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Figure 1. We present MVGBench, a comprehensive evaluation suite for multi-view image generation models (MVGs). We propose ten
metrics to evaluate the 3D consistency in geometry and texture, image quality, and semantics of generated multi-view images. This suite
allows us to fairly compare existing MVGs in three aspects: best setup performance, generalization, and robustness to input perturbations.
We use our benchmark to systematically analyze different models and identify critical design choices, leading to a new model that achieves
the best 3D consistency and robustness, with otherwise on-par performance. All values are normalized, and outermost is better.

Abstract

We propose MVGBench, a comprehensive benchmark for
multi-view image generation models (MVGs) that evalu-
ates 3D consistency in geometry and texture, image quality,
and semantics (using vision language models). Recently,
MVGs have been the main driving force in 3D object cre-
ation. However, existing metrics compare generated images
against ground truth target views, which is not suitable for
generative tasks where multiple solutions exist while differ-
ing from ground truth. Furthermore, different MVGs are
trained on different view angles, synthetic data and specific
lightings – robustness to these factors and generalization to

real data are rarely evaluated thoroughly. Without a rig-
orous evaluation protocol, it is also unclear what design
choices contribute to the progress of MVGs.

MVGBench evaluates three different aspects: best setup
performance, generalization to real data and robustness.
Instead of comparing against ground truth, we introduce a
novel 3D self-consistency metric which compares 3D recon-
structions from disjoint generated multi-views. We system-
atically compare 12 existing MVGs on 4 different curated
real and synthetic datasets. With our analysis, we identify
important limitations of existing methods specially in terms
of robustness and generalization, and we find the most crit-
ical design choices. Using the discovered best practices,
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we propose ViFiGen, a method that outperforms all evalu-
ated MVGs on 3D consistency. Our benchmark suite and
pretrained models will be publicly released.

1. Introduction
Powerful image generation models [7, 10, 46, 47, 53] have
been foundation models for a variety of tasks such as low-
level vision [55, 62, 73], image editing [13, 50, 78, 79]
and 3D generation [20, 34, 43, 57]. Multi-view generation
(MVG) models [28, 38, 54, 56] which are trained to gener-
ate images at target views are particularly important as they
have been the driving force for the rapid development of
3D content creation. Based on MVGs [37, 54, 56], recent
methods are able to create high quality 3D models from sin-
gle images [36, 48, 70, 71] or text [26, 40, 49].

Given the fundamental importance and rapid develop-
ment of MVGs, proper evaluation is however lagging be-
hind. Prior works [28, 38, 54] compute 2D metrics such as
PSNR and SSIM between the generated and ground truth
novel view images (Fig. 2). This is problematic for two
reasons: a) the generative model samples from a distribu-
tion of solutions, so there is no single correct ground truth
view; and b) the generated images are evaluated indepen-
dently without considering 3D consistency. Furthermore,
each method is trained using images with different render-
ing setups, resulting in different optimal input and output
settings. Simply comparing them to method-specific ground
truth will yield incomparable numbers, as the size of objects
in 2D renderings varies between methods.

Some works [60, 70, 71] compare the performance of
MVGs by first lifting the multi-views to 3D, then aligning
and calculating scores against 3D GT. The reliance on 3D
GT makes it suboptimal to evaluate generative models and
it is impossible to report numbers on real images where 3D
GT is rarely available. Most works demonstrate selected ex-
amples, and only a few works conduct more rigorous eval-
uation via user studies, which is difficult to scale.

To this end, we propose MVGBench, a benchmark suite
with comprehensive metrics and unified datasets for evalu-
ating three important aspects of MVGs: a) Best setup per-
formance. The actual performance of each method using
input images from their optimal camera setup. b) General-
ization to real images. We manually annotate real images
with front view and elevation angles for a unified evalua-
tion of generalization capabilities. c) Robustness to input
perturbations. We render objects at different elevations, az-
imuths and lighting conditions as input images and evaluate
the performance of each method under these settings.

A key contribution of our benchmark suite is a 3D con-
sistency metric which does not compare against the ground
truth and can faithfully assess methods that operate on dif-
ferent optimal setups. We evaluate 3D consistency by mea-
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Figure 2. Comparison of classic pair-wise metrics and our met-
rics. Classic metrics compare generated images independently to
paired ground truth views, which represent only one of many cor-
rect solutions in the ambiguous single-view generation task. In the
example shown, despite the inconsistent generated multi-views,
they assign a higher score to Zero123 [2] while our metrics cor-
rectly identify SV3D [54] as the more 3D consistent method.

suring the discrepancy between two 3D reconstructions ob-
tained from two different subsets of the generated multi-
view images. This design makes it suitable for evaluating
generative models and also allows us to report quantitative
results on real images in a more scalable way than user stud-
ies. In addition to 3D consistency, image quality and se-
mantic consistency (class, color, and style) are also impor-
tant for downstream applications, and we introduce metrics
based on vision language models to evaluate these aspects.

