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Ingredients to build a Virtual Human
Building a human model

ØKinematic parameterization
• Rotation Matrices
• Euler Angles
• Quaternions
• Twists and Exponential maps
• Kinematic chains

ØSubject shape model
• Geometric primitives
• Detailed Body Scans
• Human Shape models 

Fitting model to observations

ØInference
• Observation likelihood
• Local optimization
• Particle Based optimization
• Directly regressing parameters
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Motivated from robotics:
The human motion can be expressed via a „kinematic chain“, a series of local rigid 
body motions (along the limbs).

Bregler et.al. CVPR-98

The model parameters to optimize, correspond to rigid 
body motions (RBM).

How to model RBM ?

Kinematic Chains
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Kinematic Parameterization

1) Pose configurations are represented with a minimum number of parameters

2) Singularities can be avoided during optimization

3) Easy computation of derivatives segment positions and orientations w.r.t
parameters

4) Human motion contrains such as articulated motion are naturally described

5) Simple rules for concatenating motions
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Informally, what is a rotation?

• It is useful to characterize a transformation by its invariances. 

• A rotation is a linear transformation which preserves angles and 
distances, and does not mirror the object
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Commutativity of Rotations – 2D
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Commutativity of Rotations – 3D

Try it at home – grab a bottle!
• Rotate 90o around Y, then Z, then X
• Rotate 90o around Z, then Y, then X
• Was there any difference?
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Commutativity of Rotations—3D
What about in 3D? 
Try it at home—grab a water bottle! 

- Rotate 90° around Y, then 90° around Z, 
then 90° around X 

- Rotate 90° around Z, then 90° around Y, 
then 90° around X 

- (Was there any di!erence?) X
Z

Y

CONCLUSION: bad things can happen if we’re not 
careful about the order in which we apply rotations!
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Representing rotations – 2D

• How to get a rotation matrix in 2D?
• Suppose we have a function S(θ), that for a given θ, gives me the 

point (x, y) around a circle.
• What's e1 rotated by θ?
• What's e2 rotated by θ?
• How about u := a.e1 + b.e2?

• What then must the matrix look like?
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Rotation Matrices

S B

The columns of a rotation matrix are the principal
axis of one frame expressed relative to another 10



2 Views of Rotations

Rotations can be interpreted either as

Coordinate 
transformation

Relative motion in 
time
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Rotation matrix drawbacks

• Need for 9 numbers

• 6 additional constrains to ensure that the matrix is orthonormal and 
belongs to SO(3)

• Suboptimal for numerical optimization

SO(3) := {R 2 R3⇥3 | RR
T = Id, det(R) = 1}

<latexit sha1_base64="FGZX/buUkAZWsei0km7sTl/MdlI="></latexit>
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Euler Angles

• One of the most popular parameterizations

• Rotation is encoded as the successive rotations about three principal
axis

• Only 3 parameters to encode a rotation

• Derivatives easy to compute
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Euler Angles
S
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Euler Angles: Confusion

• Careful: Euler angles are a typical source of confusion!

• When using Euler angles 2 things have to be specified:

1. Convention: X-Y-Z, Z-Y-X, Z-Y-Z …

2. Rotations about the static spatial frame or the moving body 
frame (intrinsic vs extrinsic rotation)
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Example of intrinsic rotations (z,x’,z’’)

https://en.wikipedia.org/wiki/Euler_angles
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Gimbal Lock

• When using Euler angles θx, θy, θz, may reach a configuration where 
there is no way to rotate around one of the three axes!   
• Recall rotation matrices around the three axes:
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Gimbal Lock
When using Euler angles θx, θy, θz, may reach α con"guration 
where there is no way to rotate around one of the three axes! 
Recall rotation matrices around three axes:

Product of these matrices represents rotation by Euler angles:

Consider special case θy = π/2 (so, cos θy =0, sin θy =1):

• The product of these represents rotation by the three Euler angles.
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Gimbal Lock

• Consider the special case where θy=𝜋/2 (so, cos(θy)=0, sin (θy)=1)
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Gimbal Lock
When using Euler angles θx, θy, θz, may reach α con"guration 
where there is no way to rotate around one of the three axes! 
Recall rotation matrices around three axes:

Product of these matrices represents rotation by Euler angles:

Consider special case θy = π/2 (so, cos θy =0, sin θy =1):
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Gimbal Lock
When using Euler angles θx, θy, θz, may reach α con"guration 
where there is no way to rotate around one of the three axes! 
Recall rotation matrices around three axes:

Product of these matrices represents rotation by Euler angles:

Consider special case θy = π/2 (so, cos θy =0, sin θy =1):

• We are left with a planar rotation. Notice it depends only of θx, θz. 
Not on θy.



Euler Angles: Drawbacks

• Gimbal lock: When two of the 
axis align one degree of freedom 
is lost!

