Virtual Humans – Winter 23/24

Lecture 2_2 – Rotations and Kinematic chains

Prof. Dr.-Ing. Gerard Pons-Moll
University of Tübingen / MPI-Informatics
Ingredients to build a Virtual Human

Building a human model

- Kinematic parameterization
 - Rotation Matrices
 - Euler Angles
 - Quaternions
 - Twists and Exponential maps
 - Kinematic chains

- Subject shape model
 - Geometric primitives
 - Detailed Body Scans
 - Human Shape models

Fitting model to observations

- Inference
 - Observation likelihood
 - Local optimization
 - Particle Based optimization
 - Directly regressing parameters
Motivated from robotics:
The human motion can be expressed via a "kinematic chain", a series of local rigid body motions (along the limbs).

The model parameters to optimize, correspond to rigid body motions (RBM).

How to model RBM?
Kinematic Parameterization

1) Pose configurations are represented with a minimum number of parameters

2) **Singularities** can be avoided during optimization

3) Easy computation of derivatives segment positions and orientations w.r.t parameters

4) Human **motion contrains** such as articulated motion are naturally described

5) Simple rules for **concatenating** motions
Ingredients to build a Virtual Human

Building a human model

- Kinematic parameterization
 - Rotation Matrices
 - Euler Angles
 - Quaternions
 - Twists and Exponential maps
 - Kinematic chains

- Subject shape model
 - Geometric primitives
 - Detailed Body Scans
 - Human Shape models

Fitting model to observations

- Inference
 - Observation likelihood
 - Local optimization
 - Particle Based optimization
 - Directly regressing parameters
Informally, what is a rotation?

- It is useful to characterize a transformation by its invariances.

- A rotation is a linear transformation which preserves angles and distances, and does not mirror the object.
Commutativity of Rotations – 2D
Commutativity of Rotations – 3D

Try it at home – grab a bottle!

• Rotate 90° around Y, then Z, then X
• Rotate 90° around Z, then Y, then X
• Was there any difference?

CONCLUSION: bad things can happen if we’re not careful about the order in which we apply rotations!
Representing rotations – 2D

• How to get a rotation matrix in 2D?
• Suppose we have a function $S(\theta)$, that for a given θ, gives me the point (x, y) around a circle.
• What's e_1 rotated by θ? $\tilde{e}_1 = S(\theta)$
• What's e_2 rotated by θ? $\tilde{e}_2 = S(\theta + \pi/2)$
• How about $u := a.e_1 + b.e_2$?

 $$u := aS(\theta) + bS(\theta + \pi/2)$$
• What then must the matrix look like?

$$\begin{bmatrix}
 S(\theta) & S(\theta + \pi/2)
\end{bmatrix} = \begin{bmatrix}
 \cos(\theta) & \cos(\theta + \pi/2) \\
 \sin(\theta) & \sin(\theta + \pi/2)
\end{bmatrix} = \begin{bmatrix}
 \cos(\theta) & -\sin(\theta) \\
 \sin(\theta) & \cos(\theta)
\end{bmatrix}$$
The columns of a rotation matrix are the principal axis of one frame expressed relative to another.
2 Views of Rotations

Rotations can be interpreted either as

Coordinate transformation

Relative motion in time
Rotation matrix drawbacks

• **Need for 9 numbers**

• **6 additional constrains** to ensure that the matrix is orthonormal and belongs to $\text{SO}(3)$

\[
\text{SO}(3) := \{ R \in \mathbb{R}^{3 \times 3} \mid RR^T = Id, \det(R) = 1 \}
\]

• Suboptimal for numerical optimization
Euler Angles

• One of the most popular parameterizations

• Rotation is encoded as the successive rotations about three principal axis

• Only 3 parameters to encode a rotation

• Derivatives easy to compute
Euler Angles

\[
\begin{align*}
\mathbf{R}(\alpha, \beta, \gamma) &= \mathbf{R}_x(\alpha) \mathbf{R}_y(\beta) \mathbf{R}_z(\gamma) \\
\mathbf{R}_x &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{bmatrix} \\
\mathbf{R}_y &= \begin{bmatrix} \cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta \end{bmatrix} \\
\mathbf{R}_z &= \begin{bmatrix} \cos(\gamma) & \sin(\gamma) & 0 \\ -\sin(\gamma) & \cos(\gamma) & 0 \\ 0 & 0 & 1 \end{bmatrix}
\end{align*}
\]
Euler Angles: Confusion

• Careful: Euler angles are a typical source of confusion!

