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What is a good representation for 3D data?
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What is a good representation for 3D data?
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• Compatible with neural networks.

• Flexible

• High fidelity



Voxels

• Discretization of 3D space into grid.

• Easy to process with neural networks.

• Cubic memory limited resolution.

[Liao et al. CVPR’18]
[Chov et al. ECCV’16]

Image credit: Mescheder et al. CVPR‘19
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Pointclouds

• Discretization of 3D space into 3D points.

• Does not model connectivity/topology.

• Limited number of points.

Image credit: Mescheder et al. CVPR‘19

[Liao et al. CVPR’18]
[Chov et al. ECCV’16] 7



Meshes

• Discretization into vertices and faces.

• Limited number of vertices/granularity.

• Requires class specific template.

• Leads to self-intersections.

Image credit: Mescheder et al. CVPR‘19

[Wang et al. ECCV’18]
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Meshes

• Discretization into vertices and faces.

• Limited number of vertices/granularity.

• Requires class specific template.

• Leads to self-intersections.

[Wang et al. ECCV’18]

Image credit: Mescheder et al. CVPR‘19

We have covered mesh-based 

human/clothing models.
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Implicit representation

• Implicit representation No discretization.

• Arbitrary topology and resolution.

• Low memory footprint.

• Not restricted to specific class.

[Mescheder et al. CVPR’19] 
[Chen et al. CVPR’19]
[Park et al. CVPR’19

Image credit: Mescheder et al. CVPR‘19
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Surfaces as an Implicit Function

A function tells us whether a point is inside or outside an object

If the function is continuous, a levelset of it defines a surface
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Surfaces as an Implicit Function

With implicit functions, Topology changes only require changing 

Mesh based representations would struggle
12



Neural Implicits for common objects
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Neural Implicits for common objects

[Park et al. CVPR’19] [Chen et al. 
CVPR’19]

[Mescheder et al. 
CVPR’19]

Work well for rigid objects: Continuous Multiple topologies
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Previous Implicit Function Learning 

Architecture

[Mescheder et al. CVPR’19
Chen et al. CVPR’19
Park et al. CVPR’19] 

Encoder

Decoder

is a shape observation:

- Sparse point-cloud

- Partial point-cloud

- Low-res voxels
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Previous Implicit Function Learning 

Architecture

Encoder

Decoder

is a shape observation:

- Sparse point-cloud

- Partial point-cloud

- Low-res voxels

[Mescheder et al. CVPR’19
Chen et al. CVPR’19
Park et al. CVPR’19] 
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Retain Details

Problem with Previous Work

[Chen et al. 
CVPR’19]

[Chen et al. 
CVPR’19]

[Mescheder et al. 
CVPR’19]

Reconstruct Articulations

[Mescheder et al. 
CVPR’19]
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Implicit Functions in Feature Space for 3D 

Shape Reconstruction and Completion
Julian Chibane1,2, Thiemo Alldieck1,3, Gerard Pons-Moll1

CVPR 2020
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http://virtualhumans.mpi-inf.mpg.de/people/Chibane.html
http://virtualhumans.mpi-inf.mpg.de/people/alldieck.html
http://virtualhumans.mpi-inf.mpg.de/
http://cvpr2020.thecvf.com/


Encoder

Decoder

Problems with previous work

1) Loss of 3D structure

[Mescheder et al. CVPR’19
Chen et al. CVPR’19] 

2) Point coordinates carry no 

information about local shape
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Implicit Feature Networks (IF-Nets)

Chibane et al. IF-Nets CVPR’20

3D Grid
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Implicit Feature Networks (IF-Nets)

Chibane et al. IF-Nets CVPR’20

3D Grid
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Previous:

Ours:

Representation of IF-Nets

Chibane et al. IF-Nets CVPR’20
22



IF-Nets for 3D Shape Reconstruction and Completion

Reconstruct Articulations Retain Details Complete Shape
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IF-Nets for Texture completion
ECCV SHARP CHALLENGE

24

Input Prediction GT

[Chibane and Pons-Moll, IF-Nets for texture. SHARP 2020
Chibane et al. IF-Nets CVPR’20]

Input Prediction GT



Remaining Problem

10

We changed the input representation

SDF:

Only water-tight 
surfaces

Open surfaces and manifolds Functions Complex 
shapes

• Surfaces that do not divide the space in two regions 

can not be represented.