We use our MVGBench to evaluate 12 state-of-the-art
MVGs and analyse the key design choices of the best per-
forming methods. We observe that there is a trade-off be-
tween 3D consistency and image quality in existing mod-
els, and video diffusion models generally achieve a bet-
ter balance. However, a significant performance gap per-
sists between synthetic and real images, and most meth-
ods lack robustness to input perturbations and struggle with
fine-grained details. We further investigate design choices
for 3D consistency and find that better camera embeddings
and input image encoder can further improve performance.
Leveraging best practices, we introduce ViFiGen, a video
based multi-view generation method with a fine-grained in-
put image encoder that outperforms all existing methods.
Our evaluation suite and model will be publicly released.

In summary, our contributions are:

• We introduce the MVGBench suite, with comprehensive
metrics and manually curated datasets to evaluate MVGs.

• We propose a novel 3D consistency metric that can fairly
evaluate different MVGs on both synthetic and real data.

• We use MVGBench to systematically analyze and iden-
tify key problems of 12 state-of-the-art MVGs.

• We investigate the key design choices of the best perform-
ing MVGs and introduce ViFiGen that leverages the best
practices and outperforms all existing baselines.
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2. Related works

Multi-view image generation models (MVGs) [32, 37,
49, 56], typically fine-tuned from large-scale image [46,
47] or video [6, 66] generation models, have exhibited
strong generalization capability [18, 70, 71] and signifi-
cantly advanced 3D content creation [26, 36, 40, 48, 52, 69].
Zero123 [2] pioneered the repurposing of text to image
generation model for camera-conditioned novel view syn-
thesis. Follow-up works [39, 48, 49, 56, 80] further im-
prove 3D consistency by simultaneously generating mul-
tiple views with advanced multi-view feature interaction
mechanisms. SyncDreamer [38] proposes to synchronize
multi-view features via 3D convolutions, while video-based
models [9, 31, 54, 72] rely on dense spatial-temporal at-
tention driven by video data. Epipolar attention is also a
common way to enhance the consistency between novel
views [17, 21, 67]. Beside feature interaction, different
camera embeddings [14, 28, 67, 80] and input image encod-
ing [42, 44, 59] are also adopted. Despite promising results,
there is no unified evaluation protocol for MVGs, making it
difficult to understand the actual progress in this field and
contributions of different design choices. Our benchmark
suite allows for a unified evaluation and analysis of MVGs.
Evaluation benchmarks or analysis such as [4, 5, 16, 51,
65] are essential to understanding the progress of a research
field. The evaluation of generative models is less direct than
traditional ground truth based evaluation and significant ef-
forts have been made for evaluating image [15, 29, 68],
video [3, 23, 33, 35], or 3D generation [64]. These bench-
marks focus on semantic consistency [29], image or video
quality [23], video dynamics [33] or alignment with human
perceptions [15, 64, 68]. However, in the field of MVG,
most works [2, 9, 17, 22, 25, 28, 30, 38, 54] still com-
pare generated images against ground truth which is not
meaningful and misses the important 3D consistency as-
pect, leading to inconsistent method rankings in different
papers [22, 38, 54]. Flow Warping Score [35] and concur-
rent work MEt3R [3] measure consistency but focus on 3D
scene generation. Some consistency metrics [58, 80] are
proposed for object-level MVGs but are not well adopted.
There is no unified and reliable evaluation protocol for
object-level MVG models, let alone comprehensive analysis
of this fast-evolving field with more than 20 papers per year.
Our MVGBench provides a reliable 3D consistency metric
and the first unified benchmark framework that allows fair
comparison and systematic analysis.

3. MVGBench Evaluation Suite

We present MVGBench, a comprehensive evaluation suite
for benchmarking multi-view generation models. We focus
on evaluating models that generate images of a single or
compositional object in the center while the background is
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Figure 3. 3D consistency metrics for multi-view generation
models. After prompting the model to generate multi-views at
target camera poses, we split the output views and fit 3D Gaussian
Splatting (3DGS) separately into two view sets. We measure the
geometric and texture consistency between two 3DGSs as the 3D
consistency of the multi-view generation model.

masked out. Our evaluation suite consists of comprehensive
evaluation metrics, including 3D consistency (Sec. 3.1), im-
age quality, and semantic consistency (Sec. 3.2). We then
curate several datasets to evaluate methods on three distinct
aspects (Sec. 3.3). An overview of our metric dimensions
and performance aspects can be found in Fig. 1. Please see
metric implementation details in our Supp.

