: Global tracking coordinate
frame F G Inertial coordinate frame F I Bone coordinate frame
F® and Sensor coordinate frame F 5. (b) Sensor placement at head,
lower legs, wrists and back.



Sparse IMUs + Vision

- = MU

O = optical marker

5 IMU + Video [Pons-Moll et al., 2010 [Andrews et al., 2016]
& 2011]



IMU+Video

First combination of IMU and vision for full body capture

Key idea:
- Combine vision based (good localization of joints)

with inertial tracking (good orientation of limbs).
- Compensate for drift with IMU

[Pons-Moll et al., 2010]



Related Work

* Motion reconstruction with sparse IMUs
Sparse IMU data 3D motion
/}V
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I ”ji
= N [Slyper et al., 2008],

[Tautges et al., 2011],
[Schwarz et al., 2009] [Liu et al., 2011]
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Our Approach: Sparse Inertial Poser
Analysis-by-Synthesis 7

6 IMUs "
e a € R%acceleration
* R € SO(3) orientation
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Sparse Inertial Poser

SMPL body model!l]
23 ball joints

r € R pose

[1] SMPL: A skinned multi-person linear model, Loper et al., Siggraph Asia, 2015 13



Sparse Inertial Poser

arg min ( :
X
Orientation Acceleration

consistency consistency

Anthropometric
consistency
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Anthropometric Consistency

Objective

enforce human-like poses

/\/'(/L;E,Zx)

ot () = 3/ (2 = 1) 55 (2 — i)

Eanthro(x) — dmahal(ﬂj)2 + ||61i1r1rlits(33)||2
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Orientation Consistency

Objective:

sensor & bone orientation consistency

How do you compute distance between
orientations??
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Distance metrics in SO(3)

Angular distance

The anglular distance of two rotations R
and S is the angle of SRAT:

0 =d,(S,R) =d,(SR",I) = ||log(SR")]2

0<o<

The sign of W must be chosen so that
theta lies between 0 and pi.

Geodesic distrance in SO(3)

e
o
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SRY
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Distance metrics in SO(3)

Chordal distance

Frobenious norm of rotation

matrix difference

Properties:
dchord(sz)2 — ”S o R”%‘ — “SRT o I“%‘

— 2(sin2(6) + (1 — cos(6))?) <] . 1) exp(00) = I + @sin(8) + @*(1 — cos(0))

. 9 ~ .
= 8sin”(6/2) e 2) (0 and »? are orthogonal under Frobenious norm

denora (S, R) = 2v/2 sin(6/2) . 3) [2l% = 273 =2

Relation to angular distance
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Distance metrics in SO(3)

Quaternion distance

. Recall that quaternions g and —q
dquat(S,R) = min{||s — r||2, [|s + r||2} represent the same rotation. This
ambiguity is resolved by taking the min.



Distance metrics in SO(3)

Quaternion distance

. Recall that quaternions g and —q
dquat(S,R) = min{|[s —rl|2, [|s + r||2} represent the same rotation. This
ambiguity is resolved by taking the min.

The relationship to the angular distance:
e = (1,0,0,0) s-r1 = (cos(0/2),vsin(6/2))

~. :

. Inner product of two 4-vectors equals
(e,s-r7") = cos(0/2)

* Hence
a=10/2

cos()



Distance metrics in SO(3)

Quaternion distance

. Recall that quaternions g and —q
dquat(S,R) = min{|[s — rl|2, [|s + r||2} represent the same rotation. This
ambiguity is resolved by taking the min.

The relationship to the angular distance:
e = (1,0,0,0) s-r~1 = (cos(0/2),vsin(6/2))

T

(e,s-t ") = cos(0/2) * Inner product of two 4-vectors equals cos(«)
) * Hence aa=10/2
Is-r~1 — efla = [|s — Il
* The distance of two unit vectors
dquat (S, R) = 2sin(a/2) = 2sin(6/4) separated by ais 2sin(a/2) .



Distance metrics for SO(3)

Angular distance Chordal distance Quaternion distance
0= d/(S,R) =d,(SR',I) = |1og(SR")[l2  denora(s,B)> = [Is ~ Rl = [IsRT — T|}3 dquat (S, R) = min{|ls — |3, [|s + |2}
0<O<m .

denora (S, R) = 2v2 sin(6/2) dquat (S,R) = 2sin(a/2) = 2sin(6/4)
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Distance in angle-axis space

Euclidean distance between corresponding scaled axis angles of log(R) and log(S). This

metric is not continuous!!
If log(R) is taken to be the smallest length vector, rotations about angles near ™ about

opposite axes are not close to each other under this metric (but they are in the
angular distance metric)

See Hartley et al. IJCV’13
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Distance in angle-axis space

* Euclidean distance between corresponding scaled axis angles of log(R) and log(S). This

metric is not continuous!!
* If log(R) is taken to be the smallest length vector, rotations about angles near 7™ about

opposite axes are not close to each other under this metric (but they are in the

angular distance metric)
* Solution take the min over all choices of vectors

d S R) = m where the minimum is taken over all choices of vectors v,.
log( ) ) — 1in ||V7" — Vs ”2 and v such that exp[v,|x = R and exp[vs]x = S.

