Virtual Humans - Winter 23/24

Lecture 4_1 - ICP: Iterative Closest Points

Prof. Dr.-Ing. Gerard Pons-Moll
University of Tübingen / MPI-Informatics

Non-rigid Articulated Registration

What is missing?

Given correspondences, we can find the optimal rigid alignment with Procrustes.

PROBLEMS:

- How do we find the correspondences between shapes ?
- How do we align shapes non-rigidly ?

ICP and alignment based on optimisation

- Optimising alignment and correspondences using Iterative Closest Point (ICP).
- Alignment through continuous optimisation.

How do we find correspondences?

How do we find correspondences?

How do we find correspondences?

How do we find correspondences?

$$
E \equiv \sum_{i}\left\|s \mathbf{R} \mathbf{x}_{i}+\mathbf{t}-\mathbf{y}_{i}\right\|^{2} \equiv \sum_{i}\left\|f\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}\right\|^{2}
$$

compact notation: f contains translation, rotation and isotropic scale

\mathbf{X}_{i} Closest point to target shape point \mathbf{Y}_{i}
The optimisation is over:

- the transform f
- the correspondences $\mathcal{C}=\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)\right\}_{i}^{N}$

$$
E(\mathcal{C}, f)=\sum_{i} \min _{\mathbf{x} \in \mathbf{X}}\left\|f(\mathbf{x})-\mathbf{y}_{i}\right\|^{2}
$$

How do we find correspondences?

The idea was to minimise the sum of distances between the one set of points and the other set, transformed

$$
E \equiv \sum_{i}\left\|s \mathbf{R} \mathbf{x}_{i}+\mathbf{t}-\mathbf{y}_{i}\right\|^{2} \equiv \sum_{i}\left\|f\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}\right\|^{2}
$$

Ideas

The idea was to minimise the sum of distances between the one set of points and the other set, transformed

$$
E \equiv \sum_{i}\left\|s \mathbf{R} \mathbf{x}_{i}+\mathbf{t}-\mathbf{y}_{i}\right\|^{2} \equiv \sum_{i}\left\|f\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}\right\|^{2}
$$

compact notation: f contains translation, rotation and isotropic scale
What if we estimate the correspondences?

Solution: Iteratively find correspondences

The idea was to minimise the sum of distances between the one set of points and the other set, transformed

$$
E \equiv \sum_{i}\left\|s \mathbf{R} \mathbf{x}_{i}+\mathbf{t}-\mathbf{y}_{i}\right\|^{2} \equiv \sum_{i}\left\|f\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}\right\|^{2}
$$

What if we estimate the correspondences?
$\mathbf{x}_{i}^{j+1}=$ iteration
$\arg \min _{\mathbf{x} \in \mathbf{X}}\left\|f^{j}(\mathbf{x})-\mathbf{y}_{i}\right\|^{2}$
original unsorted points
$f^{j+1}=\arg \min _{f} \sum_{i}\left\|f\left(\mathbf{x}_{i}^{j+1}\right)-\mathbf{y}_{i}\right\|^{2}$

Alternate between finding correspondences and finding the optimal transformation

The idea was to minimise the sum of distances between the one set of points and the other set, transformed

$$
E \equiv \sum_{i}\left\|s \mathbf{R} \mathbf{x}_{i}+\mathbf{t}-\mathbf{y}_{i}\right\|^{2} \equiv \sum_{i}\left\|f\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}\right\|^{2}
$$

What if we estimate the correspondences?

$$
\mathbf{x}_{i}^{j+1}=\arg \min _{\mathbf{x} \in \mathbf{X}}\left\|f^{j}(\mathbf{x})-\mathbf{y}_{i}\right\|^{2}
$$

original unsorted points $f^{j+1}=\arg \min _{f} \sum_{i}\left\|f\left(\mathbf{x}_{i}^{j+1}\right)-\mathbf{y}_{i}\right\|^{2}$
Given current best transformation, which are the closest correspondences?