• We need a different output representation.
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Neural Unsigned Distance Fields for Implicit 

Function Learning
Julian Chibane, Aymen Mir, Gerard Pons-Moll

NeurIPS 2020

26
Chibane et al. NDF, NeurIPS 2020



Our Solution

10

Only water-tight 
surfaces

Open surfaces and manifolds Functions Complex 
shapes

Change the output representation

Unsigned distance:

Chibane et al. NDF, NeurIPS 2020
27



Neural Distance Fields

Chibane et al. NDF, NeurIPS 2020
28

Chibane et al. NDF, NeurIPS 2020



Neural processing of arbitrary surfaces

Next, we illustrate the capabilities of NDF to neurally process arbitrary surfaces, not 

representable by prior learned implicit work:

– Mathematical Functions and Manifolds – We train a single NDF on a dataset 

consisting of 1000 functions per type: linear function, parabola, sinusoids and spirals.

– Garments – Open Surfaces, without thickness. Training on ~300 garments of five types

from [Bhatnagar et al. ICCV‘19].

– Scenes – Open surfaces with holes and no thickness. Training on 34 real world scenes

captured by RGBD Sensors from [Xia et al. CVPR‘18].

29
Chibane et al. NDF, NeurIPS 2020



NDF results

Open surface

1) Comparison 

with IF-Nets

2) Garment reconstruction

30
Chibane et al. NDF, NeurIPS 2020

IF-Net (cut)
IF-Net (Transparent)Ours (cut) Ours (Transparent)

GT Mesh Input Output 1Mio. PC
Direct Rendering 

(Front View)
Direct Rendering 

(Side View)



Direct Rendering of NDF

Sphere

marching

31

Depth

Input

Normals

Shaded

Back

Chibane et al. NDF, NeurIPS 2020



Representation and Regression of Functions
SinusoidsQuadraticLinear Quadratic Spiral Regression

Classical regression using NDFs and an adapted sphere tracing (ray tracing method)

32
Chibane et al. NDF, NeurIPS 2020



Representation and Completion of Scenes

Input Output Ground Truth

33
Chibane et al. NDF, NeurIPS 2020



Meshes vs Implicits

General objects 

and humans

2) Implicit Functions

[Chibane et al. CVPR’20
Chibane et al. NeurIPS’20]

1) Parametric Meshes

[Alldieck et al. CVPR’18
Bhatnagar et al. ICCV’19, ECCV’20
Tiwari et al. ECCV’20]

Control 
/Meaning

Topology Details

1)

2)

2) Compatible with learning

34
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• PART3: Neural implicits - generative models

• PART4: Point based clothing models
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Human and Clothing Models
Prior works mesh based
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Human and Clothing Models

Fixed topology

Topology has to be manually
predefined

Limited resolution

Prior works mesh based
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Meshes vs Implicits

General objects 

and humans

2) Implicit Functions

[Chibane et al. CVPR’20
Chibane et al. NeurIPS’20]

1) Parametric Meshes

[Alldieck et al. CVPR’18
Bhatnagar et al. ICCV’19, ECCV’20
Tiwari et al. ECCV’20]

Control 
/Meaning

Topology Details

1)

2)

2) Compatible with learning
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Human and clothing model using 

Neural Implicits

• High fidelity

• Flexible topology

• Pose/Shape/Style controllable

• Learned directly from scans

Corona et al. CVPR' 21 Tiwari et al. ICCV'21 Saito et al. CVPR'21Deng et al. ECCV’20
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Human and clothing model using 

Neural Implicits

• High fidelity

• Flexible topology

• Pose/Shape/Style controllable

• Learned directly from scans

Corona et al. CVPR' 21 Tiwari et al. ICCV'21 Saito et al. CVPR'21Deng et al. ECCV’20
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Controllable Neural Implicits for Human

Vertex based human model: SMPL

Neural Implicit for common objects:

42



Controllable Neural Implicits for Human

Vertex based human model: SMPL

Controllable Neural Implicit humans:

43



Learning pose-conditioned occupancy
• Naïve solution(Unstructured)

Bone transformations

Root translation

Query point

44
Deng et al. NASA, ECCV 2020



Learning pose-conditioned occupancy
• Naïve solution(Unstructured)

45
Deng et al. NASA, ECCV 2020



Incorporating prior knowledge about 

human models
Vertex based human model: SMPL

46



Learning pose/shape conditioned neural 

implicits using part composition

47



NASA
• Naïve solution(Unstructured)

48
Deng et al. NASA, ECCV 2020



NASA
• Piecewise-rigid model

49
Deng et al. NASA, ECCV 2020

A point is occupied if it is occupied by *any* of the parts. 

Done with max operator



NASA
• Piecewise-rigid model

50
Deng et al. NASA, ECCV 2020



NASA
• Piecewise-deformable model

51
Deng et al. NASA, ECCV 2020



NASA results
• Piecewise-deformable model

52
Deng et al. NASA, ECCV 2020



• Limitations of NASA:

– Part-based artefacts

• No information about neighbouring body parts

– Limited pose generalization

• Low-dimensional pose encoding does not fully remove long-range spurious 

correlations

NASA:Neural Articulated Shape Approximation

53
Deng et al. NASA, ECCV 2020



COAP: Compositional Articulated

Occupancy of People
Marko Mihajlovic1 Shunsuke Saito2 Aayush Bansal2 Michael Zollhoefer2 Siyu Tang1

1ETH Zurich 2Reality Labs Research at Meta

CVPR 2022
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https://markomih.github.io/
http://www-scf.usc.edu/~saitos/
http://www.cs.cmu.edu/~aayushb/
https://zollhoefer.com/
https://inf.ethz.ch/people/person-detail.MjYyNzgw.TGlzdC8zMDQsLTg3NDc3NjI0MQ==.html
https://ethz.ch/en.html
https://www.meta.com/
https://cvpr2022.thecvf.com/


COAP: Compositional Articulated

Occupancy of People

55



How is COAP different from NASA?

COAP is not subject-specific model

56



How is COAP different from NASA?

Per-part features = body part + few 
points from neighbouring parts

57



How is COAP different from NASA?

Shared Occupancy networks

A
58



Part-based model

– Skinning weights are needed for part-decomposition

– Part-artefacts are prominent for out-of-distribution poses.

– Cannot model clothing/ loose clothing.
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Part-based model limitations

– Skinning weights are needed for part-decomposition

– Part-artefacts are prominent for out-of-distribution poses.

– Cannot model clothing/ loose clothing.
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Part-based model

– Skinning weights are needed for part-decomposition

– Part-artefacts are prominent for out-of-distribution poses.

– Cannot model clothing/ loose clothing.
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Learning pose/shape conditioned neural 

implicits using learned LBS and canonical 

shape

62



Learning pose/shape conditioned neural 
implicits using learned LBS and canonical shape

Given an input pose/shape 
and 3D query point

Predict pose/shape dependent 
deformation field in cananocial space

Get the final posed mesh
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Learning pose/shape conditioned neural 
implicits using learned LBS and canonical shape

Given an input pose/shape 
and 3D query point

Predict pose/shape dependent 
deformation field in cananocial 
space

Get the final posed mesh

Map query point to 
canonical space?
Using learned LBS?

64



Neural-GIF: Neural Generalized Implicit Functions 

for Animating People in Clothing

Garvita Tiwari Nikolaos Sarafianos Tony Tung Gerard Pons-Moll
University of Tuebingen MPI for Informatics, Saarland Informatics Campus, Germany Facebook Reality Labs, Sausalito, USA

ICCV 2021

65

http://cvpr2020.thecvf.com/


NeuralGIF
• A generalized framework to animate people in clothing(or clothing), which learns 

directly from scans

NeuralGIF is trained on set of raw scans for a 

given subject
Given a query pose(left), 

NeuralGIF animates the subject(right)

Tiwari et al. ICCV‘21

66

query pose output



Generalized Implicit Function

Sclaroff & Pentland Sigg‘91 

Tiwari et al. ICCV‘21
67



Tiwari et al. ICCV‘21

Generalized Implicit Function

68



SMPL model

Vertices in a 0-pose



Neural-GIF

Query points

Posed Space

Map to 

canonical space
Displacement field 

in  canonical 

space

SDF prediction and 

reconstructed mesh

Joints  transformation matrix

How to predict the signed distance for a point in the posed space? 

