
Virtual Humans – Winter 23/24

Lecture 3_1 – Surface Representations

Prof. Dr.-Ing. Gerard Pons-Moll
University of Tübingen / MPI-Informatics

Increasing complexity of our models

2

 CMU 15-462/662

Increasing the complexity of our models
Materials, lighting, ...GeometryTransformations

3

4

Examples of geometry

5
 CMU 15-462/662

Examples of geometry

Examples of geometry

6
 CMU 15-462/662

Examples of geometry

Examples of geometry

7
 CMU 15-462/662

Examples of geometry

Examples of geometry

8 CMU 15-462/662

Examples of geometry

Examples of geometry

9 CMU 15-462/662

Examples of geometry

Given all these options, what is
the best way to encode geometry
on a computer?

10

It's a jungle out there!

11 CMU 15-462/662

It’s a Jungle Out There!

 CMU 15-462/662

No one “best” choice—geometry is hard!

“I hate meshes.
 I cannot believe how hard this is.
 Geometry is hard.”

—David Baraff
Senior Research Scientist
Pixar Animation Studios

Slide cribbed from Jeff Erickson.
12

Many ways to digitally encode geometry

• EXPLICIT
• point cloud
• polygon mesh
• subdivision, NURBS
• …

• IMPLICIT
• level set
• algebraic surface
• L-systems
• …

• Each choice best suited to a different task/type of geometry

13

"Implicit" Representations of Geometry

• Points aren't known directly, but satisfy some relationship
• E.g., unit sphere is all points such that x2+y2+z2=1
• More generally, f(x,y,z) = 0

14

Surfaces as an Implicit Function

15

p = (x, y, z) 2 R3

S = {p, f(p) = ⌧}

f(p) =

(
0, if p 2 outside

1, if p 2 inside

Many implicit representations in graphics

16
 CMU 15-462/662

Many implicit representations in graphics
algebraic surfaces
constructive solid geometry
level set methods
blobby surfaces
fractals
...

(Will see some of these a bit later.)

 CMU 15-462/662

But first, let’s play a game:

I’m thinking of an implicit surface f(x,y,z)=0.

Find any point on it.

17

Surfaces as an Implicit Function

18

p = (x, y, z) 2 R3

S = {p, f(p) = ⌧}

f(p) =

(
0, if p 2 outside

1, if p 2 inside

 CMU 15-462/662

Let’s play another game.

I have a new surface f(x,y,z) = x2 + y2 + z2 - 1.

I want to see if a point is inside it.

19

20

21

"Explicit" Representations of Geometry

• All points are given directly
• E.g., points on sphere are

22

• More generally:

• (Might have a bunch of these maps, e.g., one per triangle!)

 CMU 15-462/662

Many explicit representations in graphics
triangle meshes
polygon meshes
subdivision surfaces
NURBS
point clouds
...

(Will see some of these a bit later.)
23

Many explicit representations in graphics

• triangle meshes
• polygon meshes
• subdivision surfaces
• NURBS
• point clouds
• …

24
 CMU 15-462/662

Many explicit representations in graphics
triangle meshes
polygon meshes
subdivision surfaces
NURBS
point clouds
...

(Will see some of these a bit later.)

 CMU 15-462/662

But first, let’s play a game:

I’ll give you an explicit surface.

You give me some points on it.

25

26

 CMU 15-462/662

Let’s play another game.

I have a new surface f(u,v).

I want to see if a point is inside it.

27

28

 CMU 15-462/662

CONCLUSION:
Some representations work better

than others—depends on the task!

29

Algebraic Surfaces (Implicit)

• Surface is zero set of a polynomial in x, y, z
• Examples:

30

• What about more complicated shapes?
• Very hard to come up with polynomials!

Surface is zero set of a polynomial in x, y, z
Examples:

What about more complicated shapes?