• Parameterization is not unique

• Lots of conventions
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Complex Analysis - Motivation

• Natural way to encode geometric transformations in 2D.
• Simplifies code/notation/debugging/thinking.
• Moderate reduction in computational cost/ bandwidth/storage.
• Fluency in complex analysis can lead to deeper/novel solutions to 

problems… 

20



Imaginary units – Geometric description 
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Complex Numbers

• Complex numbers are then just two 
vectors
• Instead of e1, e2 use "1" and "⍳" to 

denote two bases.
• Otherwise behaves like a 2D space
• … except that we are also going to 

get a very useful new notation of 
the product between the two 
vectors. 
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Complex Arithmetic

• Same operations as before, plus one more
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• Complex multiplication:
• Angles add
• Magnitude multiplies



Complex product – Rectangular form (1, ⍳)
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Complex product – Polar form

• Perhaps most beautiful identity in maths.
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Complex Product—Polar Form
Perhaps most beautiful identity in math:

Specialization of Euler’s formula:

Can use to “implement” complex product:

(as with real exponentiation, exponents add)

Q: How does this operation di!er from our earlier, “fake” polar multiplication?

Leonhard Euler 
(1707–1783)

• Specialization of Euler's formula. 

• Can use to implement complex product.
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2D rotations: Matrices vs. Complex

Suppose we want to rotate a vector u by an angle θ, then by an angle ɸ. 
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2D Rotations: Matrices vs. Complex
Suppose we want to rotate a vector u by an angle θ, then by 
an angle ϕ.

REAL / RECTANGULAR COMPLEX / POLAR
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Quaternions generalize complex numbers

• TLDR: Kinda like complex numbers but for 3D rotations
• Weird situation: can't do 3D rotations w/ only 3 components!

 CMU 15-462/662

(Not Hamilton)

Quaternions
TLDR: Kind of like complex numbers but for 3D rotations 
Weird situation: can’t do 3D rotations w/ only 3 components!

William Rowan Hamilton 
(1805-1865)
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Quaternions

• A quaternion has 4 components:

• They generalize complex numbers

with additional properties:

• Unit length quaternions can be used to carry out rotations. The set they 
form is called 
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Quaternions

• Quaternions can also be interpreted as a scalar plus a 3-vector

• Where
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Quaternions

• Rotations can be carried away directly in parameter space via the 
quaternion product:
• Concatenation of rotations:

• If we want to rotate a vector

where is the quat conjugate.
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Quaternions are ideal for interpolation

• Interpolating Euler angles can yield strange-looking paths, non-
uniform rotation speed, …
• Simple solution with quaternions: "SLERP" (spherical linear 

interpolation):
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Interpolating Rotations
Suppose we want to smoothly interpolate between two 
rotations (e.g., orientations of an airplane) 
Interpolating Euler angles can yield strange-looking paths, 
non-uniform rotation speed, … 
Simple solution* w/ quaternions: “SLERP” (spherical linear 
interpolation):

*Shoemake 1985, “Animating Rotation with Quaternion Curves”
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Quaternions

Quaternions have no singularities

Derivatives exist and are linearly independent

Quaternion product allows to perform rotations

Good for interpolation

But all this comes at the expense of using 4 numbers instead of 3

Enforce quadratic constraint
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Axis-angle

For human motion modeling it is often needed to
specify the axis of rotation of a joint

Any rotation about the origin can be expressed in 
terms of the axis of rotation and the angle 
of rotation with the exponential map
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Lie Groups / Lie Algebras

Definition: A group is an n-dimensional Lie-group, if the set of its 
elements can be represented as a continuously differentiable manifold 
of dimension n, on which the group product and inverse are 
continuously differentiable functions as well
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Axis-angle

• Given a vector the skew symetric matrix is

• It is the matrix form of the cross-product: 

You will also find 
it as
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Exponential map

• The exponential map recovers the rotation matrix from the axis-angle 
representation (Lie-algebra)
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Exponential map

?
Proof: exponential map
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Exponential map

Proof: exponential map
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Exponential map

Proof: exponential map
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Exponential map

Proof: exponential map

If we rotate θ units of time 
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Exponential map

Exploiting the properties of skew symetric matrices
Rodriguez formula:

Closed form!
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Twists

• What about translation ? 
• The twist coordinates are defined as

• And the twist is defined as
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Exponential map

• The rigid body motion can be computed in closed form as well

• From the following formula
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Which representation should I use?

Number of
parameters

Singularities Human 
constraints

Concatenate
motion

Optimization
(derivatives)

Twists Quaternions Twists Quaternions Twists

Euler Angles Twists Quaternions Twists Euler Angles

Quaternions Euler Angles Euler Angles Euler Angles Quaternions
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Ingredients to build a Virtual Human
Building a human model

ØKinematic parameterization
• Rotation Matrices
• Euler Angles
• Quaternions
• Twists and Exponential maps
• Kinematic chains

ØSubject shape model
• Geometric primitives
• Detailed Body Scans
• Human Shape models 

Fitting model to observations

ØInference
• Observation likelihood
• Local optimization
• Particle Based optimization
• Directly regressing parameters
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Articulation

S

B

In a rest position we have
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Articulation

S

B
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Articulation

S

B
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Articulation

S

The coordinates of the point in the spatial frame

B
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Product of exponentials

• is the mapping from coordinate B to coordiante S

• BUT                    IS NOT the mapping from segment i+1 to segment i.