3.1. 3D Consistency Metrics
Generated multi-view images should be 3D consistent to
form a coherent 3D model [70, 71]. Previous methods eval-
uate this by first reconstructing 3D from multi-view images
and then comparing to the 3D ground truth. However, this
cannot be scaled to datasets without 3D ground truth. More-
over, generative models can produce images that differ from
ground truth but are consistent, making this metric unreli-
able. Our key idea is to measure 3D consistency via self-
consistency in 3D between generated images. An overview
of our 3D consistency metrics is shown in Fig. 3.

Given a single RGB image I and N target view camera
poses, we prompt the multi-view generation model to gen-
erate N images I = {I1, ...IN} at target views. We then
divide these images into two subsets I1 = {I11, ...I1n}, I2 =
{I21, ...I2n} and fit two 3D Gaussian Splattings (3DGSs [27])
to them separately. We allow a small view overlap between
I1 and I2 when N is small (detailed later). Let G1,G2 de-
note the optimized 3DGSs from two view sets I1, I2 respec-
tively. In principle, the two 3DGSs will be very similar if
the generated images are consistent with each other. There-
fore, we measure the discrepancy between two 3DGSs as
the indicator for the 3D geometric and texture consistency
of the generated multi-views.
Geometric consistency metrics evaluate the consistency
of the geometric structure between two 3DGSs fitted sep-
arately from two subsets of multi-views. We compute the
Chamfer distance (CD) and rendered depth error be-
tween two 3DGSs. The Chamfer distance ecd measures the
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discrepancy in the overall shape structure, while the depth
error ed is more sensitive to edge inconsistencies.

For the Chamfer distance, instead of using the Gaussian
centers that do not faithfully represent the actual surface of
the shape, we resample the 3DGSs using the optimized co-
variance matrices. Let µ1 ∈ RM1×3,Σ1 ∈ RM1×3×3 be
the centers and covariances of the 3DGS G1 from images
I1, the Chamfer distance between two 3DGSs is defined as:

ecd(G1,G2) = dCD(P1,P2) (1)
where P1 ∼ N (µ1,Σ1),P2 ∼ N (µ2,Σ2) (2)

here dCD(·, ·) is the Chamfer distance between two sets of
points. Two 3DGSs usually have different number of Gaus-
sians. Hence we first sample five points from each Gaussian
as P1,P2 and then downsample to 60k points to compute
dCD. We empirically found that this resampling produces
more faithful distance values.

For the depth error, we render K depth maps of opti-
mized 3DGSs following LGM [52], using the same camera
views for two 3DGSs. We then compute the error between
the two depth maps after masking out empty background:

ed(G1,G2) =
1

K

K∑
i=1

1

|Mi|
∑

Mi|πd
i (G1)− πd

i (G2)| (3)

where πd
i denotes the depth rendering of view i and M =

(πd
i (G1) > 0)|(πd

i (G2) > 0) is the union mask of the two
rendered foregrounds.

Texture consistency metrics. We render each of the two
optimized 3DGSs G1,G2 into K different views using same
cameras as πd

i . We then calculate the distance between the
two renderings using PSNR, SSIM, and LPIPS:

em(G1,G2) =
1

K

K∑
i=1

dm(πi(G1), πi(G2)) (4)

where πi renders 3DGS G into an RGB image and dm(·, ·)
is the distance between two images defined by PSNR, SSIM
or LPIPS. To distinguish them from classic names, we call
these consistency metrics cPSNR, cSSIM, and cLPIPS.

Handling different input and output setups. One chal-
lenge in comparing different MVGs is that these methods
render the training images at different camera focal lengths,
distances, or elevations. This creates training data bias, and
each model works optimally in different setups. Therefore,
it would be unfair to render the same input image for all
methods and compare the results, as this would favor meth-
ods trained on a similar camera setup. Using different test-
ing inputs yields output objects of different sizes or view
angles, and comparing against method-specific GT views
(as done in prior evaluation) leads to incomparable numbers
across methods. Our consistency metrics address this prob-
lem by design, as we can define arbitrary rendering views

πi for evaluation and use the same view across all meth-
ods. The only requirement is that the optimized 3DGSs are
aligned in 3D space, as we discuss below.