• When using Euler angles 2 things have to be specified:

 2. Rotations about the static spatial frame or the moving body frame (intrinsic vs extrinsic rotation)
Example of intrinsic rotations \((z,x',z'')\)

https://en.wikipedia.org/wiki/Euler_angles
Gimbal Lock

• When using Euler angles $\theta_x, \theta_y, \theta_z$, may reach a configuration where there is no way to rotate around one of the three axes!

• Recall rotation matrices around the three axes:

$$R_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_x & -\sin \theta_x \\ 0 & \sin \theta_x & \cos \theta_x \end{bmatrix} \quad R_y = \begin{bmatrix} \cos \theta_y & 0 & \sin \theta_y \\ 0 & 1 & 0 \\ -\sin \theta_y & 0 & \cos \theta_y \end{bmatrix} \quad R_z = \begin{bmatrix} \cos \theta_z & -\sin \theta_z & 0 \\ \sin \theta_z & \cos \theta_z & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• The product of these represents rotation by the three Euler angles.

$$R_xR_yR_z = \begin{bmatrix} \cos \theta_y \cos \theta_z & \cos \theta_y \sin \theta_z & \sin \theta_y \\ \cos \theta_z \sin \theta_x \sin \theta_y + \cos \theta_x \sin \theta_z & \cos \theta_x \cos \theta_z - \sin \theta_x \sin \theta_y \sin \theta_z & -\cos \theta_y \sin \theta_x \\ -\cos \theta_x \cos \theta_z \sin \theta_y + \sin \theta_x \sin \theta_z & \cos \theta_z \sin \theta_x + \cos \theta_x \sin \theta_y \sin \theta_z & \cos \theta_y \sin \theta_x \end{bmatrix}$$
Gimbal Lock

• Consider the special case where $\theta_y = \pi/2$ (so, $\cos(\theta_y) = 0$, $\sin(\theta_y) = 1$)

\[
R_x R_y R_z = \begin{bmatrix}
\cos\theta_y \cos\theta_z & -\cos\theta_y \sin\theta_z & \sin\theta_y \\
\cos\theta_z \sin\theta_x \sin\theta_y + \cos\theta_x \sin\theta_z & \cos\theta_x \cos\theta_z - \sin\theta_x \sin\theta_y \sin\theta_z & -\cos\theta_y \sin\theta_x \\
-\cos\theta_x \cos\theta_z \sin\theta_y + \sin\theta_x \sin\theta_z & \cos\theta_z \sin\theta_x + \cos\theta_x \sin\theta_y \sin\theta_z & \cos\theta_x \cos\theta_y
\end{bmatrix}
\]

\[
\implies \begin{bmatrix}
0 & 0 & 1 \\
\cos\theta_z \sin\theta_x + \cos\theta_x \sin\theta_z & \cos\theta_x \cos\theta_z - \sin\theta_x \sin\theta_z & 0 \\
-\cos\theta_x \cos\theta_z + \sin\theta_x \sin\theta_z & \cos\theta_z \sin\theta_x + \cos\theta_x \sin\theta_z & 0
\end{bmatrix}
\]

• We are left with a planar rotation. Notice it depends only of θ_x, θ_z. Not on θ_y.
Euler Angles: Drawbacks

• Gimbal lock: When two of the axis align one degree of freedom is lost!

• Parameterization is not unique

• Lots of conventions
Complex Analysis - Motivation

• Natural way to encode geometric transformations in 2D.
• Simplifies code/notation/debugging/thinking.
• Moderate reduction in computational cost/ bandwidth/storage.
• Fluency in complex analysis can lead to deeper/novel solutions to problems...

