Virtual Humans – Winter 23/24

Lecture 5_2 – Learning based registration

Prof. Dr.-Ing. Gerard Pons-Moll
University of Tübingen / MPI-Informatics

3D scan → Human Model

Input: 3D scan/ Pointcloud

Colour coded SMPL model

Output: Registered SMPL+D

SMPL model

$$T(\boldsymbol{\theta}, \boldsymbol{\beta}) = \mathbf{T}_{\mu} + B_s(\boldsymbol{\beta}) + B_p(\boldsymbol{\theta})$$

Vertices in a 0-pose

SMPL + Clothing

Vertices in a 0-pose

$$T(\mathbf{p}(\mathbf{p},\mathbf{p})) = \mathbf{T}_{\mu} + \mathbf{B}_{s}(\mathbf{p}) + B_{p}(\mathbf{\theta}) + \mathbf{D}$$

 $oldsymbol{ heta}$ Pose parameters

 $oldsymbol{eta}$ Shape parameters

Personal details + clothing

$$E(\theta, \beta, \mathbf{V}) = \sum_{\mathbf{s}_i \in \mathcal{S}} \operatorname{dist}(\mathbf{s}_i, \mathcal{V}(\mathbf{V})) + \operatorname{dist}(\mathcal{V}(\mathbf{V}), \mathcal{M}(\theta, \beta)) + E_{\operatorname{prior}}(\theta, \beta)$$

$$- \bigvee_{\mathbf{Scan}} + \bigvee_{\mathbf{Registration}} + \bigvee_{\mathbf{Model}} + \bigvee_{\mathbf{Model}}$$

Why fit SMPL to scans?

We motivated finding registration as a key ingredient to train a body model

Find correspondences between meshes

Tracking scans/ point clouds

Input PC seq.

Controlling static shapes

Input PC

Input pose sequence

Animated SMPL+D

Controlling static shapes

Input PC

Input pose sequence

Animated SMPL+D

Fit SMPL or SMPL+D to scans using ICP (compute registrations)

Objective

$$\mathbf{V}_{j} = \arg\min_{\mathbf{V}_{j}} (\min_{\vec{\theta_{j}}, \vec{\beta_{j}}} (E_{reg}(\mathcal{S}_{j}, \mathbf{V}_{j}, \vec{\theta_{j}}, \vec{\beta_{j}})))$$

$$E_{reg}(\mathcal{S}_{j}, \mathbf{V}_{j}, \vec{\theta_{j}}, \vec{\beta_{j}}) = E_{S}(\mathcal{S}_{j}, \mathbf{V}_{j}) + \text{scan-to-mesh distance}$$

$$\lambda_{C} E_{C}(\mathbf{V}_{j}, \vec{\theta_{j}}, \vec{\beta_{j}}) + \text{coupling}$$

$$\lambda_{\theta} E_{\theta}(\vec{\theta_{j}}) + \text{pose prior}$$

$$\lambda_{\beta} E_{\beta}(\vec{\beta_{j}}) \text{shape prior}$$
 relative weights

Scan-to-mesh distance

$$E_S(\mathcal{S}_j, \mathbf{V}_j) = \sum_{\mathbf{s} \in \mathcal{S}_j} \rho \left(\min_{\mathbf{v} \in \mathcal{V}_j} \|\mathbf{s} - \mathbf{v}\| \right)$$
$$\rho(x) = \frac{x^2}{\sigma^2 + x^2}$$

Refresher on ICP

1. Initialize

$$f^{0} = \{ \mathbf{R} = \mathbf{I}, \mathbf{t} = \frac{\sum \mathbf{y}_{i}}{N} - \frac{\sum \mathbf{x}_{i}}{N}, s = 1 \}$$

2. Compute correspondences according to current best transform

$$\mathbf{x}_i^{j+1} = \arg\min_{\mathbf{x} \in \mathbf{X}} \|f^j(\mathbf{x}) - \mathbf{y}_i\|^2$$

3. Compute optimal transformation ($\mathbf{s}, \mathbf{R}, \mathbf{t}$) with Procrustes

$$f^{j+1} = \arg\min_{f} \sum_{i} ||f(\mathbf{x}_{i}^{j+1}) - \mathbf{y}_{i}||^{2}$$

4. Terminate if converged (error below a threshold), otherwise iterate

Limitations of ICP

Limitations of ICP

Input PC SMPL fit - ICP

- ICP -> closest points can be wrong
- Doesn't distinguish if the correspondence is semantically correct.
- For example, pointcloud hand points are explained by the waist of the model

Limitations of ICP

ICP cares about closest point.

Dogen't dietinquich if the

Nearest point as correspondence gets stuck in local minimas!

Input PC SMPL fit - ICP

Learning based fitting

Can we use data to learn how to fit a template mesh to scan/point cloud?

Learning based fitting

- Non-parametric: Fit a template mesh to data.
 - 3D-CODED, Groueix et al. ECCV'18
- Parametric: Fit a model to data.
 - IPNet, Bhatnagar et al. ECCV'20
 - LoopReg, Bhatnagar et al. NeurIPS'20
- Hybrid:
 - Learned Vertex Descent, Corona et al. ECCV'22
 - (we will see later in the course)

Learn to deform vertices of a template

- Encode input shape into a feature vector.
- Directly predict locations of vertices of template.