Given current best correspondences, which is the best transformation?

Make up reasonable correspondences

Make up reasonable correspondences

Make up reasonable correspondences

Solve for the best transformation

Apply it ...

$$
f^{1}(\mathbf{X})
$$

and iterate!

$f^{1}(\mathbf{X})$

and iterate!

$f^{j}(\mathbf{X})$

$$
f^{j}=\arg \min _{f} \sum_{i}\left\|f\left(\mathbf{x}_{i}^{j}\right)-\mathbf{y}_{i}\right\|^{2}
$$

and iterate!

$f^{j}(\mathbf{X})$

$$
\begin{aligned}
f^{j} & =\arg \min _{f} \sum_{i}\left\|f\left(\mathbf{x}_{i}^{j}\right)-\mathbf{y}_{i}\right\|^{2} \\
\mathbf{x}_{i}^{j+1} & =\arg \min _{\mathbf{x} \in \mathbf{X}}\left\|f^{j}(\mathbf{x})-\mathbf{y}_{i}\right\|^{2}
\end{aligned}
$$

and iterate!

$$
f^{j}(\mathbf{X})
$$

$$
\begin{aligned}
f^{j} & =\arg \min _{f} \sum_{i}\left\|f\left(\mathbf{x}_{i}^{j}\right)-\mathbf{y}_{i}\right\|^{2} \\
\mathbf{x}_{i}^{j+1} & =\arg \min _{\mathbf{x} \in \mathbf{X}}\left\|f^{j}(\mathbf{x})-\mathbf{y}_{i}\right\|^{2}
\end{aligned}
$$

and iterate!

Iterative Closest Point (ICP)

typically better than 0

1. Initialize

$$
f^{0}=\left\{\mathbf{R}=\mathbf{I}, \mathbf{t}=\frac{\sum \mathbf{y}_{i}}{N}-\frac{\sum \mathbf{x}_{i}}{N}, s=1\right\}
$$

Iterative Closest Point (ICP)

1. Initialize

$$
f^{0}=\left\{\mathbf{R}=\mathbf{I}, \mathbf{t}=\frac{\sum \mathbf{y}_{i}}{N}-\frac{\sum \mathbf{x}_{i}}{N}, s=1\right\}
$$

2. Compute correspondences according to current best transform

$$
\mathbf{x}_{i}^{j+1}=\arg \min _{\mathbf{x} \in \mathbf{X}}\left\|f^{j}(\mathbf{x})-\mathbf{y}_{i}\right\|^{2}
$$

Iterative Closest Point (ICP)

1. Initialize

$$
f^{0}=\left\{\mathbf{R}=\mathbf{I}, \mathbf{t}=\frac{\sum \mathbf{y}_{i}}{N}-\frac{\sum \mathbf{x}_{i}}{N}, s=1\right\}
$$

2. Compute correspondences according to current best transform

$$
\mathbf{x}_{i}^{j+1}=\arg \min _{\mathbf{x} \in \mathbf{X}}\left\|f^{j}(\mathbf{x})-\mathbf{y}_{i}\right\|^{2}
$$

3. Compute optimal transformation ($\mathbf{s}, \mathbf{R}, \mathbf{t}$) with Procrustes

$$
f^{j+1}=\arg \min _{f} \sum_{i}\left\|f\left(\mathbf{x}_{i}^{j+1}\right)-\mathbf{y}_{i}\right\|^{2}
$$

Iterative Closest Point (ICP)

1. Initialize

$$
f^{0}=\left\{\mathbf{R}=\mathbf{I}, \mathbf{t}=\frac{\sum \mathbf{y}_{i}}{N}-\frac{\sum \mathbf{x}_{i}}{N}, s=1\right\}
$$

2. Compute correspondences according to current best transform

$$
\mathbf{x}_{i}^{j+1}=\arg \min _{\mathbf{x} \in \mathbf{X}}\left\|f^{j}(\mathbf{x})-\mathbf{y}_{i}\right\|^{2}
$$

