Virtual Humans — Winter 23/24

Lecture 4_1 — ICP: Iterative Closest Points

Prof. Dr.-Ing. Gerard Pons-Moll
University of Tibingen / MPI-Informatics

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Non-rigid Articulated Registration

What is missing?

Given correspondences, we can find the optimal rigid alignment with
Procrustes.

PROBLEMS:
* How do we find the correspondences between shapes ?
* How do we align shapes non-rigidly ?

ICP and alignment based on optimisation

* Optimising alignment and correspondences using Iterative Closest
Point (ICP).

* Alignment through continuous optimisation.

How do we find correspondences?

How do we find correspondences?

How do we find correspondences?

How do we find correspondences?
E=) |sRx;+t—yil>= > |If(xs) — yill®

X4 Closest point to target shape point Y

The optimisation is over:
e the transform f
e the correspondences C = {(x;,y:)};

E(C, f) =) minl|f(x) -yl

xeX

How do we find correspondences?

The idea was to minimise the sum of distances between the one set of
points and the other set, transformed

E = Z |sRx; +t — y3|* = Z | f(x:) = ill®

ldeas

The idea was to minimise the sum of distances between the one set of
points and the other set, transformed

E = Z |sRx; +t — y3|* = Z | f(x:) — ill®

What if we estimate the correspondences?

Solution: Iteratively find correspondences

The idea was to minimise the sum of distances between the one set of
points and the other set, transformed

E = Z |sRx; +t — y3|* = Z | f(x:) — ill®

What if we estimate the correspondences?
+1 : - 2
i =argmin [f/(x) - yi

. , "
fit = arg m;nz 1F) —yil?
2

X

Alternate between finding correspondences
and finding the optimal transformation

The idea was to minimise the sum of distances between the one set of
points and the other set, transformed

E = Z |sRx; +t — y3|* = Z | f(x:) — ill®

What if we estimate the correspondences?

J+1 _ ST VARTD.
x; = argmin |[f7(x) — yi

. . "
fitt = argm]}nz 1FT) — vl
7

Make up reasonable correspondences

13

Make up reasonable correspondences

L fP={R=Lt=0,5s=1}

xo = argmin || °(x) — yol

Make up reasonable correspondences

ff={R=ILt=0,5s=1}

1

x; = arg min [f°(x) — yi[

Solve for the best transformation

.....................
............
...............

1 _ : 0 R
i = argmin || f7(x) —y;

—f' =argmin}_[|If(x) -y

X

Apply it ...

and iteratel

and iteratel

and iteratel

and iteratel

and iteratel

'terative Closest Point (ICP)

1. Initialize ff={R=1t=

'terative Closest Point (ICP)

1. Initialize fP={R=1Lt= ZNy'i — ZNXi ,s =1}

2. Compute correspondences according to current best transform
2 . .
x/*! = argmin ||/ (x) - il

'terative Closest Point (ICP)

1. Initialize fP={R=1Lt= ZNYi — ZNXi ,s =1}

2. Compute correspondences according to current best transform

JH1 _ T (o) 112
x/*! = arg min |17 (x) - il

3. Compute optimal transformation (s, R, t)with Procrustes
. . e
firt = argmj}nz 1FGIT) — vl
i

'terative Closest Point (ICP)

1. Initialize 0 — R:It:ZYi—ZXi =1
fo={R=TLt==2 =2 s—1)
2. Compute correspondences according to current best transform
x]" = argmin || 7 (x) — |’
XE

3. Compute optimal transformation (s, R, t)with Procrustes
. . e
firt = argmj}nz 1FGIT) — vl
i

4. Terminate if converged (error below a threshold), otherwise iterate

'terative Closest Point (ICP)

1. Initialize 0 — R:It:ZYi—ZXi =1
fo={R=TLt==2 =2 s—1)
2. Compute correspondences according to current best transform
x]" = argmin || 7 (x) — |’
XE

3. Compute optimal transformation (s, R, t)with Procrustes
. . e
firt = argmj}nz 1FGIT) — vl
i

4. Terminate if converged (error below a threshold), otherwise iterate

5. Converges to local minima

s ICP the best we can do?