Advantages/ Disadvantages

✓ Learning based model, generalises better than ICP.

- Gets stuck in local minima. Need to init. ~100 global rots.
- No details.
- Registered template is not controllable!Can't pose and shape.

Bring back the parametric model!

- •Can we "learn" to fit SMPL model to data?
 - Make scans controllable

- Can we capture high frequency details?
 - More realistic

Get detailed and controllable reconstructions.

Input PC

Registration

Input Motion Sequence

Animated registration

IPNet: High level idea

Why combine implicit functions and parametric models?

Implicit Reconstruction

- ✓ Better details.
- ✓ Can handle arbitrary poses.
- X Just static meshes; Can't do much.

Parametric Modelling

- X Lacks details.
- X Generalization to complex poses is difficult.
- √Can be re-shaped, re-posed etc.

IPNet: High level idea

Challenge

How to fit SMPL+D? We saw ICP fail!

 Problem: ICP gets stuck due to bad correspondences and due to the fact that SMPL can not represent cloth, hair etc

• Idea1: Predict SMPL as an implicit surface to make fitting easy

 Idea2: Learn to predict correspondences rather than using nearest point.

IPNet: Predictions

 Double layer implicit function for outer and inner shape.

 Part correspondences to parametric model

$$f(\mathbf{p}|\mathcal{S}) \mapsto \{0, 1, 2\}, \{1, ..., N\}$$

IPNet: Overview

Implicit Reconstruction

Parametric Mesh

Input: Sparse point cloud

IP-Net

IP-Net: Inner

surface + parts

IP-Net: Outer surface

SMPL+D registration

$$E_{\text{data}}(\boldsymbol{\theta},\boldsymbol{\beta},\mathbf{t}) = \frac{1}{|\mathcal{S}_{in}|} \sum_{\mathbf{v}_i \in \mathcal{S}_{in}} \underline{d(\mathbf{v}_i,\mathcal{M})} + w \cdot \frac{1}{|\mathcal{M}|} \sum_{\mathbf{v}_j \in \mathcal{M}} \underline{d(\mathbf{v}_j,\mathcal{S}_{in})}$$
Dist. from body to SMPL

Dist. from SMPL to body

 S_{in} : body surface predicted by IP-Net

 $\mathcal{M}: \mathrm{SMPL} \ \mathrm{surface}$

 $d(v, \mathcal{S})$: distance of point v from surface \mathcal{S}

$$E_{\text{data}}(\mathbf{D}, \boldsymbol{\theta}, \boldsymbol{\beta}, \mathbf{t}) = \frac{1}{|\mathcal{S}_o|} \sum_{\mathbf{v}_i \in \mathcal{S}_o} d(\mathbf{v}_i, \mathcal{M}) + w \cdot \frac{1}{|\mathcal{M}|} \sum_{\mathbf{v}_j \in \mathcal{M}} d(\mathbf{v}_j, \mathcal{S}_o)$$
Dist. from dressed surface to SMPL+D
Dist. from SMPL+D to the dressed surface

D: per-vertex displacements on top of SMPL

 S_o : dressed outer surface predicted by IP-Net

 $\mathcal{M}: SMPL+D$ surface

 $d(v, \mathcal{S})$: distance of point v from surface \mathcal{S}

IPNet: Results

Single View Point Cloud Registration

Input: Single View PC

IP-Net inner surface & parts

IP-Net outer surface

Registration

We can animate our reconstructions

Input: Dense PC

Registration

Input: Motion sequence

Animated registration

IPNet generalises to other domains.

Input: Single View PC

IP-Net surface & parts

Registration

What does "learning" bring over ICP?

• Learnt correspondences more reliable than just nearest point.

• We can learn to complete/ denoise input shape. ICP struggles with with partial data.

IPNet: Limitations

Implicit Reconstruction

Marching cube to get surfaces.

Computationally expensive.

Non-differentiable.

IPNet correspondences not differentiable wrt.
SMPL fitting.

MPL+D istration

Q. Is ICP differentiable wrt. SMPL fitting?

Recall ICP formulation...

• Is it differentiable?

Iterative Closest Point (ICP)

1. initialise

$$f^{0} = \{ \mathbf{R} = \mathbf{I}, \mathbf{t} = \frac{\sum \mathbf{y}_{i}}{N} - \frac{\sum \mathbf{x}_{i}}{N}, s = 1 \}$$

2. compute correspondences according to current best transform

$$\mathbf{x}_i^{j+1} = \arg\min_{\mathbf{x} \in \mathbf{X}} \|f^j(\mathbf{x}) - \mathbf{y}_i\|^2$$

3. compute optimal transformation (${f s},{f R},{f t}$)with Procrustes

$$f^{j+1} = \arg\min_{f} \sum_{i} \|f(\mathbf{x}_{i}^{j+1}) - \mathbf{y}_{i}\|^{2}$$

- Can we make correspondences differentiable?
 - → End-to-end differentiable registration?