Truly: no good reason to use 2D vectors instead of complex numbers…
Imaginary units – Geometric description

Imaginary unit is just a quarter-turn in the counter-clockwise direction.
Complex Numbers

- Complex numbers are then just two vectors.
- Instead of e_1, e_2 use "1" and "i" to denote two bases.
- Otherwise behaves like a 2D space.
- ... except that we are also going to get a very useful new notation of the *product* between the two vectors.
Complex Arithmetic

• Same operations as before, plus one more

- Complex multiplication:
 • Angles add
 • Magnitude multiplies

\[z_1 = (r_1, \theta_1) \]
\[z_2 = (r_2, \theta_2) \]
\[z_1 z_2 = (r_1 r_2, \theta_1 + \theta_2) \]

Not quite how it really works, but basic idea is right.
Complex product – Rectangular form \((1, \imath)\)

\[
\begin{align*}
z_1 &= (a + bi) \\
z_2 &= (c + di) \\
z_1z_2 &= ac + ad \imath + bc \imath + bd \imath^2 &= (ac - bd) + (ad + bc) \imath.
\end{align*}
\]

- **We used a lot of “rules” here. Can you justify them geometrically?**
- **Does this product agree with our geometric description (last slide)?**
Complex product – Polar form

• Perhaps most beautiful identity in maths.
 \[e^{i\pi} + 1 = 0 \]

• Specialization of Euler's formula.
 \[e^{i\theta} = \cos(\theta) + i \sin(\theta) \]

• Can use to implement complex product.
 \[z_1 = ae^{i\theta}, \quad z_2 = be^{i\phi} \]
 \[z_1z_2 = abe^{i(\theta+\phi)} \]

(As with real exponentiation, exponents add)
2D rotations: Matrices vs. Complex

Suppose we want to rotate a vector \(u \) by an angle \(\theta \), then by an angle \(\phi \).

<table>
<thead>
<tr>
<th>REAL / RECTANGULAR</th>
<th>COMPLEX / POLAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u = (x, y))</td>
<td>(u = re^{i\alpha})</td>
</tr>
<tr>
<td>(A = \begin{bmatrix} \cos \theta & -\sin \theta \ \sin \theta & \cos \theta \end{bmatrix})</td>
<td>(a = e^{i\theta})</td>
</tr>
<tr>
<td>(B = \begin{bmatrix} \cos \phi & -\sin \phi \ \sin \phi & \cos \phi \end{bmatrix})</td>
<td>(b = e^{i\phi})</td>
</tr>
<tr>
<td>(Au = \begin{bmatrix} x \cos \theta - y \sin \theta \ x \sin \theta + y \cos \theta \end{bmatrix})</td>
<td>(abu = re^{i(\alpha + \theta + \phi)})</td>
</tr>
<tr>
<td>(BAu = \begin{bmatrix} (x \cos \theta - y \sin \theta) \cos \phi - (x \sin \theta + y \cos \theta) \sin \phi \ (x \cos \theta - y \sin \theta) \sin \phi + (x \sin \theta + y \cos \theta) \cos \phi \end{bmatrix})</td>
<td></td>
</tr>
</tbody>
</table>
Quaternions generalize complex numbers

- TLDR: Kinda like complex numbers but for 3D rotations
- Weird situation: can't do 3D rotations w/ only 3 components!

William Rowan Hamilton (1805-1865)
Quaternions

- A quaternion has 4 components:
 \[\mathbf{q} = [q_w \ q_x \ q_y \ q_z]^T \]

- They generalize complex numbers
 \[\mathbf{q} = q_w + q_x \mathbf{i} + q_y \mathbf{j} + q_z \mathbf{k} \]
 with additional properties: \(\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i} \cdot \mathbf{j} \cdot \mathbf{k} = -1 \)

- Unit length quaternions can be used to carry out rotations. The set they form is called \(S^3 \)
Quaternions

- Quaternions can also be interpreted as a **scalar** plus a **3-vector**

\[q = [q_w \ v]^T \]

- Where

\[q_w = \cos \frac{\theta}{2} \]
\[v = \sin \frac{\theta}{2} \omega \]

- Much easier to remember (and manipulate) than matrix!

\[
\begin{bmatrix}
\cos \theta + u_x^2 (1 - \cos \theta) & u_x u_y (1 - \cos \theta) - u_z \sin \theta & u_x u_z (1 - \cos \theta) + u_y \sin \theta \\
u_y u_x (1 - \cos \theta) + u_z \sin \theta & \cos \theta + u_y^2 (1 - \cos \theta) & u_y u_z (1 - \cos \theta) - u_x \sin \theta \\
u_z u_x (1 - \cos \theta) - u_y \sin \theta & u_z u_y (1 - \cos \theta) + u_x \sin \theta & \cos \theta + u_z^2 (1 - \cos \theta)
\end{bmatrix}
\]
Quaternions