For synthetic datasets where 3D is available, we normal-
ize the 3D object within the unit cube and use the training
camera setup (focal, distance) of each method to render its
input image. When prompted with this image, the gener-
ated multi-views should represent a 3D object that aligns
with the normalized 3D object in scale and rotation. Hence,
the 3DGSs optimized with each methods’ own cameras are
also aligned, allowing us to define same test views πi and
compute scores that are comparable. For real images where
we cannot recreate the input image at a specific camera
setup, the optimized 3DGS will be misaligned since differ-
ent methods generate different object sizes given the same
input image. In this case, we use ICP with uniform scaling
to align 3DGSs from different methods to a reference 3DGS
from one MVG. We then use the same camera views for all
methods to render images from the aligned 3DGS, leading
to aligned consistency scores, as desired.

The number of output views each method is trained on
also differ, affecting the accuracy of 3DGS fitting. To align
the errors raised from 3DGS fitting given different views,
we allow small overlap between the two view sets when the
number of generated views is small, leading to a fair upper
bound given different number of GT multi-views (Tab. 1).

Discussions. Our 3D consistency metric has two advan-
tages over traditional evaluation metrics: (1) No compari-
son with 3D GT, which makes it more suitable for evaluat-
ing generative models and reporting quantitative results on
real images. (2) Fair comparison of methods. Our metric al-
lows each method to take input rendered in its own training
data setting and report numbers that still align.

3.2. Semantic and Image Quality Metrics
The 3D consistency metric in Sec. 3.1 is suitable for evalu-
ating the potential of generated images for 3D tasks. How-
ever, a list of pure white images is perfectly 3D-consistent
but semantically meaningless. Therefore, it is also valuable
to measure semantics which are orthogonal to 3D consis-
tency but still important. To this end, we propose five met-
rics to measure image quality and semantic consistency.

Image quality. We assess the quality of generated multi-
views using average object FID (oFID) and pretrained vi-
sion language models (VLMs). We compute oFID using
CLIP features [44] which is more robust to diverse ob-
jects [24]. Let Fgt

i ,Fi be the CLIP features of the object
i from N target views, oFID is the average FID of all ob-
jects in the test dataset D: oFID =

∑|D|
i=1 FID(Fgt

i ,Fi),
where FID(·, ·) is the standard Fréchet distance. We show in
Sec. 4.1 that our oFID aligns better with human preferences
than the classic dataset level FID. Rendering at target views
is difficult for real data as 3D GT is typically not available,
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Input image Vivid123 SyncDreamer SV3D Ours

Figure 4. Example results on CO3D [45] (row 1), MVImgnet [75] (row 2), Omni3D [63] (row 3) and GSO [12] (row 4). Vivid123 [30]
generates images that look good but are 3D inconsistent while SyncDreamer [38] images are 3D consistent but the image quality is worse.
SV3D [54] and our model adopts video prior and achieves a better trade-off between consistency and quality. Our method leverages
ConvNextV2 [59] instead of CLIP [44] to encode input image and preserves better details than SV3D.

we hence use datasets that capture each object in a video
and randomly sample frames from this video to extract GT
multi-view features.

We further prompt a pretrained VLM [8] to assess the
overall image quality of the generated images and return
a binary “yes” or “no” answer (yes means overall good).
The score is the percentage of “yes” returned by the VLM,
denoted as IQ-vlm (image quality via VLM).

Semantic consistency. We use the pretrained VLM [8]
to assess whether the generated images are semantically
consistent with the input image. We first prompt the VLM
to annotate semantic attributes (object class, color, and ap-
pearance style) of each input using ground truth multi-view
images, yielding the reference attributes. We then prompt
the VLM with the generated images and ask if the refer-
ence attribute is presented in the image. Each attribute eval-
uation is a binary “yes/no” question with “yes” meaning
the attribute is presented in the image. We denote these
three metrics as class, color, and style. We show in
Sec. 4.1 that our VLM-based metrics align well with human
preferences and prompt template in Supp.

3.3. Evaluation Datasets
To have a common benchmark for comparing different
methods, we curated several datasets and further processed
them to evaluate three important performance aspects: best
setup performance, generalization, and robustness.

Best setup performance. This setup is designed to
compare the best performance of each method. Inputs are
rendered from 3D models using each method’s own train-
ing setup, ensuring that each method is run under opti-
mal input conditions. We use Google Scanned Objects

(GSO[12]) and OmniObject3D (Omni3D[63]) for this as-
pect. For GSO, we reuse 30 objects used in previous works
(GSO30 [28, 38, 54]) and sample 70 more non-overlapping
objects. For Omni3D, we randomly sample one instance
from each category, resulting in 202 unique objects.