3. Compute optimal transformation ($\mathbf{s}, \mathbf{R}, \mathbf{t}$) with Procrustes

$$
f^{j+1}=\arg \min _{f} \sum_{i}\left\|f\left(\mathbf{x}_{i}^{j+1}\right)-\mathbf{y}_{i}\right\|^{2}
$$

4. Terminate if converged (error below a threshold), otherwise iterate

Iterative Closest Point (ICP)

1. Initialize

$$
f^{0}=\left\{\mathbf{R}=\mathbf{I}, \mathbf{t}=\frac{\sum \mathbf{y}_{i}}{N}-\frac{\sum \mathbf{x}_{i}}{N}, s=1\right\}
$$

2. Compute correspondences according to current best transform

$$
\mathbf{x}_{i}^{j+1}=\arg \min _{\mathbf{x} \in \mathbf{X}}\left\|f^{j}(\mathbf{x})-\mathbf{y}_{i}\right\|^{2}
$$

3. Compute optimal transformation ($\mathbf{s}, \mathbf{R}, \mathrm{t}$) with Procrustes

$$
f^{j+1}=\arg \min _{f} \sum_{i}\left\|f\left(\mathbf{x}_{i}^{j+1}\right)-\mathbf{y}_{i}\right\|^{2}
$$

4. Terminate if converged (error below a threshold), otherwise iterate
5. Converges to local minima

Is ICP the best we can do?

Iteration j :

- compute closest points
- compute optimal transformation with Procrustes
- apply transformation
- terminate if converged, otherwise iterate

Closest points

- Brute force is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- For every source point find a neighbor point on the source shape

Closest points

- Tree based methods (e.g. kdtree) have avg. complexity $\log (\mathrm{n})$
- Random point sampling also reduces the running time

ICP: Tips to avoid local minima

- Always find correspondences from target to source! Proper data term
- Outliers —> Robust cost functions
- Use additional information (e.g. normals)
- Compute transformation based on greedy subsets of points: RANSAC

A much better objective: Point-to-surface distance

$$
\mathbf{y}_{2} \in \mathbf{Y}
$$

$\mathbf{y}_{0} \in \mathbf{Y}$

$$
\mathbf{y}_{1} \in \mathbf{Y}
$$

Closest points: avoid local minima

Point-to-point distance

Closest points: avoid local minima

Point-to-surface distance

Is ICP the best we can do?

Iteration j :

- compute closest points
- compute optimal transformation with Procrustes
- apply transformation
- terminate if converged, otherwise iterate

Best transformation?

- Procrustes gives us the optimal rigid transformation and scale given correspondences
- What if the deformation model is not rigid ?
-Can we generalise ICP to non-rigid deformation ?

Iterative Closest Point (ICP)

Iteration j:

- compute closest points $\boldsymbol{\rightarrow}$ Which direction to move?
- compute optimal transformation with Procrustes
- apply transformation
- terminate if converged, otherwise iterate

Iterative Closest Point (ICP)

Iteration j :

- compute closest points \rightarrow Which direction to move?
- compute optimal transformation with Procrustes \rightarrow

Compute a transform that reduces the error

- apply transformation
- terminate if converged, otherwise iterate

Gradient-based ICP

Iteration j :

- compute closest points \rightarrow Which direction to move?
- compute optimal transformation with Procrustes \rightarrow

Compute descent step by linearising the energy

- apply transformation Jacobian of distance-based energy
- terminate if converged, otherwise iterate

Gradient-based ICP

$$
\arg \min _{f} E(f)=\arg \min _{f} \sum_{i}\left\|f\left(\mathbf{x}_{i}^{j+1}\right)-\mathbf{y}_{i}\right\|^{2}
$$

- If f is a rigid transformation we can solve this minimisation using Procrustes
- If f is a general non-linear function ?
- Gradient descent: $f^{k+1}=f^{k}-\lambda \nabla_{f} E(f)$
- For least squares, is there a better optimisation method ? yes: Gauss-Newton based methods.