Tiwari et al. ICCV‘21
70



Neural-GIF: Pose driven Animation

CAPE DFAUST TailorNet-Shirt TailorNet-Skirt

Tiwari et al. ICCV‘21
71



NeuralGIF as Multi-shape model
P O S E

S

H

A

P

E

72
Tiwari et al. ICCV‘21



Neural-GIF vs Scanimate

Scanimate Neural-GIF

Advantadges of Neural-GIF 

• A single Canonical f() is learned. 

• More flexibility in toplogies

• Better detail

• Simpler model

Tiwari et al. ICCV‘21
73



Comparison with State-of-the-art methods

Comparison with NASA [1] and SCANimate [2]. We report point to surface 

distance (in mm) and IoU and F-Scores(%) for comparison

1. NASA: Neural Articulated Shape Approximation, Deng et al., ECCV2020
2. SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks, Saito et al., CVPR2021

74
Tiwari et al. ICCV‘21

Most of the improvement is in modelling fine geometric details.



NeuralGIF as Multi-shape model

We quantitatively compare the results of our method with LEAP[1] on various 

datasets. We report point to surface distance (in mm) and IoU for comparison.

1. Learning Articulated Occupancy of 
People, Mihajlovic et al., CVP2021
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Neural-GIF

Pose space to unpose space using skinning weights

Query points

Posed Space

Map to 

canonical space
Displacement field in  

canonical space

Joints  transformation matrix
76Tiwari et al. ICCV‘21



Source: https://autonomousvision.github.io/snarf/

Backward and Forward skinning
Backward skinning

77

Posed space skinning field predicted



Backward and Forward skinning

78

Backward skinning

In backward skinning, w is predicted from 

the deformed point      and the pose 
Source: https://autonomousvision.github.io/snarf/

Posed space skinning field predicted



Backward and Forward skinning

Backward skinning Forward skinning

In backward skinning, w is predicted from 

the deformed point      and the pose 

In forward skinning, w is predicted from 

the canonic point 

79

Source: https://autonomousvision.github.io/snarf/



SNARF: Differentiable Forward Skinning for 
Animating Non-Rigid Neural Implicit Shapes

80

Source: https://autonomousvision.github.io/snarf/



SNARF: Differentiable Forward Skinning for 
Animating Non-Rigid Neural Implicit Shapes
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Source: https://autonomousvision.github.io/snarf/



SNARF is a forward skinning method:

Forward skinning explicitly defines

Learning canonical shape from posed scans requires,

Given , determine

• Implicit relation, no closed form solution

• Non-bijective mapping, multiple solution may exists

Source: Chen et al., ICCV 2021

SNARF: Differentiable Forward Skinning for 
Animating Non-Rigid Neural Implicit Shapes

82



Key Idea: Differentiable Forward Skinning

SNARF: Differentiable Forward Skinning for 
Animating Non-Rigid Neural Implicit Shapes

Requires differentiating through the solution of a non-linear system

Source: Chen et al., ICCV 2021 83
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SNARF: Understand the training objective

Canonical Point (multiple solutions) Posed point Neural network which predicts

skinning weights from canonic point

Ground truth occupancyCross-entropy loss

Challenge: compute Possible to backprop iterative root finding



Source: Chen et al., ICCV 2021

SNARF results

86



Backward and Forward skinning
Forward skinning models have better generalization w.r.t. unseen pose.

F
o
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B
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B
a
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rd
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B

S

Within distribution poses Out of distribution poses
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Backward and Forward skinning
Forward skinning models have better generalization w.r.t. unseen pose.
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Backward and Forward skinning
• Forward skinning models have better generalization w.r.t. unseen pose.
• Backward skinning models have higher fidelity (for distribution poses) and more flexible to 

model loose clothing.
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Works like NASA, COAP, Neural-GIF, 
SNARF are not generative models

90
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What’s next?? 