Generalization to real images. Existing methods typ-
ically show different qualitative examples of selected im-
ages, making it difficult to compare actual generalization
abilities. Conducting user studies is more rigorous, but
does not scale. Our metrics allow us to quantify the gen-
eralization performance on real images, which is more scal-
able. We use MVImgnet [75] and CO3D [45] for this eval-
uation. Both datasets capture multi-view images of real
objects with unaligned camera poses, while most meth-
ods [17, 38, 54] require elevation angle as input. To this end,
we manually select images that best fit as the frontal view
and annotate their elevation angle. We select two instances
per category for CO3D and one instance per category for
MVImgnet, leading to 102 and 230 images, respectively.

Robustness. Another important aspect is to understand
the robustness of the model under different input perturba-
tions, which is barely done in previous evaluations. We con-
sider three types of input perturbations that are difficult to
undo via input image processing once the images are cap-
tured: elevation, azimuth, and light intensity. To do this,
we render the GSO30 objects used by [28] under different
conditions as input images. Note that in addition to the con-
trol factors we consider, we still use the camera focal length
and distance from the training setup of each method to en-
sure that each method operates under optimal condition.

Most MVGs generate images at the same elevation as in-
put, hence the optimized 3DGS is mostly accurate at similar
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elevations. Errors in renderings far from this elevation are
mainly caused by 3DGS fit rather than multi-view incon-
sistencies. This is problematic when evaluating robustness
w.r.t. different input elevations, since it is not possible to
have the same test views for all input elevations. We hence
use test views with a 15 degree offset the from input eleva-
tion, and normalize the consistency scores using an upper
bound defined by the ground truth multi-view images. See
the appendix for the normalization formula.

4. Experiments

In this section, we first validate our proposed metrics and
then present our evaluation analysis of 12 typical MVGs.
We then further systematically investigate some key design
choices of MVGs and propose a method that outperforms
all existing baselines in terms of 3D consistency.

4.1. Validating MVGBench metrics
3D Consistency. A good 3D consistency metric should be
invariant to the number of views used and the specific cam-
era setups. Therefore, using ground truth views (perfectly
3D consistent), we report our 3D consistency metrics vary-
ing these aspects. As can be seen from Tab. 1, the deviation
is less than 8% of the average score across all variants of our
metric. Note that the score differs from the theoretical upper
bound due to slight inaccuracies in 3DGS fitting. However,
these numbers indicate that such inaccuracies are negligible
and are not affected by specific method setups. Hence, we
can conclude that our metric scores vary only due to the 3D
inconsistency of multi-view images.

#views camera CD↓ depth↓ cPSNR↑ cSSIM↑ cLPIPS↓
16 [17] 1.993 6.941 30.281 0.924 0.034
18 [9] 2.119 7.974 30.688 0.934 0.030
20 [37] 2.133 6.977 30.448 0.925 0.031
20 [54] 2.091 6.350 30.800 0.932 0.029
relative std. 0.026 0.082 0.006 0.004 0.051

Table 1. Our 3D consistency metrics are invariant to number of
views and different camera rendering settings.

VLM metrics. We propose four metrics based on a pre-
trained VLM [8] to evaluate image quality and semantic
consistency. We conduct a user study to verify if they align
with human perception. We randomly select 400 gener-
ated images from 5 methods in GSO [12] and CO3D [45]
datasets and ask 10 users to answer the exact same verifica-
tion questions as the VLM (yes means the image passes the
check). Notably, the average scores (percentage of yes) re-
ported by the users strongly correlate with the one from the
VLM, see Fig. 5. We can hence conclude that our proposed
VLM metric is faithful to human perception.
oFID score. We propose oFID score that measures how
well the generated image of a specific object matches the
distribution of multi-views of that object. Hence, instead

Figure 5. Validating vision language model (VLM) based met-
rics. Our VLM metrics strongly correlate with human perception
(Pearson coefficient confidence interval: 0.95).

of computing FID against the full dataset of all objects, we
compute FID per object instance, and then average. To ver-
ify that our proposed oFID aligns better with human percep-
tion, we perform user studies to compare the method rank-
ings based on oFID, FID and humans. We ask users to rank
methods pair-wise based on alignment with the input image.
We select 10 pairs of methods and for each pair, 40 random
examples are selected and evaluated by 10 users. We re-
port the percentage of ranking matches between FID or our
oFID and human rankings: 0.77 (oFID), 0.50 (dataset FID).
Clearly, oFID is much better aligned with human rankings.
Our oFID and human rankings are strongly correlated and
have a Pearson and Spearman coefficient of 0.69 and 0.67.
We show example user study questions in the appendix.