Many regressors to human pose use this metric, but do not take the

min, which can be a problem!!
See Hartley et al. IJCV’13 »



Orientation Consistency

Objective

sensor & bone orientation consistency

6ori(xa Rsens) — 1Og (Rbone(m) (Rsens)—1>
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Underconstrained Pose Space




Underconstrained Pose Space

pose
different




Underconstrained Pose Space

pose
different

orientation
measurement
nearly identical
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Orientation Consistency

Sparse Orientation Poser (SOP)
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Acceleration Consistency

/ Y

a’SGHS

Objective

sensor & vertex acceleration consistency

eacc(xa asens) = Qvertex (37) — Ugens

G G G
4G _ P11 — 2P + P _ RGS S gG
’ dr?
1) Use finite differences 1) Transform from local
to global

2) Subtract gravity
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Acceleration Consistency

Sparse Acceleration Poser
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Key Observation |

Orientation only

Orientation + Acceleration
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Key Observation ||

Statistical body model (SMPL)

anthropometric constraints
realistic motion synthesis
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Multi-Frame Optimization

* . °
ri.7 = arg min
L1:T

Emotion(xlzTa Rl:T7 al:T) —

75T
Emotion(ajlzTa Rl:T7 al:T) 1.7 € R
T 6
Wori * Z Z Heori<ajta R?)HQ Orientation consistency
t=1 n=1

T 6
ny||2 . .
+Wacc * E E Heacc(xt,at)H Acceleration consistency
t=1 n=1
T
+Wanthro ° E Eanthro(mt) Anthropometric consistency
t=1
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Optimization

e(x,0x) ~ e(x) + Jox. To minimize €' e, linearize the vector of residuals with
Jacobian matrix

For example, the acceleration residuals linearized take the form:

- 0%/

€acc (t, SX) ~ €acc (t) + [JP(Xt—l) _2Jp(xt) JP(Xt+1)] OX;
i OX; 1 1 1

The Jacobian matrix above, maps increments in parameter space to
increments in vertex position where the sensor is placed



Batch Optimization over frames

Question: If the error residual for 1 frame is N, and the number of pose
parameters is P, how large is the Jacobian for the residuals for all frames?
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Batch Optimization over frames

Question: If the error residual for 1 frame is N, and the number of pose
parameters is P, how large is the Jacobian for the residuals for all frames?

Expensive in general!! = Exploit the block diagonal structure

Jt—] 8Xt—1 e(t _ 1) . =2J;_1 J: 6Xt.—l eacC(t. - 1)

Ji 8Xl‘ = e(t) Ji—1 —2J: Jit1 Ox; | = | eacc(t)
Jt+1 8Xt+1 e(t—|— 1) 3, 23, SXI:-}-I eacc(lj—l— 1)
Orientation+anthopometric residual Acceleration term residual equations

equations



Results
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Results




Evaluation

Sparse Orientation Poser vs. Sparse Inertial Poser
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Quantitative Evaluation

TNT15 dataset [1]

4 actors
5 activities

8 synchronized RGB-cameras
10 IMUs

6 IMUs for tracking, 4 IMUs for validation

[1] Human pose estimation from video and IMUs, v. Marcard et al., TPAMI, 2016
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Quantitative Evaluation

Angular Error [deg] Joint Position Error [cm]

25 8 7,2

19,64 7
20 9,6 18,24

6
15 13,32 >
4
10 3
5 2
1
0 0

SIP-M SIP SOP SIP-M SIP



Limitations & Future Work

Hand and feet not tracked
Drift in global translation
Requires a laser scan

Offline approach
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Conclusions

Sparse Inertial Poser
works with only 6 IMUs
reconstructs arbitrary motions

enables motion tracking in the wild
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Conclusions

Sparse Inertial Poser
works with only 6 IMUs
reconstructs arbitrary motions

enables motion tracking in the wild
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Computation Times

1000 frames sequence

20 Levenberg-Marquardt iterations
Intel Core i7 3.5 GHz CPU
Single-core MATLAB code

Overall computation time

Model update 14.4s/iteration
Setting up Jacobians 3.3s/iteration

Solving for an update-step  1.5s/iteration
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Recovering Accurate 3D Human Pose In the
Wild Using IMUs and a Moving Camera

T. von Marcard R. Henschel M. Black B. Rosenhahn G. Pons-Moll

ECCV’18




3DPW: 3D Poses in the Wild




A single moving camera and IMUs on the

Model+IMUs
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Full dataset available:
http://virtualhumans.mpi-inf.mpg.de/3DPW/




3DPW

60 video sequences.

2D pose annotations.

3D reference poses.

Camera poses for every frame in the sequences.

3D body scans and 3D people models (re-poseable and re-
shapeable). Each sequence contains its corresponding models.

18 3D models in different clothing variations.



More Information

Supplementary Video: https://www.youtube.com/watch?v=3x9dimY70-0

More papers on IMU-based tracking:
https://virtualhumans.mpi-inf. mpg.de/topics/human-motion-from-wearables.html
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https://www.youtube.com/watch?v=3x9dimY7o-o
https://virtualhumans.mpi-inf.mpg.de/topics/human-motion-from-wearables.html

Slide credits

* Slides on distance metrics based on Hartley et al. JICV’13

* Slides based SIP (von Marcard et al. EG’17) and 3DPW (von Marcard et al. ECCV’18)
papers, thanks to Timo von Marcard