Very hard to come up with polynomials!
 CMU 15-462/662

Algebraic Surfaces (Implicit)

Constructive Solid Geometry (Implicit)

• Build more complicated shapes via Boolean operations
• Basic operations:

31

 CMU 15-462/662

Constructive Solid Geometry (Implicit)
Build more complicated shapes via Boolean operations
Basic operations:

Then chain together expressions:

UNION

INTERSECTION

DIFFERENCE

 CMU 15-462/662

Constructive Solid Geometry (Implicit)
Build more complicated shapes via Boolean operations
Basic operations:

Then chain together expressions:

UNION

INTERSECTION

DIFFERENCE

• Then chain together expressions:

Blending Distance Functions (Implicit)

• A distance function gives distance to closest point on object
• Can blend any two distance functions d1, d2:

• Similar strategy to points, though many possibilities. E.g.,

• Appearance depends on how we combine functions
• Q: How do we implement a Boolean union of d1(x), d2(x)?
• A: Just take the minimum: f(x) = min(d1(x), d2(x))

32

 CMU 15-462/662

Blending Distance Functions (Implicit)
A distance function gives distance to closest point on object
Can blend any two distance functions d1, d2:

Similar strategy to points, though many possibilities. E.g.,

Appearance depends on how we combine functions
Q: How do we implement a Boolean union of , ?

A: Just take the minimum:

d1(x) d2(x)
f(x) = min(d1(x), d2(x))

 CMU 15-462/662

Blending Distance Functions (Implicit)
A distance function gives distance to closest point on object
Can blend any two distance functions d1, d2:

Similar strategy to points, though many possibilities. E.g.,

Appearance depends on how we combine functions
Q: How do we implement a Boolean union of , ?

A: Just take the minimum:

d1(x) d2(x)
f(x) = min(d1(x), d2(x))

https://www.shadertoy.com/view/NtlSDs

Scene made of pure signed distance functions
Art with math -- really hard!

33

Level Set Methods (Implicit)

• Implicit surfaces have some nice features (e.g., merging/splitting)
• But, hard to describe complex shapes in closed form
• Alternative: store a grid of values approximating function

• Surface is found where interpolated values equal zero
• Provides much more explicit control over shape (like a texture)
• Unlike closed-form expressions, run into problems of aliasing! 34

Nowadays -- Neural Distance Fields (NDF)

35

INPUT OUTPUT OF NDF

Chibane et al. NDF, NeurIPS 2020

Level sets from medical data (CT, MRI etc.)

36

 CMU 15-462/662

Level Sets from Medical Data (CT, MRI, etc.)
Level sets encode, e.g., constant tissue density

Level set storage

• Storage of 2D surface is now O(n3)
• Can save space by only storing a narrow band around the surface.

37

 CMU 15-462/662

Level Set Storage
Drawback: storage for 2D surface is now O(n3)
Can reduce cost by storing only a narrow band around surface:

Distance Field – normals and closest points

38

q = p� f(p)rpf(p)

f(p) = min
q2S

kp� qk S = {p 2 R3 |f(p) = 0)}

<latexit sha1_base64="YnwlZ0LJgmZqxxIH66rHUjv011I=">AAACKXicbVDLSgMxFM34rPVVdekmWIQWpMxoRTeFohuX9dEHdGrJpJk2NJMZkoxQxvkdN/6KGwVF3fojptMBtfVA4Nxz7iX3HidgVCrT/DDm5hcWl5YzK9nVtfWNzdzWdkP6ocCkjn3mi5aDJGGUk7qiipFWIAjyHEaazvB87DfviJDU5zdqFJCOh/qcuhQjpaVurmp7SA0wYtF1DCt2lJSOGwWxTfmkcKKr+PYI2gfwHrqFn4ZixSzacTeXN0tmAjhLrJTkQYpaN/di93wceoQrzJCUbcsMVCdCQlHMSJy1Q0kChIeoT9qacuQR2YmSS2O4r5UedH2hH1cwUX9PRMiTcuQ5unO8p5z2xuJ/XjtU7mknojwIFeF48pEbMqh8OI4N9qggWLGRJggLqneFeIAEwkqHm9UhWNMnz5LGYckql44vy/nqWRpHBuyCPVAAFjgBVXABaqAOMHgAT+AVvBmPxrPxbnxOWueMdGYH/IHx9Q16/Ka2</latexit>

n(p) = rf(p)