4.2. Evaluation results and observations
4.2.1. Evaluation setup
We evaluate open-sourced multi-view generation methods
for object-level image generation. We exclude methods that
only generate fixed few-views such as ImageDream [56],
Zero123++ [48], Wonder3D [39] and [61]. Hence, we
evaluate the following 12 SoTA methods: Zero123 [37],
zero123-xl [11], Vivid123 [30], EpiDiff [21], Free3D [80],
MVDFusion [17], ViewFusion [74], EscherNet [28], Sync-
Dreamer [38], V3D [9], Hi3D [72], SV3D[54]. See the ap-
pendix for details about the individual input and output se-
tups. We also add a new baseline method that leverages the
best practices of MVGs, named ours (detailed in Sec. 4.3).

4.2.2. Observations
We present the summarized analysis in this section. The full
evaluation tables can be found in the appendix.
Trade-off between 3D consistency and quality. We plot
the 3D consistency (cPSNR) versus image quality (IQ-vlm)
on our CO3D [45] and GSO [12] test set in Fig. 6. It
can be seen that the top-right (best in both consistency and
quality) region is unoccupied. Methods like Zero123 [37],
Vivid123 [30] produce images that achieve good image
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Method CO3D [45] (real) GSO [12] (synthetic)
CD ↓ cPSNR ↑ IQ-vlm ↑ CD ↓ cPSNR ↑ IQ-vlm ↑

Ours 3.02 25.82 0.29 3.15 28.93 0.82
SV3D-tune 3.32 24.70 0.29 3.24 27.95 0.82
SyncDreamer 3.04 25.30 0.12 2.99 26.83 0.53
SV3D 3.48 23.72 0.29 3.47 26.75 0.77
Hi3D 5.60 20.92 0.35 3.29 24.60 0.87
Eschernet 5.14 20.34 0.26 4.34 23.89 0.57
V3D 12.24 15.87 0.32 4.25 23.83 0.81
ViewFusion 10.45 16.39 0.33 5.33 22.34 0.63
MVDFusion 5.77 17.50 0.19 4.77 21.44 0.48
Free3d 11.15 14.42 0.32 6.03 20.26 0.73
EpiDiff 7.71 15.66 0.31 5.77 20.28 0.77
Vivid123 9.81 15.31 0.49 7.57 21.74 0.63
Zero123 12.06 13.16 0.38 10.99 17.37 0.73
Zero123-xl 12.58 12.97 0.34 15.40 17.10 0.72

Table 2. Evaluation results on GSO and CO3D. The perfor-
mance gap between synthetic and real data is large, especially on
the image quality aspect (IQ-vlm).

Figure 6. Trade-off between 3D consistency and image quality.
No method can achieve the best performance in both dimensions.

quality, but are not 3D consistent. Conversely, methods like
SyncDreamer [38], EscherNet [28] and MVDFusion [17]
can generate 3D consistent images at the cost of lower qual-
ity. We observe that methods are either consistent but lack
detail, or have detail that improve quality but difficult to be
consistent. More recent video-based methods SV3D [54]
and ours balance 3D consistency and quality better, see ex-
ample images in Fig. 4. It is also visible in Fig. 1 where no
method can reach the best score on all dimensions.
Large gap between synthetic and real images. We report
the key metrics in 3D consistency (geometry+texture) and
image quality (IQ-vlm) of all methods in Tab. 2. The perfor-
mance on real images (CO3D [45]) is considerably inferior
to the performance on synthetic images (GSO [12]), espe-
cially in the (IQ-vlm). We also show comparisons in Fig. 4
where the generated images are much worse for real images.
More examples are presented in the appendix.
Methods are not robust to input perturbations. We
plot the error versus different input light intensity, azimuth
and elevation degrees, alongside representative examples in
Fig. 7. Some methods are sensitive to dark light or specific
azimuth and none of them are robust to elevations. We at-
tribute this to limited pose variation in training. In contrast,
our method trained on diverse renderings is more robust es-
pecially wrt. different lighting and azimuth angles.
Methods struggle to handle fine structures or textures.
To identify the most challenging images for each method,
we rank the input images based on 3D consistency score.
Objects with complex and fine-grained geometric structures

or textures such as bicycle, flowers, text boxes are the most
challenging. One reason is that the autoencoder for latent
diffusion [46] destroys high-frequency details and simply
passing images through the autoencoder already degrades
3D consistency, see analysis in the appendix.

4.3. MVG design choices

What makes a MVG 3D consistent? With our bench-
mark suite, we can study this question from a fair and uni-
fied perspective. We classify different design choices into
four categories: a) Camera pose embedding. Most meth-
ods [37, 54] adopt simple MLP based embedding while Es-
cherNet proposes to use CaPE and Free3D adopts Plucker
ray-based embedding. b) Input image encoder. Most
methods [37, 38, 54] use CLIP [44] to encode input im-
age while EscherNet [28] adopts ConvNextV2 [59] encoder
to extract fine-grained features. We also consider the DI-
NOv2 [42] encoder. c) Interaction between target view
features. Recent methods generate multiple target views
together and compute different attentions between target
view features. Due to resource limits, we only compare the
synchronized 3D convolution from SyncDreamer [38] and
spatial-temporal attention from SV3D [54]. d) How much
training data is needed to train a good MVG? The training
data used in prior methods range from 40k to 800k objects
but it is unclear how much is actually needed.