Gradient-based ICP

1. Energy:

$$
E \equiv \sum_{i}\left\|\min _{\mathbf{x}} f(\mathbf{x})-\mathbf{y}_{i}\right\|^{2}
$$

2. Consider the correspondences fixed in each iteration $\mathrm{j}+1$

$$
\mathbf{x}_{i}^{j+1}=\arg \min _{\mathbf{x} \in \mathbf{X}}\left\|f^{j}(\mathbf{x})-\mathbf{y}_{i}\right\|^{2}
$$

3. Compute gradient of the energy around current estimation

$$
g^{j+1}=\nabla E\left(f^{j}\right)
$$

4. Apply step (gradient descent, dogleg, LM, BFGS...)

$$
\left.f^{j+1}=k_{\text {step }}\left(g^{0 \ldots j+1}, f^{0 \ldots j}\right) \quad \text { (for example } f^{j+1}=f^{j}-\alpha g^{j+1}\right)
$$

5. terminate if converged, otherwise iterate (go to step 2)

Gradient-based ICP

Why is convergence on the left less smooth?

Point to point objective
Point to surface objective

Gradient-based ICP

- Energy:
- Consider the correspondences fixed in each iteration j+1
- Compute gradient of the energy around current estimation
- Apply step (gradient descent, dogleg, LM, BFGS...)
- terminate if converged, otherwise iterate $f^{j+1}=k_{\text {step }}\left(g^{0 \ldots j+1}, f^{0 \ldots j}\right)$

Gradient-based ICP

- Gradient: derivative of the sum of squared distances with respect to transformation f parameters

$$
\begin{array}{r}
E \equiv \sum_{i}\left\|\min _{\mathbf{x}} f(\mathbf{x})-\mathbf{y}_{i}\right\|^{2} \\
g^{j+1}=\nabla E\left(f^{j}\right)
\end{array}
$$

Gradient-based ICP

- Gradient: derivative of the sum of squared distances with respect to transformation f parameters

$$
\begin{array}{r}
E \equiv \sum_{i}\left\|\min _{\mathbf{x}} f(\mathbf{x})-\mathbf{y}_{i}\right\|^{2} \\
g^{j+1}=\nabla E\left(f^{j}\right)
\end{array}
$$

- Each derivative is easy
- Who wants to writes it down?

Gradient-based ICP

- Gradient: derivative of the sum of squared distances with respect to transformation f parameters

$$
\begin{array}{r}
E \equiv \sum_{i}\left\|\min _{\mathbf{x}} f(\mathbf{x})-\mathbf{y}_{i}\right\|^{2} \\
g^{j+1}=\nabla E\left(f^{j}\right)
\end{array}
$$

- Each derivative is easy
- Who wants to writes it down?
- Chain rule and automatic differentiation!

Automatic differentiation

Gradient-based ICP

- Energy:
- Consider the correspondences fixed in each iteration j+1
- Compute gradient of the energy around current estimation
- Apply step (gradient descent, dogleg, LM, BFGS...)
- terminate if converged, otherwise iterate $f^{j+1}=k_{\text {step }}\left(g^{0 \ldots j+1}, f^{0 \ldots j}\right)$

Why Gradient-based ICP?

- Formulation is much more generic: the energy can incorporate other terms, more parameters, etc
- A lot of available software for solving this least squares problem (cvx, ceres, ...)
- However, the resulting energy is non-convex for general deformation models. Optimisation can get trapped in local minima.

Take-home message

- Procrustes is optimal for rigid alignment problems with known correspondences. For other problems:
- We can compute correspondences and solve for the best transformation iteratively with Iterative Closest Point (ICP)

Slide credits

- Javier Romero