• Rotations can be carried away directly in parameter space via the quaternion product:
 • Concatenation of rotations:
 \[q_1 \circ q_2 = (q_{w,1}q_{w,2} - v_1 \cdot v_2, q_{w,1}v_2 + q_{w,2}v_1 + v_1 \times v_2) \]

• If we want to rotate a vector \(\mathbf{a} \)
 \[\mathbf{a}' = \text{Rotate}(\mathbf{a}) = q \circ \tilde{a} \circ \bar{q} \]

where \(\bar{q} = (q_w - \mathbf{v}) \) is the quat conjugate.
Quaternions are ideal for interpolation

- Interpolating Euler angles can yield strange-looking paths, non-uniform rotation speed, ...
- Simple solution with quaternions: "SLERP" (spherical linear interpolation):

$$\text{Slerp}(q_0, q_1, t) = q_0(q_0^{-1}q_1)^t, \quad t \in [0, 1]$$
Quaternions

✔ Quaternions have no singularities
✔ Derivatives exist and are linearly independent
✔ Quaternion product allows to perform rotations
✔ Good for interpolation
❌ But all this comes at the expense of using 4 numbers instead of 3
❌ Enforce quadratic constraint $\|q\|_2 = 1$
Axis-angle

For human motion modeling it is often needed to specify the axis of rotation of a joint.

Any rotation about the origin can be expressed in terms of the axis of rotation $\omega \in \mathbb{R}^3$ and the angle of rotation θ with the exponential map:

$$R = \exp(\theta \hat{\omega})$$
Definition: A group is an n-dimensional *Lie-group*, if the set of its elements can be represented as a continuously differentiable manifold of dimension n, on which the group product and inverse are continuously differentiable functions as well.
Axis-angle

- Given a vector $\boldsymbol{\omega}$ the **skew symmetric** matrix is

\[
\theta \hat{\boldsymbol{\omega}} = \theta \begin{bmatrix}
 0 & -\omega_3 & \omega_2 \\
 \omega_3 & 0 & -\omega_1 \\
 -\omega_2 & \omega_1 & 0
\end{bmatrix}
\]

You will also find it as $\boldsymbol{\omega} \times$

- It is the matrix form of the cross-product:

\[
\boldsymbol{\omega} \times \boldsymbol{p} = \hat{\boldsymbol{\omega}} \boldsymbol{p}
\]
Exponential map

- The exponential map recovers the rotation matrix from the axis-angle representation (Lie-algebra)

\[\mathbf{R}(\theta, \omega) = \exp(\theta \hat{\omega}) \]
Exponential map

Proof: exponential map

\[\dot{p}(t) = ? \]
Exponential map

Proof: exponential map

\[\dot{p}(t) = \omega \times p(t) = \hat{\omega} p(t) \]
Exponential map

Proof: exponential map

\[\dot{p}(t) = \omega \times p(t) = \hat{\omega} p(t) \]

\[p(t) = \exp(\hat{\omega}t)p(0) \]
Exponential map

Proof: exponential map

\[
\dot{p}(t) = \omega \times p(t) = \hat{\omega} p(t)
\]

\[
p(t) = \exp(\hat{\omega}t) p(0)
\]

If we rotate \(\theta \) units of time

\[
R(\theta, \omega) = \exp(\theta \hat{\omega})
\]
Exponential map

\[\exp(\theta \hat{\omega}) = e^{\theta \hat{\omega}} = I + \theta \hat{\omega} + \frac{\theta^2}{2!} \hat{\omega}^2 + \frac{\theta^3}{3!} \hat{\omega}^3 + \ldots \]

Exploiting the properties of skew symmetric matrices

Rodriguez formula:

\[\exp(\theta \hat{\omega}) = I + \hat{\omega} \sin(\theta) + \hat{\omega}^2 (1 - \cos(\theta)) \]

Closed form!
Twists

• What about translation?
• The **twist coordinates** are defined as

\[
\theta \xi = \theta (v_1, v_2, v_3, \omega_1, \omega_2, \omega_3)
\]