<latexit sha1_base64="+JZF1ZOOQv33NsGAI5cMMgrF6so=">AAACDXicbVA9SwNBEN2LXzF+nVraLEYhNuFOItoIQRvLCOYDkhDmNnvJkr29Y3dPCEf+gI1/xcZCEVt7O/+Ne8kVMfHBwOO9GWbmeRFnSjvOj5VbWV1b38hvFra2d3b37P2DhgpjSWidhDyULQ8U5UzQumaa01YkKQQep01vdJv6zUcqFQvFgx5HtBvAQDCfEdBG6tknotQJQA89P4kmZ/gadwR4HLA/L/fsolN2psDLxM1IEWWo9ezvTj8kcUCFJhyUartOpLsJSM0Ip5NCJ1Y0AjKCAW0bKiCgqptMv5ngU6P0sR9KU0LjqTo/kUCg1DjwTGd6olr0UvE/rx1r/6qbMBHFmgoyW+THHOsQp9HgPpOUaD42BIhk5lZMhiCBaBNgwYTgLr68TBrnZbdSvrivFKs3WRx5dISOUQm56BJV0R2qoToi6Am9oDf0bj1br9aH9TlrzVnZzCH6A+vrFxY2mvQ=</latexit>

• Surface normal are the gradients of the function

• Closest points are found trivially as:

• Distance to surface is given by the distance field itself f(p)

Implicit Representations - Pros & Cons

Pros:
• description can be very compact (e.g., a polynomial)
• easy to determine if a point is in our shape (just plug it in!)
• other queries may also be easy (e.g., distance to surface)
• for simple shapes, exact description/no sampling error
• easy to handle changes in topology (e.g., fluid)
Cons:
• expensive to find all points in the shape (e.g., for drawing)
• very difficult to model complex shapes

39

What about explicit
representations?

40

Point Cloud (Explicit)

• Easiest representation: list of points (x,y,z)
• Often augmented with normals
• Easily represent any kind of geometry
• Easy to draw dense cloud (>>1 point/pixel)
• Hard to interpolate under-sampled regions
• Hard to do processing / simulation/...

41

 CMU 15-462/662

Point Cloud (Explicit)
Easiest representation: list of points (x,y,z)
Often augmented with normals
Easily represent any kind of geometry
Easy to draw dense cloud (>>1 point/pixel)
Hard to interpolate undersampled regions
Hard to do processing / simulation / …

 CMU 15-462/662

Point Cloud (Explicit)
Easiest representation: list of points (x,y,z)
Often augmented with normals
Easily represent any kind of geometry
Easy to draw dense cloud (>>1 point/pixel)
Hard to interpolate undersampled regions
Hard to do processing / simulation / …

Polygon Mesh (Explicit)

• Store vertices and polygons (most often triangles or quads)
• Easier to do processing/simulation, adaptive sampling
• More complicated data structures
• Irregular neighborhoods

42

 CMU 15-462/662

Polygon Mesh (Explicit)
Store vertices and polygons (most often triangles or quads)
Easier to do processing/simulation, adaptive sampling
More complicated data structures
Irregular neighborhoods

(Much more about polygon meshes in upcoming lectures!)