• Think of simply as the relative motion of that joint.
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Inverse Kinematics

Supose we want to find the angles to reach a specific goal

£Thatisatest
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Inverse Kinematics

Supose we want to find the angles to reach a specific goal

£Thatisatest

• The problem is non-linear

• Linearize with the articulated
Jacobian
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Articulated Jacobian

The Jacobian using twists is extremely simple and easy to compute

1) Every column corresponds to the contribution of i-th joint to the
end-effector motion

2) Maps an increment of joint angles to the end-effector twist
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Articulated Jacobian

Intuition: Linear combination of twists
B
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Articulated Jacobian

Intuition: Linear combination of twists
B
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Articulated Jacobian

Intuition: Linear combination of twists
B
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Pose Parameters

Pose parameters: root + joint angles
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Pose Jacobian

Maps increments in the pose parameters to increments in end-effector
position

6 columns of
Root

N columns for one
per joint 58



In SMPL (de-facto body model)

In SMPL rotations are local, from child to parent

C
B

✓b! = log(RAB)
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✓b! = log(RBC)
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In SMPL Twists are in the 
coordinates of the parent joint!
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Slide credits and further reading

• Keenan Crane – Computer Graphics (slides on quaternions). CMU 
computer graphics lecture

• Pons-Moll & Rosehnan – ICCV’2011 Tutorial on Model Based Pose 
Estimation
• Book chapter: model based human pose estimation available on pdf on 

my website.

• A Mathematical Introduction to Robotic Manipulation
• excellent rigorous treatment of twists and exponential maps for 

articulated bodies
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https://virtualhumans.mpi-inf.mpg.de/papers/ponsmollModelBased/ponsmollModelBased.pdf
http://www.cse.lehigh.edu/~trink/Courses/RoboticsII/reading/murray-li-sastry-94-complete.pdf


Slides below are originals for heavy editing



Ingredients to build a Virtual Human
1) Kinematic parameterization

- Rotation Matrices
- Euler Angles
- Quaternions
- Twists and Exponential maps
- Kinematic chains

2) Subject model
- Geometric primitives
- Detailed Body Scans
- Human Shape models

3) Inference
- Observation likelihood
- Local optimization
- Particle Based optimization
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Commutativity of Rotations—3D
What about in 3D? 
Try it at home—grab a water bottle! 

- Rotate 90° around Y, then 90° around Z, 
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careful about the order in which we apply rotations!
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Gimbal Lock
When using Euler angles θx, θy, θz, may reach α con"guration 
where there is no way to rotate around one of the three axes! 
Recall rotation matrices around three axes:

Product of these matrices represents rotation by Euler angles:

Consider special case θy = π/2 (so, cos θy =0, sin θy =1):



Product of exponentials
Product of exponentials formula

is the mapping from coordinate B to
coordiante S

BUT                  IS NOT the mapping from segment
i+1 to segment i.

Think of simply as the relative motion
of that joint



Overview
1) Kinematic parameterization

- Rotation Matrices
- Euler Angles
- Quaternions
- Twists and Exponential maps
- Kinematic chains

2) Subject model
- Geometric primitives
- Detailed Body Scans
- Human Shape models

3) Inference
- Observation likelihood
- Local optimization
- Particle Based optimization











Quaternions are ideal for interpolation
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Interpolating Rotations
Suppose we want to smoothly interpolate between two 
rotations (e.g., orientations of an airplane) 
Interpolating Euler angles can yield strange-looking paths, 
non-uniform rotation speed, … 
Simple solution* w/ quaternions: “SLERP” (spherical linear 
interpolation):

*Shoemake 1985, “Animating Rotation with Quaternion Curves”



Quaternions: where they come from



Quaternions
• Rotations can be carried away directly in parameter
space via the quaternion product:

- Concatenation of rotations:

- If we want to rotate a vector

where is the quat conjugate



Quaternions: where they come from
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2D Rotations: Matrices vs. Complex
Suppose we want to rotate a vector u by an angle θ, then by 
an angle ϕ.

REAL / RECTANGULAR COMPLEX / POLAR



Quaternions: where they come from
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Complex Product—Polar Form
Perhaps most beautiful identity in math:

Specialization of Euler’s formula:

Can use to “implement” complex product:

(as with real exponentiation, exponents add)

Q: How does this operation di!er from our earlier, “fake” polar multiplication?

Leonhard Euler 
(1707–1783)


