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3D scan =2 Human Model

Input: 3D scan/ Pointcloud Colour coded SMPL model ~ OQutput: Registered SMPL+D




SMPL model

Vertices in a 0-pose



SMPL + Clothing

Vertices in a 0-pose
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Why fit SMPL to scans?

We motivated finding registration as a key ingredient to train a body model



Find correspondences between meshes




Tracking scans/ point clouds

Input PC seq. Tracked SMPL model




Controlling static shapes

Input PC Input pose sequence Animated SMPL+D




Controlling static shapes

Input PC Input pose sequence Animated SMPL+D
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All these applications require fitting SMPL to

scans/ point clouds.
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Fit SMPL or SMPL+D to scans
using ICP (compute registrations)



Objective

V; =arg min(min (Ereg(Sj, V5,65, ;)
i 05,85

E'reg(Sja Vj7 9—;', Bj?) :ES(8j7Vj)+

scan-to-mesh distance

Ac C(Vja 05, 53')"‘ coupling
Ag 6(9j)+ pose prior
AB ﬁ(ﬂj) shape prior

relative weights
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Scan-to-mesh distance
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Refresher on ICP

1. Initialize 0 — R:It:ZYi—ZXi =1
fo={R=TLt==2 =2 s—1)
2. Compute correspondences according to current best transform
x]" = argmin || 7 (x) — |’
XE

3. Compute optimal transformation (s, R, t )with Procrustes
. . e
firt = argmj}nz 1FGIT) — vl
i

4. Terminate if converged (error below a threshold), otherwise iterate



Limitations of ICP



Limitations of ICP

Ly i

— |CP -> closest points can be wrong

— Doesn't distinguish if the correspondence
is semantically correct.

— For example, pointcloud hand points are
explained by the waist of the model

Input PC SMPL fit - ICP
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Limitations of ICP

Nearest point as correspondence gets

stuck in local minimas!




Learning based fitting

Can we use data to learn how to fit a template mesh to scan/ point cloud?
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Learning based fitting

* Non-parametric: Fit a template mesh to data.
 3D-CODED, Groueix et al. ECCV‘18

* Parametric: Fit a model to data.
* |IPNet, Bhatnagar et al. ECCV'20
* LoopReg, Bhatnagar et al. NeurIPS’20

* Hybrid:
e Learned Vertex Descent, Corona et al. ECCV’22
* (we will see later in the course)



Learn to deform vertices of a template

* Encode input shape into a feature vector.
* Directly predict locations of vertices of template.

Reconstructed Shape

\1( Template

T — (AE(S))
D @Q
E > e — J
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Input Shape

3D-CODED, Groueix et al. ECCV'18



Advantages/ Disadvantages

v'Learning based model, —Gets stuck in local minima. Need
generalises better than ICP. to init. ~100 global rots.
—No details.

—Registered template is not
controllable!
Can't pose and shape.

Bring back the parametric model!
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eCan we "learn" to fit SMPL model to data?
* Make scans controllable

*Can we capture high frequency details?
* More realistic



Get detailed and controllable reconstructions.

Input PC Registration Input Motion Sequence Animated registration
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IPNet. Bhatnagar et. al, ECCV'20



IPNet: High level idea

Fit SMPL+D

uononJisuocoay Joldwi

IPNet. Bhatnagar et. al, ECCV'20



Why combine implicit functions and
parametric models?

Implicit Reconstruction Parametric Modelling
v Better details. X Lacks details.
v'Can handle arbitrary poses. X Generalization to complex poses

. is difficult.
XJust static meshes;

Can't do much. v/Can be re-shaped, re-posed etc.



IPNet: High level idea

Fit SMPL+D

uononJisuooay joldwi



Challenge



How to fit SMPL+D? We saw ICP fail!

Lots of good works.
I[FNets, NDFs...

How to fit SMPL+D ?

Fit SMPL+D A |

u0I110NJ1suU023y I dw|



Problem: ICP gets stuck due to bad correspondences and due to
the fact that SMPL can not represent cloth, hair etc

Ideal: Predict SMPL as an implicit surface to make fitting easy

Idea2: Learn to predict correspondences rather than using nearest
point.



IPNet: Predictions

* Double layer implicit
function for outer and |
inner shape. o

* Part correspondences to o
parametric model

f(plS) — {0,1,2},{1,..., N}
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IPNet. Bhatnagar et. al, ECCV'20



IPNet: Overview

Implicit Reconstruction Parametric Mesh
IP-Net: Inner
surface + parts

Fit SMPL to
inner surface

Input: Sparse /

point cloud

Non-rigidly register with
SMPL+D to outer surface

SMPL+D
registration

IP-Net: Outer
IPNet. Bhatnagar et. al, ECCV'20 surface
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Registering SMPL to IP-Net
oredictions



Registering SMPL to IP-Net predictions

E(H, /67 1?) — wdata:Edata. =+ wpartlEpart' =+ wlapﬂhﬂ)’

/

SMPL parameters

Match SMPL surface to
the body surface
predicted by IP-Net

1

1

Laplacian regularizer

Match parts on the
SMPL mesh to parts
predicted by IP-Net




Registering SMPL to IP-Net predictions

Edata(e

/ o /

Dist. from body to SMPL Dist. from SMPL to body

Sin : body surface predicted by IP-Net
M : SMPL surface

d(v,S) : distance of point v from surface S



Registering SMPL to IP-Net predictions

part( /3; ) ‘Stn‘ Z Z d(VZ,MI)5(]Z:])

Summation over SMPL
parts

Select body vertices
corresponding to part /

Summation over predicted
body vertices

Dist. from body vertex to
SMPL sub-mesh
corresponding to part /




Registering SMPL+D to IP-Net predictions

Edata (D 0 /67

w - Z d(v;,S
Vzesm !/\/l!