Surfaces as an Implicit Function

43

p = (x, y, z) 2 R3

S = {p, f(p) = ⌧}

f(p) =

(
0, if p 2 outside

1, if p 2 inside

Surfaces as an Implicit Function

44

p = (x, y, z) 2 R3

S = {p, f(p) = ⌧}

f(p) =

(
0, if p 2 outside

1, if p 2 inside

With implicit functions Topology changes only require changing
Mesh based representations would struggle

f(p)

Triangle Mesh (Explicit)
• Store vertices as triples of coordinates (x,y,z)
• Store triangles as triples of indices (i,j,k)
• E.g., tetrahedron:

• Use barycentric interpolation to define points inside triangles:

45

Triangle Mesh – Normals (Explicit)

• Option1: Normals per face (Phong)

• Option2: Interpolate incident face normal at each vertex, and
interpolate with barycentric interpolation for points inside the
triangle

46

n = (p2 � p1)⇥ (p3 � p1)

<latexit sha1_base64="zaoi+rHgWC40RTye6VZPG+t31MI=">AAACB3icbVDLSgMxFM3UV62vUZeCBItQF5aZWtGNUHTjsoJ9QDsMmTTThmYyIckIZejOjb/ixoUibv0Fd/6N6bQLbT0QOPece7m5JxCMKu0431ZuaXlldS2/XtjY3NresXf3mipOJCYNHLNYtgOkCKOcNDTVjLSFJCgKGGkFw5uJ33ogUtGY3+uRIF6E+pyGFCNtJN8+5PAKloRfORW+e9LVNCIqNfVZVo99u+iUnQxwkbgzUgQz1H37q9uLcRIRrjFDSnVcR2gvRVJTzMi40E0UEQgPUZ90DOXI7PPS7I4xPDZKD4axNI9rmKm/J1IUKTWKAtMZIT1Q895E/M/rJDq89FLKRaIJx9NFYcKgjuEkFNijkmDNRoYgLKn5K8QDJBHWJrqCCcGdP3mRNCtlt1o+v6sWa9ezOPLgAByBEnDBBaiBW1AHDYDBI3gGr+DNerJerHfrY9qas2Yz++APrM8flemXPw==</latexit>

p1

<latexit sha1_base64="HydGqKy2rHXaaqscUxpCjnoR1SA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPS9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gACGI2g</latexit>

p2

<latexit sha1_base64="jmSyfM6v4cFsNZH5gjBRO4JkOVc=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2A9oQ9lsN+3S3U3YnQil9C948aCIV/+QN/+NSZuDtj4YeLw3w8y8IJbCout+O4WNza3tneJuaW//4PCofHzStlFiGG+xSEamG1DLpdC8hQIl78aGUxVI3gkmd5nfeeLGikg/4jTmvqIjLULBKGZSPKiVBuWKW3UXIOvEy0kFcjQH5a/+MGKJ4hqZpNb2PDdGf0YNCib5vNRPLI8pm9AR76VUU8WtP1vcOicXqTIkYWTS0kgW6u+JGVXWTlWQdiqKY7vqZeJ/Xi/B8MafCR0nyDVbLgoTSTAi2eNkKAxnKKcpocyI9FbCxtRQhmk8WQje6svrpF2revXq1UO90rjN4yjCGZzDJXhwDQ24hya0gMEYnuEV3hzlvDjvzseyteDkM6fwB87nDzitjbU=</latexit>

p3

<latexit sha1_base64="ISChh3GSPfhT9OPq5EQolZY4GIw=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oseiF48V7Ae0oWy2m3bp7ibsToRS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEEth0XW/ncLa+sbmVnG7tLO7t39QPjxq2SgxjDdZJCPTCajlUmjeRIGSd2LDqQokbwfju8xvP3FjRaQfcRJzX9GhFqFgFDMp7l+W+uWKW3XnIKvEy0kFcjT65a/eIGKJ4hqZpNZ2PTdGf0oNCib5rNRLLI8pG9Mh76ZUU8WtP53fOiNnqTIgYWTS0kjm6u+JKVXWTlSQdiqKI7vsZeJ/XjfB8MafCh0nyDVbLAoTSTAi2eNkIAxnKCcpocyI9FbCRtRQhmk8WQje8surpHVR9WrVq4dapX6bx1GEEziFc/DgGupwDw1oAoMRPMMrvDnKeXHenY9Fa8HJZ47hD5zPHzoyjbY=</latexit>