We adopt SV3D as our base model, which balances well
between consistency and quality, and study the contribution
of these different design choices. SV3D uses simple MLP
to embed camera pose and the input image is encoded with
CLIP. It generates 21 images together and uses the spatial-
temporal attention pretrained for video generation.
Camera embedding. We add the camera positional encod-
ing (CaP) from either EscherNet [28] or the ray conditional
network (RCN) from Free3D [80] to SV3D. We fine tune
the modified network for 26k steps. To rule out the effect
of training data, we also fine tune SV3D in the same dataset
and the results are reported in Tab. 3 b-e. It can be seen
that both Cap (Tab. 3d) and RCN (Tab. 3c) are more effec-
tive than simple MLP based embedding (Tab. 3b). RCN is
better than CaP and interestingly, combing both leads to a
worse result. However, when replacing CLIP with convo-
lution encoder, the difference bewteen CaP (Tab. 3h) and
RCN (Tab. 3f) is small.
Input image encoder. We use SV3D combined with CaP
from EscherNet as our base model and replace the CLIP in-
put image encoder with ConvNextV2 or DINOv2 encoder.
We choose the encoder that produces exactly same feature
dimension as the CLIP encoder used in SV3D. Hence the
network architecture is exactly the same except for the fea-
ture used for cross attention. We fine tune the model for
50k steps to adapt to the new input image feature and re-
sults are reported in Tab. 3. It can be seen that both DI-
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Figure 7. Robustness w.r.t different light intensity, azimuth and elevation angles. Some methods (EscherNet [28]) are sensitive to dark
lighting while others (SyncDreamer [38]) are sensitive to strong lighting. Some methods (EscherNet, Vivid123 [30]) are also sensitive to
the input azimuth angles and none of the methods are robust to higher elevation angles.

Model CD↓ depth↓ cPSNR↑ cSSIM↑ cLPIPS↓
a. SV3D pretrained 3.472 19.651 26.751 0.865 0.070
b. SV3D fine-tuned 3.342 16.493 27.708 0.876 0.061
c. +RCN† 3.212 15.671 28.257 0.889 0.055
d. +CaP† 3.244 15.528 27.980 0.884 0.057
e. +RCN†+Cap† 3.246 15.369 27.809 0.884 0.058
f. +RCN†+Cov‡ 3.127 13.862 28.615 0.890 0.052
g. +CaP†+DINOv2‡ 3.146 14.301 28.507 0.891 0.053
h. +CaP†+Cov‡ (Ours) 3.154 14.204 28.934 0.897 0.052
i. +CaP†+Cov‡+sync♮ 3.145 13.919 28.881 0.895 0.051

Table 3. Investigating different design choices added on top of
SV3D [54]: camera embedding (†), input image encoder (‡), and
multi-view feature syncronization (♮). Results on GSO.

#Objs. CD↓ depth↓ cPSNR↑ cSSIM↑ cLPIPS↓

G
SO

(s
yn

.) 10k 3.354 16.919 27.765 0.881 0.061
50k 3.186 13.504 28.053 0.881 0.056

100k 3.148 13.351 28.142 0.885 0.053
150k 3.154 14.204 28.934 0.897 0.052

C
O

3D
(r

ea
l) 10k 3.349 21.703 24.261 0.855 0.079

50k 3.176 17.556 25.118 0.866 0.068
100k 3.166 17.819 25.131 0.868 0.067
150k 3.099 16.942 25.994 0.880 0.062

Table 4. The effect of training data amount on 3D consistency
when replacing CLIP with the convolution encoder. More data
improves mainly the generalization to real images (CO3D [45]).

NOv2 (Tab. 3g) and ConvNextV2 (Tab. 3h) are better than
the CLIP encoder (Tab. 3b), while the difference between
two vision encoders is small. We also show some results
in Fig. 4 where our model with ConvNextV2 encoder can
preserve better details from input than CLIP based SV3D.
Given that ConvNextV2 is more efficient than DINO model,
we propose using ConvNextV2 to replace the CLIP encoder.