/ /

Dist. from dressed Dist. from SMPL+D to
surface to SMPL+D
the dressed surface

D : per-vertex displacements on top of SMPL
S, : dressed outer surface predicted by IP-Net

M : SMPL~+D surface
d(v,S) : distance of point v from surface S



IPNet: Results



Single View Point Cloud Registration

Input: Single View PC IP-Net inner surface & IP-Net outer surface Registration 38
parts




We can animate our reconstructions

Input: Dense PC Registration Input: Motion sequence Animated registration
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IPNet. Bhatnagar et. al, ECCV'20



IPNet generalises to other domains.

Input: Single View PC IP-Net surface & parts Registration

IPNet. Bhatnagar et. al, ECCV'20



What does "learning” bring over ICP?

* Learnt correspondences more reliable than just nearest point.

* We can learn to complete/ denoise input shape.
ICP struggles with with partial data.



IPNet: Limitations

Marching cube to get surfaces.
— Computationally expensive.
— Non-differentiable.

IPNet
correspondences not
differentiable wrt.

SMPL fitting.



Q. Is ICP differentiable wrt. SMPL fitting?

e Recall ICP formulation...

e |s it differentiable?

lterative Closest Point (ICP)

N N

fO={R=1,t= LY ZXZ’,3=1}

1. Initialise

2. compute correspondences according to current best transform

j+1 _ : J — v I?
x; = argmin || f(x) — il

3. compute optimal transformation (s, R, t )with Procrustes

fitt = argm]}nz £ = |




* Can we make correspondences differentiable?
= End-to-end differentiable registration?

* Can we remove expensive marching cubes?



3D scan =2 Human Model

Input: 3D scan/ Pointcloud Colour coded SMPL model ~ OQutput: Registered SMPL+D




Problem: Traditional registration

1. Get correspondences. o

- Instance specific
- Prone to local minima

- Not End-to-end Differentiable wrt. Correspondences !!

* Optimize the model .
parameters. arg 1min HSz — M(mj, X)

3. lterate over 1 & 2.
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LoopReg. Bhatnagar et. al, NeurlPS'20



Can we jointly optimize over model and
correspondences without supervision?

Jo 1S 1m
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LoopReg. Bhatnagar et. al, NeurlPS'20



Key cha ”enges

1. Can we jointly train the network f¢ and optimize X without
supervision?

2. How to ensure that correspondence predictions lie on the model
surface?

3. Integrate correspondence prediction with model fitting.

LoopReg. Bhatnagar et. al, NeurlPS'20
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Can we jointly optimize over model and
correspondences without supervision?

f¢:SI—>m

LoopReg. Bhatnagar et. al, NeurlPS'20
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Let a Neural Network predict the
correspondences.

f¢ISI—>m

LoopReg. Bhatnagar et. al, NeurlPS'20
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NN predicted correspondences don't lie on the
model surface.

Why not learn directly? f¢ S H— 1

Deformation model (SMPL) only defined
for surface points on the manifold

O M
fo(s) & M M(m,x): mc M m' ¢ R’

Not defined for off-manifold

M(f4(s))??

LoopReg. Bhatnagar et. al, NeurlPS'20
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NN predicted correspondences don't lie on the

model surface.

LoopReg. Bhatnagar et. al, NeurlPS'20

f¢ISI—>m

Not defined!!

,Xj))
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How to ensure that NN predicted
correspondences lie on the model surface?

1) Diffuse the SMPL model beyond the surface

M(m,x) : mée& M~ m' e R’

gp,x):peEHCR?’—p’

2) Add a Lagrangian constraint to force predictions to lie on
the manifold

Lsurface — diSt./\/l (f(b(s))

DISTANCE TRANSFORM
BASED DIFFUSION
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LoopReg. Bhatnagar et. al, NeurlPS'20



Use diffused SMPL to get valid function in R3

f:s—p

LoopReg. Bhatnagar et. al, NeurlPS'20
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We can jointly optimize over model and

correspondences without supervision.
fo

|

/ j <

LoopReg. Bhatnagar et. al, NeurlPS'20

:SH—1m

A - dist o (fs(s))
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Performance improves with more unlabelled
data

Unsupervised % 0% 10% 25% 50% 75 % 100 %
(a) v2v (cm) 9.3 8.4 6.3 4.1 2.7 1.5
(b) s2s (mm) 6.8 6.6 6.2 5.5 5.1 4.2

Table 2: Performance of the proposed approach increases as we add more unsupervised data for training. Here
100% corresponds to 2631 scans. Out of the 2631 scans 1000 were also used for supervised warm-start. We
report vertex-to-vertex (v2v) and bi-directional surface-to-surface (s2s) errors and clearly show that adding more
unsupervised data improves registration performance.
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LoopReg. Bhatnagar et. al, NeurlPS'20



Comparison to competing approaches

Method Inter-class AE (cm) Intra-class AE (cm)
FMNet [52] 4.83 2.44
FARM [49] 4.12 2.81
LBS-AE [44] 4.08 2.16
3D-CODED [32] 2.87 1.98
Ours 2.66 1.34

Results on FAUST correspondence prediction challenge. -



Summary

* ICP is simple conceptually, but finding closest points is prone to local
minima

* IPNet combines learned implicit surface reconstruction and model
fitting
* Predict double layer surface (inner and outer) with part correspondences
* Fit SMPL to inner layer and expand to outer layer

* LoopReg makes registration differentiable wrt. correspondence
prediction.