n(�1,�2,�3) = �1n1 + �2n2 + �3n3

<latexit sha1_base64="Fa6sPRu40VHI7+IWi5tXvSf61a8=">AAACJXicbVDLSgMxFM34rPU16tJNsAiVSplpK7pQKLpxWcE+oB2GTJq2oZnMkGSEUvozbvwVNy4sIrjyV8w8Ftp64XJPzrmXm3u8kFGpLOvLWFldW9/YzG3lt3d29/bNg8OWDCKBSRMHLBAdD0nCKCdNRRUjnVAQ5HuMtL3xXay3n4iQNOCPahISx0dDTgcUI6Up17zmxV44oq59npRKWqpnNykLuc5SKmlcgSWYNuhHNe+aBatsJQGXgZ2BAsii4ZrzXj/AkU+4wgxJ2bWtUDlTJBTFjMzyvUiSEOExGpKuhhz5RDrT5MoZPNVMHw4CoZMrmLC/J6bIl3Lie7rTR2okF7WY/E/rRmpw5UwpDyNFOE4XDSIGVQBjy2CfCoIVm2iAsKD6rxCPkEBYaWNjE+zFk5dBq1K2a+WLh1qhfpvZkQPH4AQUgQ0uQR3cgwZoAgyewSt4B3PjxXgzPozPtHXFyGaOwJ8wvn8Aj1mhkA==</latexit>

Distance queries and closest points

• Smooth parametric surface

• Evaluation

• Normals

• Distance and closest point. Find surface point f(u,v) such that:

• Mesh
• Distance and closest point:

• Find closest triangle and then find closest point in triangle, and then finding point in triangle
• Use Kd-tree, AAB Tree, to find closest triangles

47

f(u, v)

<latexit sha1_base64="X596TQkd7oKDTksU2TWclkg3pwQ=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpRdqeix6MVjBfsB7VKyabaNzSZLki2Upf/BiwdFvPp/vPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3tr6xuZXfLuzs7u0fFA+PmlomitAGkVyqdoA15UzQhmGG03asKI4CTlvB6G7mt8ZUaSbFo5nE1I/wQLCQEWys1AzLycX4vFcsuRV3DrRKvIyUIEO9V/zq9iVJIioM4VjrjufGxk+xMoxwOi10E01jTEZ4QDuWChxR7afza6fozCp9FEplSxg0V39PpDjSehIFtjPCZqiXvZn4n9dJTHjjp0zEiaGCLBaFCUdGotnrqM8UJYZPLMFEMXsrIkOsMDE2oIINwVt+eZU0LytetXL1UC3VbrM48nACp1AGD66hBvdQhwYQeIJneIU3RzovzrvzsWjNOdnMMfyB8/kDrKmOjA==</latexit>

n(u, v) = fu(u, v)⇥ fv(u, v)

<latexit sha1_base64="pSFSEbztftehpTd/6Ui9CgURFcU=">AAACCnicbVDLSsNAFJ3UV62vqEs3o0WoICWRim6EohuXFewD2hAm00k7dDIJ8yiU0LUbf8WNC0Xc+gXu/BunaRZaPTBw7jn3cueeIGFUKsf5sgpLyyura8X10sbm1vaOvbvXkrEWmDRxzGLRCZAkjHLSVFQx0kkEQVHASDsY3cz89pgISWN+ryYJ8SI04DSkGCkj+fYhr+jT8Qm8gqGvM9pTNCIyDf1xVk59u+xUnQzwL3FzUgY5Gr792evHWEeEK8yQlF3XSZSXIqEoZmRa6mlJEoRHaEC6hnJk1nlpdsoUHhulD8NYmMcVzNSfEymKpJxEgemMkBrKRW8m/ud1tQovvZTyRCvC8XxRqBlUMZzlAvtUEKzYxBCEBTV/hXiIBMLKpFcyIbiLJ/8lrbOqW6ue39XK9es8jiI4AEegAlxwAergFjRAE2DwAJ7AC3i1Hq1n6816n7cWrHxmH/yC9fENtsGZCw==</latexit>