• And the **twist** is defined as

\[
[\theta \xi]^\wedge = \theta \hat{\xi} = \theta \left[\begin{array}{cccc}
0 & -\omega_3 & \omega_2 & v_1 \\
\omega_3 & 0 & -\omega_1 & v_2 \\
-\omega_2 & \omega_1 & 0 & v_3 \\
0 & 0 & 0 & 0 \\
\end{array} \right]
\]

\[
\dot{\mathbf{p}} = \hat{\xi} \mathbf{p}
\]
Exponential map

• The rigid body motion can be computed in closed form as well

\[
G(\theta, \omega) = \begin{bmatrix}
R_{3 \times 3} & t_{3 \times 1} \\
0_{1 \times 3} & 1
\end{bmatrix} = \exp(\theta \hat{\xi})
\]

• From the following formula

\[
\exp(\theta \hat{\xi}) = \begin{bmatrix}
\exp(\theta \hat{\omega}) (I - \exp(\theta \hat{\omega})) (\omega \times v + \omega \omega^T v \theta) \\
0_{1 \times 3} & 1
\end{bmatrix}
\]
Which representation should I use?

<table>
<thead>
<tr>
<th>Number of parameters</th>
<th>Singularities</th>
<th>Human constraints</th>
<th>Concatenate motion</th>
<th>Optimization (derivatives)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twists</td>
<td>Quaternions</td>
<td>Twists</td>
<td>Quaternions</td>
<td>Twists</td>
</tr>
<tr>
<td>Euler Angles</td>
<td>Twists</td>
<td>Quaternions</td>
<td>Twists</td>
<td>Euler Angles</td>
</tr>
<tr>
<td>Quaternions</td>
<td>Euler Angles</td>
<td>Euler Angles</td>
<td>Euler Angles</td>
<td>Quaternions</td>
</tr>
</tbody>
</table>
Ingredients to build a Virtual Human

Building a human model

- Kinematic parameterization
 - Rotation Matrices
 - Euler Angles
 - Quaternions
 - Twists and Exponential maps
 - Kinematic chains

- Subject shape model
 - Geometric primitives
 - Detailed Body Scans
 - Human Shape models

Fitting model to observations

- Inference
 - Observation likelihood
 - Local optimization
 - Particle Based optimization
 - Directly regressing parameters
Articulation

In a rest position we have

$$p_s(0) = G_{sb} p_b$$
Articulation
Articulation
Articulation

The coordinates of the point in the spatial frame

\[\tilde{\mathbf{p}}_s = G_{sb}(\theta_1, \theta_2) = e^{\tilde{\xi}_1 \theta_1} e^{\tilde{\xi}_2 \theta_2} G_{sb}(0) \tilde{\mathbf{p}}_b \]
Product of exponentials

$G_{sb}(\Theta) = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} \ldots e^{\hat{\xi}_n \theta_n} G_{sb}(0)$

- $G_{sb}(\Theta)$ is the mapping from coordinate B to coordinate S

- BUT $\exp(\theta_i \hat{\xi}_i)$ IS NOT the mapping from segment $i+1$ to segment i.

- Think of $\exp(\theta_i \hat{\xi}_i)$ simply as the relative motion of that joint.
Inverse Kinematics

Supose we want to find the angles to reach a specific goal
Inverse Kinematics

Suppose we want to find the angles to reach a specific goal

\[\begin{aligned} \arg \min_{\theta_1 \ldots \theta_n} & \| \exp(\theta_1 \hat{\xi}_1) \ldots \exp(\theta_n \hat{\xi}_n) X_A - X_B \|^2 \\ \end{aligned} \]

- The problem is non-linear

- Linearize with the articulated Jacobian
Articulated Jacobian

The **Jacobian** using twists is extremely simple and easy to compute

\[J_{\Theta} = \begin{bmatrix} \xi_1 & \xi'_2 & \ldots & \xi'_n \end{bmatrix} \]

1) Every column corresponds to the contribution of i-th joint to the end-effector motion

2) Maps an increment of joint angles to the end-effector twist

\[J_{\Theta} \Delta \Theta = \xi_T \]
Articulated Jacobian

Intuition: Linear combination of twists

\[\Delta \tilde{p}_s = [J_\Theta \cdot \Delta \Theta] \hat{\tilde{p}}_s = [\xi_1 \Delta \theta_1 + \xi_2 \Delta \theta_2 + \ldots + \xi_n \Delta \theta_n] \hat{\tilde{p}}_s \]
Articulated Jacobian