Neural Implicit based generative model 
of people in clothing.

Works like NASA, COAP, Neural-GIF, 
SNARF are not generative models

92



Generative model of human in clothing using Neural Implicits

gDNA: Towards Generative Detailed Neural 
Avatars

Chen et al., CVPR 2022
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gDNA: Towards Generative Detailed Neural 
Avatars

Chen et al., CVPR 2022
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gDNA: Towards Generative Detailed Neural 
Avatars

Chen et al., CVPR 2022

95



gDNA: Towards Generative Detailed Neural 
Avatars

Chen et al., CVPR 2022

96

Training is based on auto-decoders for the 3D 

shape and GANs for stochastic detail



Canonical Implicit model

Chen et al., CVPR 2022
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Canonical Implicit model

Chen et al., CVPR 2022
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Multi-subject forward-skinning model

Chen et al., CVPR 2022

99

Based on SNARF

Skinning field in a body-shape-independent  space

Size independent

Size dependent



Multi-subject forward-skinning model

Skinning field in a body-shape-independent  space

Body shape dependent warping field Chen et al., CVPR 2022

100

Based on SNARF



Multi-subject forward-skinning model

Chen et al., CVPR 2022
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Based on SNARF



Multi-subject forward-skinning model

Chen et al., CVPR 2022

102

Based on SNARF



gDNA: Towards Generative Detailed Neural Avatars

Pose conditioned

103



gDNA: Towards Generative Detailed Neural Avatars

Body shape conditioned

104



gDNA: Towards Generative Detailed Neural Avatars

Clothing style/shape conditioned

105



SMPLicit: Topology-aware

Generative Model for Clothed People
Enric Corona Albert Pumarola Guillem Alenya Gerard Pons-Moll Francesc Moreno-Noguer

Institut de Robotica i Informatica Industrial, CSIC-UPC, Barcelona, Spain Max Planck Institute for Informatics

CVPR 2021

Corona et al., SMPLicit, CVPR’21

106

http://cvpr2020.thecvf.com/


Vertex-based SMPL to Implicit SMPL(SMPLicit)

Vertex based Clothing model

Neural implicit clothing model
Predicts the unsigned distance of the surface as a function of pose, shape, clothing 

cut, and style

Clothing cut controls how much clothing overlaps with the body (sleeve length, pant length)

Clothing style controls the size, and fit

E.g, TailorNet predicts vertex displacement D as a function of pose, shape and clothing 

style (requires multiple cloth templates)

107

Corona et al., SMPLicit, CVPR’21



Moving to new topologies: Implicit representations

Unsigned distance field

108

Corona et al., SMPLicit, CVPR’21



Unsigned distance field

MLP

Moving to new topologies: Implicit representations

109

Corona et al., SMPLicit, CVPR’21

Input 

point



Unsigned distance field

MLP

Cloth style

Input 

point

Moving to new topologies: Implicit representations

110

Corona et al., SMPLicit, CVPR’21



Dressing humans

MLP

Attributes

111

Corona et al., SMPLicit, CVPR’21



Dressing humans

MLP

Attributes

112

Corona et al., SMPLicit, CVPR’21



Interpolation in latent space

MLP

Attributes

113

Corona et al., SMPLicit, CVPR’21



Key advantages of SMPLicit

Interpolating clothing of different 

topolgy using single model with SMPLicit
TailorNet(vertex-based model) 

uses one model/garment type

Interpolation

114

Corona et al., SMPLicit, CVPR’21



Represents multiple topologies in one network

No need to pre-define clothes and train independently per template

[TailorNet, CVPR 2020] SMPLicitReference person

Key advantages of SMPLicit
Fitting to scans

115

Corona et al., SMPLicit, CVPR’21



Input image Cloth Segmentation 
3D 

Reconstruction
Semantic 

Labels
Body Estimation

Fitting SMPLicit

by minimizing projection error

[RP-R-CNN, ECCV 2020] [FrankMocap, ICCVW 2021]