[q� f(u, v)]⇥ n(u, v) = 0

<latexit sha1_base64="7QnjohLgI9KSE1SaqeJSP2xwUDg=">AAACFnicbVDLSsNAFJ3UV62vqEs3g0WoYEsiFd0IRTcuK9gHtKFMppN26GQSZyaFEvIVbvwVNy4UcSvu/BsnbQRtPXDhcM693HuPGzIqlWV9Gbml5ZXVtfx6YWNza3vH3N1ryiASmDRwwALRdpEkjHLSUFQx0g4FQb7LSMsdXad+a0yEpAG/U5OQOD4acOpRjJSWema50/WRGrpefJ+UvVJ0Mj52YFdRn8j4x+FJMjUurZ5ZtCrWFHCR2Bkpggz1nvnZ7Qc48glXmCEpO7YVKidGQlHMSFLoRpKECI/QgHQ05UjvdeLpWwk80kofeoHQxRWcqr8nYuRLOfFd3ZleKue9VPzP60TKu3BiysNIEY5ni7yIQRXANCPYp4JgxSaaICyovhXiIRIIK51kQYdgz7+8SJqnFbtaObutFmtXWRx5cAAOQQnY4BzUwA2ogwbA4AE8gRfwajwaz8ab8T5rzRnZzD74A+PjG5KVnv4=</latexit>

Recall: Linear Interpolation (1D)

• Interpolate values using linear interpolation; in 1D:

• Can think of this as a linear combination of two functions:

• Why limit ourselves to linear basis functions?
• Can we get more interesting geometry with other bases?

48

Bernstein Basis

• Linear interpolation essentially uses 1st-order polynomials
• Provide more flexibility by using higher-order polynomials
• Instead of usual basis (1, x, x2, x3, ...), use Bernstein basis:

49

 CMU 15-462/662

Bernstein Basis
Linear interpolation essentially uses 1st-order polynomials
Provide more flexibility by using higher-order polynomials
Instead of usual basis (1, x, x2, x3, ...), use Bernstein basis:

“n choose k”

k=0,…,n

degree 0≤x≤1

1
2

1

1
2

1

Bézier Curves (Explicit)

• A Bézier curve is a curve expressed in the Bernstein basis:

• For n=1, just get a line segment!
• For n=3, get "cubic Bézier":
• Important features:
• interpolates endpoints
• tangent to end segments
• contained in convex hull (nice for rasterization)

50

Just keep going...?

• What if we want an even more interesting curve?
• High-degree Bernstein polynomials don't interpolate well:

51

Piecewise Bézier Curves (Explicit)

• Alternative idea: piece together many Bézier curves
• Widely-used technique (Illustrator, fonts, SVG, etc.)

52

 CMU 15-462/662

Piecewise Bézier Curves (Explicit)
Alternative idea: piece together many Bézier curves
Widely-used technique (Illustrator, fonts, SVG, etc.)

Formally, piecewise Bézier curve:
piecewise Bézier

single Bézier

• Formerly, piecewise Bézier curve:

 CMU 15-462/662

Piecewise Bézier Curves (Explicit)
Alternative idea: piece together many Bézier curves
Widely-used technique (Illustrator, fonts, SVG, etc.)

Formally, piecewise Bézier curve:
piecewise Bézier

single Bézier

Bézier Curves - tangent continuity

• To get "seamless" curves, need points and tangents to line up:

53

• Ok, but how?
• Each curve is cubic:
• Want endpoints of each segment to meet
• Want tangents at endpoints to meet
• Q: Could you do this with quadratic Bézier? Linear Bézier?