Intuition: Linear combination of twists

\[\Delta \bar{p}_s = [J_\Theta \cdot \Delta \Theta]^\wedge \bar{p}_s = [\xi_1 \Delta \theta_1 + \left(\xi_2 \Delta \theta_2 \right) + \ldots + \left(\xi_m \Delta \theta_m \right)]^\wedge \bar{p}_s \]
Articulated Jacobian

Intuition: Linear combination of twists

\[\Delta \vec{p}_s = [J_{\Theta} \cdot \Delta \Theta]^\wedge \vec{p}_s = [\xi_1 \Delta \theta_1 - \xi_2' \Delta \theta_2 + \ldots + \xi_n' \Delta \theta_n]^\wedge \vec{p}_s \]
Pose Parameters

Pose parameters: root + joint angles

\[\mathbf{x}_t = (\xi, \theta_1 \ldots \theta_n) \]
Pose Jacobian

Maps increments in the pose parameters to increments in end-effector position

\[J_x : \Delta x \mapsto \Delta p_s \]

\[
J_x(p_s) = \begin{bmatrix}
I_{3\times3} & -p_s^\wedge \\
\xi_1 \bar{p}_s & \xi_2 \bar{p}_s & \cdots & \xi_n \bar{p}_s
\end{bmatrix}
\]

6 columns of Root
N columns for one per joint
In SMPL (de-facto body model)

In SMPL rotations are local, from child to parent

\[\theta \hat{\omega} = \log(R^{AB}) \]

\[\theta \hat{\omega} = \log(R^{BC}) \]

In SMPL Twists are in the coordinates of the parent joint!
Slide credits and further reading

• Keenan Crane – Computer Graphics (slides on quaternions). CMU computer graphics lecture

• Pons-Moll & Rosehnan – ICCV’2011 Tutorial on Model Based Pose Estimation
 • Book chapter: model based human pose estimation available on pdf on my website.

• A Mathematical Introduction to Robotic Manipulation
 • excellent rigorous treatment of twists and exponential maps for articulated bodies
Slides below are originals for heavy editing
Ingredients to build a Virtual Human

1) **Kinematic parameterization**
 - Rotation Matrices
 - Euler Angles
 - Quaternions
 - Twists and Exponential maps
 - Kinematic chains

2) **Subject model**
 - Geometric primitives
 - Detailed Body Scans
 - Human Shape models

3) **Inference**
 - Observation likelihood
 - Local optimization
 - Particle Based optimization
Ingredients to build a Virtual Human

1) **Kinematic parameterization**
 - Rotation Matrices
 - Euler Angles
 - Quaternions
 - Twists and Exponential maps
 - Kinematic chains

2) **Subject model**
 - Geometric primitives
 - Detailed Body Scans
 - Human Shape models

3) **Inference**
 - Observation likelihood
 - Local optimization
 - Particle Based optimization
Commutativity of Rotations—2D

- In 2D, order of rotations doesn’t matter:
Commutativity of Rotations—3D

■ What about in 3D?
■ Try it at home—grab a water bottle!
 - Rotate 90° around Y, then 90° around Z, then 90° around X
 - Rotate 90° around Z, then 90° around Y, then 90° around X
 - (Was there any difference?)

CONCLUSION: bad things can happen if we’re not careful about the order in which we apply rotations!
Representing Rotations—2D

- First things first: how do we get a rotation matrix in 2D? (Don’t just regurgitate the formula!)
- Suppose I have a function $S(\theta)$ that for a given angle θ gives me the point (x,y) around a circle (CCW).
 - Right now, I do not care how this function is expressed!*
- What’s e_1 rotated by θ?
- What’s e_2 rotated by θ?
- How about $u := ae_1 + be_2$?

What then must the matrix look like?

*I.e., I don’t yet care about sines and cosines and so forth.
Gimbal Lock

- When using Euler angles $\theta_x, \theta_y, \theta_z$, may reach a configuration where there is no way to rotate around one of the three axes!