Iteration j:

* compute closest points

e compute optimal transformation with Procrustes
e apply transformation

* terminate if converged, otherwise iterate

Closest points

* Brute force is O(n?)

* For every source point find a neighbor point on the source shape

Closest points

* Tree based methods (e.g. kdtree) have avg. complexity log(n)

e Random point sampling also reduces the running time

ICP: Tips to avoid local minima

* Always find correspondences from target to source!
Proper data term

* OQutliers —> Robust cost functions
e Use additional information (e.g. normals)
 Compute transformation based on greedy subsets of points: RANSAC

A much better objective: Point-to-surface
distance

’yQEY

Yo €Y yiey

Closest points: avoid local minima

X; € X
Q

X

)
o tyiEY

Point-to-point distance

33

Closest points: avoid local minima

Point-to-surface distance

s ICP the best we can do?

Iteration j:

* compute closest points

 compute optimal transformation with Procrustes
e apply transformation

* terminate if converged, otherwise iterate

Best transformation?

* Procrustes gives us the optimal rigid transformation and scale given
correspondences

* What if the deformation model is not rigid ?

* Can we generalise ICP to non-rigid deformation ?

'terative Closest Point (ICP)

Iteration j:

compute closest points =»

compute optimal transformation with Procrustes
apply transformation

terminate if converged, otherwise iterate

'terative Closest Point (ICP)

Iteration j:

* compute closest points =
* compute optimal transformation with Procrustes =»
e apply transformation

* terminate if converged, otherwise iterate

Gradient-based ICP

Iteration j:

* compute closest points = \Which direction to move?

Compute descent step by linearising the energy

. Jacobian of distance-based ener
° apply transformation | ! 3%

* terminate if converged, otherwise iterate

Gradient-based ICP

are min F — arg min /1) — I
gmin B(f) = arg mi zi:llf(z) — il

* If fis a rigid transformation we can solve this minimisation using
Procrustes

* If fis a general non-linear function ?
e Gradient descent: f*™ = fF — AV E(f)

* For least squares, is there a better optimisation method ?
ves: Gauss-Newton based methods.

40

Gradient-based ICP

1. Energy: B = Z | min f(x) — yill®

2. Consider the correspondences fixed in each iteration j+1

J+1l _ T (o) < 112
;= argmin |[f(x) — yi

X

3. Compute gradient of the energy around current estimation
g’ = VE(f7)
4. Apply step (gradient descent, dogleg, LM, BFGS...)
fj-l-l _ kstep(go'“”l, fO---j) (for example fi+1 — i _ qgi+1)
5. terminate if converged, otherwise iterate (go to step 2)

Gradient-based ICP

Why is convergence on the left less smooth?

Point to point objective Point to surface objective

43

Gradient-based ICP

 Compute gradient of the energy around current estimation

fj—l—l — kstep(90°°°j+1,f0"'j)

Gradient-based ICP

* Gradient: derivative of the sum of squared
distances with respect to transformation f
parameters

Gradient-based ICP

* Gradient: derivative of the sum of squared
distances with respect to transformation f
parameters

* Each derivative is easy
* Who wants to writes it down?

Gradient-based ICP

* Gradient: derivative of the sum of squared
distances with respect to transformation f
parameters

* Each derivative is easy
* Who wants to writes it down?

e Chain rule and automatic differentiation!

Automatic differentiation

E=) |[sRx;+t—yi|?

Gradient-based ICP

* Apply step (gradient descent, dogleg, LM, BFGS...)

fj—l—l — kstep(90°°°j+1,f0"'j)

Why Gradient-based ICP?

* Formulation is much more generic: the energy can incorporate other
terms, more parameters, etc

* A lot of available software for solving this least squares problem (cvx,
ceres, ...)

* However, the resulting energy is non-convex for general deformation
models. Optimisation can get trapped in local minima.

Take-home message

- Procrustes is optimal for rigid alignment problems with known
correspondences. For other problems:

- We can compute correspondences and solve for the best
transformation iteratively with Iterative Closest Point (ICP)

Slide credits

e Javier Romero