Tensor Product

• Can use a pair of curves to get a surface.
• Value at any point (u,v) given by the product of the curve f at u and a

curve g at v (tensor product).

54

 CMU 15-462/662

Tensor Product
Can use a pair of curves to get a surface
Value at any point (u,v) given by product of a curve f at u and
a curve g at v (sometimes called the “tensor product”):

u
v

Bézier Patches

Bézier patch is sum of (tensor) products of Bernstien bases.

55

 CMU 15-462/662

Bézier Patches
Bézier patch is sum of (tensor) products of Bernstein bases

1
2

1

1
2

1

Bézier Surface

• Just as we connected Bézier curves, can connect Bézier patches to get
a surface:

56

 CMU 15-462/662

Bézier Surface
Just as we connected Bézier curves, can connect Bézier patches
to get a surface:

Q: Can we always get tangent continuity?
 (Think: how many constraints? How many degrees of freedom?)

Very easy to draw: just dice each patch into regular (u,v) grid!• Very easy to draw: just dice each patch into regular (u,v) grid!
Q: Can we always get tangent continuity?
(Think: how many constraints? How many degrees of freedom?)

Rational B-Splines (Explicit)

• Bézier can't exactly represent conics-not even the circle!
• Solution: interpolate in homogeneous coordinates, then project back

to the plane:

57

NURBS Surface (Explicit)

• (N)on-(U)niform (R)ational (B)-(S)pline
• knots at arbitrary locations (non-uniform)
• expressed in homogeneous coordinates (rational)
• piecewise polynomial curve (B-Spline)

• Homogeneous coordinate w controls "strength" of a vertex:

58

 CMU 15-462/662

NURBS (Explicit)
(N)on-(U)niform (R)ational (B)-(S)pline
- knots at arbitrary locations (non-uniform)
- expressed in homogeneous coordinates (rational)
- piecewise polynomial curve (B-Spline)
 Homogeneous coordinate w controls “strength” of a vertex:

w=2.5

w=1
w=.25

NURBS Surface (Explicit)

• How do we go from curves to surfaces?
• Use tensor product of NURBS curves to get a patch:

• Multiple NURBS patches form a surface

• Pros: easy to evaluate, exact conics, high degree of continuity
• Cons: Hard to piece together patches / hard to edit (many DOFs)

59

 CMU 15-462/662

NURBS Surface (Explicit)
How do we go from curves to surfaces?
Use tensor product of NURBS curves to get a patch:

Multiple NURBS patches form a surface

Pros: easy to evaluate, exact conics, high degree of continuity
Cons: Hard to piece together patches / hard to edit (many DOFs)

patch

surface

 CMU 15-462/662

NURBS Surface (Explicit)
How do we go from curves to surfaces?
Use tensor product of NURBS curves to get a patch:

Multiple NURBS patches form a surface

Pros: easy to evaluate, exact conics, high degree of continuity
Cons: Hard to piece together patches / hard to edit (many DOFs)

patch

surface

Subdivision

• Alternative starting point for curves/surfaces: subdivision
• Start with "control curve"
• Repeatedly split, take weighted average to get new positions
• For careful choice of averaging rule, approaches nice limit curve
• Often exact same curve as well-known spline schemes!

60

 CMU 15-462/662

Subdivision
Alternative starting point for curves/surfaces: subdivision

Start with “control curve”

Repeatedly split, take weighted average to get new positions

For careful choice of averaging rule, approaches nice limit curve

- Often exact same curve as well-known spline schemes!

Q: Is subdivision an explicit or implicit representation?

Cashman & Fitzgibbon. What shapes are dolphins?

Subdivision Surfaces in Computer Vision

61

Subdivision Surfaces (Explicit)

• Start with coarse polygon mesh ("control cage")
• Subdivide each element
• Update vertices via local averaging
• Many possible rules:

• Catmull-Clark (quads)
• Loop (triangles)
• …

• Common issues:
• interpolating or approximating?
• continuity at vertices?