Model fitting with SMPLicit

116

Corona et al., SMPLicit, CVPR’21



117

Model fitting with SMPLICIT

Body relative representation of a sampled point in canonic space

Point projects outside segmentation mask → force to predict maximum 

distance or off-surface

Point projects inside segmentation mask → force to predict 0 distance (on-

surface)

Min over points along the ray



Reposed 

body
Outfit editingInput image

3D Reconstruction

SemanticFront

view

Side 

view

❌ High-resolution details

Represents multiple topologies

Automatic training from a general dataset

Reconstruction

Combining the flexibility of implicit representations with 

the control of explicit parametric models

118



Meshes vs Implicits

General objects 

and humans

2) Implicit Functions

[Chibane et al. CVPR’20
Chibane et al. NeurIPS’20]

1) Parametric Meshes

[Alldieck et al. CVPR’18
Bhatnagar et al. ICCV’19, ECCV’20
Tiwari et al. ECCV’20]

Control 
/Meaning

Topology Details

1)

2)

2) Compatible with learning
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More works on Human modeling using 

Neural Implicits

• SCANimate, Saito et al. CVPR'21

• LEAP, Mihajlovic et al. CVPR'21

• imGHUM, Alldieck et al. ICCV'21

• MetaAvatar, Weng et al. NeurIPS'21

• ICON, Xiu et al. CVPR'22

• PINA, Dong et al. CVPR'22
• AutoAvatar, Bai et al. ECCV'22

And Many more.....

NeuralFields

https://neuralfields.cs.brown.edu/

120

https://neuralfields.cs.brown.edu/


• PART1: Neural implicits for 3D shapes

• PART2: Neural implicits for 3D humans

• PART3: Neural implicits - generative models

• PART4: Point based clothing models
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Meshes vs Implicits vs PointClouds

Control 

/Meaning

Topology Details Speed Continuous

1) Meshes

2) Implicits

3) PointClouds
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Human and clothing model using 

PointClouds

• High fidelity
• Flexible topology

• Pose/Shape/Style controllable

• Learned directly from scans

• Fast rendering

Ma et al. ICCV'21 Ma et al. 3DV'22Zakharkin et al. ICCV'21
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Human and clothing model using 

PointClouds

• High fidelity
• Flexible topology

• Pose/Shape/Style controllable

• Learned directly from scans

• Fast rendering

Ma et al. ICCV'21 Ma et al. 3DV'22Zakharkin et al. ICCV'21
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The Power of Points for Modeling Humans in 

Clothing
Using pointcloud for humans/clothing

Ma et al. ICCV'21
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How is this different from prior Point-based 

works?
Using pointcloud for humans/clothing

Ma et al. ICCV'21
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The Power of Points for Modeling Humans in Clothing

Ma et al. ICCV'21
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The Power of Points for Modeling Humans in Clothing

Ma et al. ICCV'21
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The Power of Points for Modeling Humans in Clothing

Ma et al. ICCV'21
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The Power of Points for Modeling Humans in Clothing

Ma et al. ICCV'21
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The Power of Points for Modeling Humans in Clothing

Ma et al. ICCV'21
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The Power of Points for Modeling Humans in Clothing

Point in posed space

Displacement vector

Ma et al. ICCV'21
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The Power of Points for Modeling Humans in Clothing

Ma et al. ICCV'21
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Results: POP produces high-quality and fine-detailed results than LBS 

The Power of Points for Modeling Humans in Clothing
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Limitations:

Discontinuity due to SMPL UV maps

– This results in visible “seams” between certain body parts.

– More significant for skirts.

The Power of Points for Modeling Humans in Clothing
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Discontinuity in POP

POP Ma et al., 3DV 2022
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Meshes vs Implicits vs PointClouds

Control 

/Meaning

Topology Details Speed Continuous

1) Meshes

2) Implicits

3) PointClouds
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Slides credit and resources

Thanks to 

Julian Chibane, Enric Corona and Qianli Ma 

for providing materials.

TUM AI Lecture Series - Neural Implicit 

Representations for 3D Vision

(talk by Prof. Pons-Moll)
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https://www.youtube.com/watch?v=F9mRv4v80w0
https://www.youtube.com/watch?v=F9mRv4v80w0
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