• Can we remove expensive marching cubes?

3D scan → Human Model

Input: 3D scan/ Pointcloud

Colour coded SMPL model

Output: Registered SMPL+D

Problem: Traditional registration

1. Get correspondences.

- Instance specific
- Prone to local minima
- Not End-to-end Differentiable wrt. Correspondences!!
 - Optimize the model parameters.

$$\arg\min_{\mathcal{C},\mathbf{x}} \sum_{\mathbf{s},\mathbf{m}\in\mathcal{C}} \|\mathbf{s}_i - M(\mathbf{m}_j,\mathbf{x})\|^2$$

3. Iterate over 1 & 2.

Can we jointly optimize over model and correspondences without supervision?

Key challenges

- 1. Can we jointly train the network f_ϕ and optimize ${f x}$ without supervision?
- 2. How to ensure that correspondence predictions lie on the model surface?
- 3. Integrate correspondence prediction with model fitting.

Can we jointly optimize over model and correspondences without supervision?

$$L_{\text{self}}(\phi, \mathcal{X}) = \sum_{j=1}^{N} \sum_{\mathbf{s}_i \in \mathcal{S}_j} \text{dist}(\mathbf{s}_i, M(\mathbf{m}_k, \mathbf{x}_j))$$

Let a Neural Network predict the correspondences.

$$L_{\text{self}}(\phi, \mathcal{X}) = \sum_{j=1}^{N} \sum_{\mathbf{s}_i \in \mathcal{S}_i} \text{dist}(\mathbf{s}_i, M(f_{\phi}(\mathbf{s}), \mathbf{x}_j))$$

NN predicted correspondences don't lie on the model surface.

Why not learn directly?

$$f_{\phi}:\mathbf{s}\mapsto\mathbf{m}$$

Deformation model (SMPL) only defined for surface points on the manifold

$$\mathcal{M}$$

$$M(\mathbf{m}, \mathbf{x}) : \mathbf{m} \in \mathcal{M} \mapsto \mathbf{m}' \in \mathbb{R}^3$$

Not defined for off-manifold

$$M(f_{\phi}(\mathbf{s}))??$$

NN predicted correspondences don't lie on the model surface.

How to ensure that NN predicted correspondences lie on the model surface?

DISTANCE TRANSFORM
BASED DIFFUSION

1) Diffuse the SMPL model beyond the surface

$$M(\mathbf{m}, \mathbf{x}) : \mathbf{m} \in \mathcal{M} \mapsto \mathbf{m}' \in \mathbb{R}^3$$

$$\downarrow$$

$$g(\mathbf{p}, \mathbf{x}) : \mathbf{p} \in \mathcal{H} \subset \mathbb{R}^3 \mapsto \mathbf{p}'$$

2) Add a Lagrangian constraint to force predictions to lie on the manifold

$$L_{\text{surface}} = \operatorname{dist}_{\mathcal{M}}(f_{\phi}(\mathbf{s}))$$

Use diffused SMPL to get valid function in \mathbb{R}^3

$$L_{\text{self}}(\phi, \mathcal{X}) = \sum_{j=1}^{N} \sum_{\mathbf{s}_i \in \mathcal{S}_j} \text{dist}(\mathbf{s}_i, g(f_{\phi}(\mathbf{s})), \mathbf{x}_j)$$

We can jointly optimize over model and correspondences without supervision.

$$L_{\text{self}}(\phi, \mathcal{X}) = \sum_{j=1}^{N} \sum_{\mathbf{s}_i \in \mathcal{S}_j} \text{dist}(\mathbf{s}_i, g(f_{\phi}(\mathbf{s})), \mathbf{x}_j) + \lambda \cdot \text{dist}_{\mathcal{M}}(f_{\phi}(\mathbf{s}))$$

Performance improves with more unlabelled data

Unsupervised %	0%	10%	25%	50%	75%	100%
(a) v2v (cm)	9.3	8.4	6.3	4.1	2.7	1.5
(b) s2s (mm)	6.8	6.6	6.2	5.5	5.1	4.2

Table 2: Performance of the proposed approach increases as we add more unsupervised data for training. Here 100% corresponds to 2631 scans. Out of the 2631 scans 1000 were also used for supervised warm-start. We report vertex-to-vertex (v2v) and bi-directional surface-to-surface (s2s) errors and clearly show that adding more unsupervised data improves registration performance.

Comparison to competing approaches

A) Input, B) Alldieck et al. CVPR'19 C) Ours D) Ground Truth

Method	Inter-class AE (cm)	Intra-class AE (cm)
FMNet [52]	4.83	2.44
FARM [49]	4.12	2.81
LBS-AE [44]	4.08	2.16
3D-CODED [32]	2.87	1.98
Ours	2.66	1.34

Results on FAUST correspondence prediction challenge.

Summary

 ICP is simple conceptually, but finding closest points is prone to local minima

- IPNet combines learned implicit surface reconstruction and model fitting
 - Predict double layer surface (inner and outer) with part correspondences
 - Fit SMPL to inner layer and expand to outer layer
- LoopReg makes registration differentiable wrt. correspondence prediction.