• Easier than splines for modeling; harder to evaluate pointwise
• Widely used in practice (2019 Academy Awards!)

62

 CMU 15-462/662

Subdivision Surfaces (Explicit)
Start with coarse polygon mesh (“control cage”)
Subdivide each element
Update vertices via local averaging
Many possible rules:
- Catmull-Clark (quads)
- Loop (triangles)
- ...
Common issues:
- interpolating or approximating?
- continuity at vertices?
Easier than splines for modeling; harder to evaluate pointwise
Widely used in practice (2019 Academy Awards!)

 CMU 15-462/662

Subdivision Surfaces (Explicit)
Start with coarse polygon mesh (“control cage”)
Subdivide each element
Update vertices via local averaging
Many possible rules:
- Catmull-Clark (quads)
- Loop (triangles)
- ...
Common issues:
- interpolating or approximating?
- continuity at vertices?
Easier than splines for modeling; harder to evaluate pointwise
Widely used in practice (2019 Academy Awards!)

Subdivision in Pixar (Pixar's "Geri's Game")

63 CMU 15-462/662

Subdivision in Action (Pixar’s “Geri’s Game”)

see: de Rose et al, “Subdivision Surfaces in Character Animation”

Slide credits and further reading

• Keenan Crane – Computer Graphics Lecture CMU 15-462/662.
Lecture 09:Introduction to Geometry.

64

 CMU 15-462/662

Subdivision in Action (Pixar’s “Geri’s Game”)

see: de Rose et al, “Subdivision Surfaces in Character Animation” 65

 CMU 15-462/662

Subdivision Surfaces (Explicit)
Start with coarse polygon mesh (“control cage”)
Subdivide each element
Update vertices via local averaging
Many possible rules:
- Catmull-Clark (quads)
- Loop (triangles)
- ...
Common issues:
- interpolating or approximating?
- continuity at vertices?
Easier than splines for modeling; harder to evaluate pointwise
Widely used in practice (2019 Academy Awards!)

66

 CMU 15-462/662

Subdivision
Alternative starting point for curves/surfaces: subdivision

Start with “control curve”

Repeatedly split, take weighted average to get new positions

For careful choice of averaging rule, approaches nice limit curve

- Often exact same curve as well-known spline schemes!

Q: Is subdivision an explicit or implicit representation?
67

 CMU 15-462/662

NURBS Surface (Explicit)
How do we go from curves to surfaces?
Use tensor product of NURBS curves to get a patch:

Multiple NURBS patches form a surface

Pros: easy to evaluate, exact conics, high degree of continuity
Cons: Hard to piece together patches / hard to edit (many DOFs)

patch

surface

68

 CMU 15-462/662

NURBS (Explicit)
(N)on-(U)niform (R)ational (B)-(S)pline
- knots at arbitrary locations (non-uniform)
- expressed in homogeneous coordinates (rational)
- piecewise polynomial curve (B-Spline)
 Homogeneous coordinate w controls “strength” of a vertex:

w=2.5

w=1
w=.25

69

70

 CMU 15-462/662

Bézier Surface
Just as we connected Bézier curves, can connect Bézier patches
to get a surface:

Q: Can we always get tangent continuity?
 (Think: how many constraints? How many degrees of freedom?)

Very easy to draw: just dice each patch into regular (u,v) grid!

71

 CMU 15-462/662

Bézier Patches
Bézier patch is sum of (tensor) products of Bernstein bases

1
2

1

1
2

1

72

 CMU 15-462/662

Tensor Product
Can use a pair of curves to get a surface
Value at any point (u,v) given by product of a curve f at u and
a curve g at v (sometimes called the “tensor product”):

u
v

73

74

 CMU 15-462/662

Piecewise Bézier Curves (Explicit)
Alternative idea: piece together many Bézier curves
Widely-used technique (Illustrator, fonts, SVG, etc.)

Formally, piecewise Bézier curve:
piecewise Bézier

single Bézier
75