- Recall rotation matrices around three axes:

$$ R_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_x & -\sin \theta_x \\ 0 & \sin \theta_x & \cos \theta_x \end{bmatrix} \quad R_y = \begin{bmatrix} \cos \theta_y & 0 & \sin \theta_y \\ 0 & 1 & 0 \\ -\sin \theta_y & 0 & \cos \theta_y \end{bmatrix} \quad R_z = \begin{bmatrix} \cos \theta_z & -\sin \theta_z & 0 \\ \sin \theta_z & \cos \theta_z & 0 \\ 0 & 0 & 1 \end{bmatrix} $$

- Product of these matrices represents rotation by Euler angles:

$$ R_x R_y R_z = \begin{bmatrix} \cos \theta_y \cos \theta_z \\ \cos \theta_z \sin \theta_x \sin \theta_y + \cos \theta_y \sin \theta_z \\ -\cos \theta_x \cos \theta_z \sin \theta_y + \sin \theta_x \sin \theta_z \\ \cos \theta_x \sin \theta_y + \cos \theta_y \sin \theta_z \\ \cos \theta_z \cos \theta_x \sin \theta_y + \sin \theta_x \sin \theta_z \\ -\cos \theta_x \cos \theta_z + \sin \theta_x \sin \theta_z \\ \cos \theta_z \sin \theta_x + \cos \theta_x \sin \theta_z \\ \cos \theta_x \cos \theta_z - \sin \theta_x \sin \theta_z \\ \sin \theta_y \end{bmatrix} $$

- Consider special case $\theta_y = \pi/2$ (so, $\cos \theta_y = 0$, $\sin \theta_y = 1$):

$$ \begin{bmatrix} 0 \\ \cos \theta_z \sin \theta_x + \cos \theta_x \sin \theta_z \\ \cos \theta_x \cos \theta_z - \sin \theta_x \sin \theta_z \\ \cos \theta_z \sin \theta_x + \cos \theta_x \sin \theta_z \\ 0 \end{bmatrix} \implies \begin{bmatrix} 0 & 0 & 1 \\ \cos \theta_z \sin \theta_x + \cos \theta_x \sin \theta_z & \cos \theta_x \cos \theta_z - \sin \theta_x \sin \theta_z & 0 \\ -\cos \theta_x \cos \theta_z + \sin \theta_x \sin \theta_z & \cos \theta_z \sin \theta_x + \cos \theta_x \sin \theta_z & 0 \end{bmatrix} \implies \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \implies \begin{bmatrix} 0 \\ 0 \\ \sin \theta_z \end{bmatrix} $$
Product of exponentials

Product of exponentials formula

\[G_{sb}(\Theta) = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} \ldots e^{\hat{\xi}_n \theta_n} G_{sb}(0) \]

\(G_{sb}(\Theta) \) is the mapping from coordinate B to coordinate S

BUT \(\exp(\theta_i \hat{\xi}_i) \) IS NOT the mapping from segment \(i+1 \) to segment \(i \).

Think of \(\exp(\theta_i \hat{\xi}_i) \) simply as the relative motion of that joint.
Overview

1) Kinematic parameterization
 - Rotation Matrices
 - Euler Angles
 - Quaternions
 - Twists and Exponential maps
 - Kinematic chains

2) Subject model
 - Geometric primitives
 - Detailed Body Scans
 - Human Shape models

3) Inference
 - Observation likelihood
 - Local optimization
 - Particle Based optimization
Complex Analysis—Motivation

- Natural way to encode geometric transformations in 2D
- Simplifies code / notation / debugging / thinking
- *Moderate* reduction in computational cost/bandwidth/storage
- Fluency with complex analysis can lead into deeper/novel solutions to problems...

COMPLEX

\[\mathbb{C} \]

Truly: no good reason to use 2D vectors instead of complex numbers…
Imaginary Unit—Geometric Description

Imaginary unit is just a quarter-turn in the counter-clockwise direction.

\[i^2 = -1 \]

\[i^3 = -i \]
Complex Numbers

- Complex numbers are then just 2-vectors
- Instead of e_1, e_1, use “1” and “i” to denote the two bases
- Otherwise, behaves exactly like a real 2-dimensional space

\[\mathbb{R}^2 \]

\[\mathbb{C} \]

- ...except that we’re also going to get a very useful new notion of the product between two vectors.
Complex Arithmetic

- Same operations as before, plus one more:

 - **Vector addition**

 - **Scalar multiplication**

 - **Complex multiplication**

- **Complex multiplication:**
 - Angles *add*
 - Magnitudes *multiply*

 "POLAR FORM":

 \[
 z_1 := (r_1, \theta_1) \\
 z_2 := (r_2, \theta_2) \\
 z_1 z_2 = (r_1 r_2, \theta_1 + \theta_2)
 \]

 Not quite how it really works, but basic idea is right.
Quaternions are ideal for interpolation

Interpolating Rotations

- Suppose we want to smoothly interpolate between two rotations (e.g., orientations of an airplane)
- Interpolating Euler angles can yield strange-looking paths, non-uniform rotation speed, ...
- Simple solution* w/ quaternions: “SLERP” (spherical linear interpolation):
 \[\text{Slerp}(q_0, q_1, t) = q_0 (q_0^{-1} q_1)^t, \quad t \in [0, 1] \]

*Shoemake 1985, “Animating Rotation with Quaternion Curves”
Complex Product—Rectangular Form

- Complex product in “rectangular” coordinates \((1, \imath)\):

\[
\begin{align*}
z_1 &= (a + bi) \\
z_2 &= (c + di) \\
z_1z_2 &= ac + ad\imath + bc\imath + bdi^2 \\
&= (ac - bd) + (ad + bc)\imath.
\end{align*}
\]

- We used a lot of “rules” here. Can you justify them geometrically?

- Does this product agree with our geometric description (last slide)?
Quaternions

- Rotations can be carried away directly in parameter space via the quaternion product:

 \[q_1 \circ q_2 = (q_{w,1}q_{w,2} - \mathbf{v}_1 \cdot \mathbf{v}_2, q_{w,1}\mathbf{v}_2 + q_{w,2}\mathbf{v}_1 + \mathbf{v}_1 \times \mathbf{v}_2) \]

- Concatenation of rotations:

- If we want to rotate a vector \(a \)

 \[a' = \text{Rotate}(a) = q \circ \tilde{a} \circ \bar{q} \]

 where \(\bar{q} = (q_w - \mathbf{v}) \) is the quat conjugate
2D Rotations: Matrices vs. Complex

- Suppose we want to rotate a vector \(u \) by an angle \(\theta \), then by an angle \(\phi \).

<table>
<thead>
<tr>
<th>REAL / RECTANGULAR</th>
<th>COMPLEX / POLAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u = (x, y))</td>
<td>(u = r e^{i\alpha})</td>
</tr>
<tr>
<td>(A = \begin{bmatrix} \cos \theta & -\sin \theta \ \sin \theta & \cos \theta \end{bmatrix})</td>
<td>(a = e^{i\theta})</td>
</tr>
<tr>
<td>(B = \begin{bmatrix} \cos \phi & -\sin \phi \ \sin \phi & \cos \phi \end{bmatrix})</td>
<td>(b = e^{i\phi})</td>
</tr>
<tr>
<td>(A u = \begin{bmatrix} x \cos \theta - y \sin \theta \ x \sin \theta + y \cos \theta \end{bmatrix})</td>
<td>(abu = r e^{i(\alpha + \theta + \phi)}).</td>
</tr>
<tr>
<td>(B A u = \begin{bmatrix} (x \cos \theta - y \sin \theta) \cos \phi - (x \sin \theta + y \cos \theta) \sin \phi \ (x \cos \theta - y \sin \theta) \sin \phi + (x \sin \theta + y \cos \theta) \cos \phi \end{bmatrix})</td>
<td>(= \cdots) some trigonometry (\cdots =)</td>
</tr>
<tr>
<td>(B A u = \begin{bmatrix} x \cos(\theta + \phi) - y \sin(\theta + \phi) \ x \sin(\theta + \phi) + y \cos(\theta + \phi) \end{bmatrix}).</td>
<td></td>
</tr>
</tbody>
</table>
Complex Product—Polar Form

- Perhaps most beautiful identity in math:
 \[e^{i\pi} + 1 = 0 \]

- Specialization of Euler’s formula:
 \[e^{i\theta} = \cos(\theta) + i\sin(\theta) \]

- Can use to “implement” complex product:
 \[z_1 = ae^{i\theta}, \quad z_2 = be^{i\phi} \]
 \[z_1 z_2 = abe^{i(\theta+\phi)} \]
 (as with real exponentiation, exponents add)