Interaction between target views. SyncDreamer [38]
computes a synchronized 3D feature volume and derive
multi-view images from it, leading to strong 3D consis-
tency (Tab. 2). We combine such 3D feature volume with
the video based SV3D + CaP and ConvNextV2 encoding
and results are shown in Tab. 3. Surprisingly, the perfor-
mance gain with the additional synchronized 3D convolu-

tion is small. We hypothesize that the explicit 3D feature in-
teraction from SyncDreamer is already implicitly achieved
by the dense spatial-temporal attention of SV3D. Hence we
adopt SV3D+Cap+Cov as the model for Ours.
Training data amount. Another important aspect to con-
sider is the amount of data needed. Since it is not compu-
tationally feasible to retrain every single method with dif-
ferent amounts of data, we study the effect of data amount
on performance when adding a new module to a pretrained
model. Specifically, we start with SV3D+CaP and replace
the CLIP image encoder with a convolution image encoder
and fine tune it on different amount of objaverse objects.
The 3D consistency results are shown in Tab. 4. It can be
seen that 50K objects are sufficient to achieve good perfor-
mance on synthetic images (GSO100) and improvement is
small after that. By contrast, performance continues to im-
prove with more data when testing on real images.

5. Conclusion

We present MVGBench, a comprehensive benchmark suite
for evaluating multi-view generation models (MVGs). We
unify 10 metric dimensions to evaluate the 3D consistency,
image quality, and semantic consistency of generated im-
ages. Experiments show that our 3D consistency metric re-
ports meaningful scores and fair comparisons of methods.
Our quality and semantic consistency metrics align well
with human perception: Pearson scores ranging from 0.69
to 0.92. We evaluate 12 SoTA MVGs and find that there is
a trade-off between 3D consistency and image quality, and
no method can achieve the best performance in all dimen-
sions. We also observe that large performance gap persists
between synthetic and real images, and most methods are
not robust to different elevations, azimuths, or lightings.

We investigate four key design choices of MVGs, in-
cluding camera embedding, input image encoding, attention
mechanism, and training data amount. We find that the con-
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volution encoder can preserve fine details of the input im-
age, resulting in better 3D consistency. Explicit 3D convo-
lution does not provide much improvement on top of video-
based models. While 50k training objects are sufficient for
synthetic input, more data is necessary to improve general-
ization to real data. We will publicly release our benchmark
suite and fine-tuned models.
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Brussee, Ricardo Martin-Brualla, Pratul Srinivasan,
Jonathan T. Barron, and Ben Poole. Mvreward: Better
aligning and evaluating multi-view diffusion models with
human preferences. arXiv preprint arXiv:2412.06614, 2024.
3

[16] Tomas Hodan, Frank Michel, Eric Brachmann, Wadim Kehl,
Anders Glent Buch, Dirk Kraft, Bertram Drost, Joel Vidal,
Stephan Ihrke, Xenophon Zabulis, Caner Sahin, Fabian Man-
hardt, Federico Tombari, Tae-Kyun Kim, Jiri Matas, and
Carsten Rother. Bop: Benchmark for 6d object pose esti-
mation, 2018. 3

[17] Hanzhe Hu, Zhizhuo Zhou, Varun Jampani, and Shub-
ham Tulsiani. MVD-Fusion: Single-view 3D via Depth-
consistent Multi-view Generation. 3, 5, 6, 7, 4

[18] Hanzhe Hu, Tianwei Yin, Fujun Luan, Yiwei Hu, Hao Tan,
Zexiang Xu, Sai Bi, Shubham Tulsiani, and Kai Zhang.
Turbo3d: Ultra-fast text-to-3d generation, 2024. 3

[19] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and
Shenghua Gao. 2d gaussian splatting for geometrically accu-
rate radiance fields. In SIGGRAPH 2024 Conference Papers.
Association for Computing Machinery, 2024. 1

[20] Yangyi Huang, Hongwei Yi, Yuliang Xiu, Tingting Liao, Ji-
axiang Tang, Deng Cai, and Justus Thies. TeCH: Text-guided
Reconstruction of Lifelike Clothed Humans. In International
Conference on 3D Vision (3DV), 2024. 2

[21] Zehuan Huang, Hao Wen, Junting Dong, Yaohui Wang,
Yangguang Li, Xinyuan Chen, Yan-Pei Cao, Ding Liang, Yu
Qiao, Bo Dai, and Lu Sheng. EpiDiff: Enhancing Multi-
View Synthesis via Localized Epipolar-Constrained Diffu-
sion. 3, 6, 4, 5

[22] Zehuan Huang, Yuanchen Guo, Haoran Wang, Ran Yi,
Lizhuang Ma, Yan-Pei Cao, and Lu Sheng. Mv-adapter:
Multi-view consistent image generation made easy. arXiv
preprint arXiv:2412.03632, 2024. 3

[23] Ziqi Huang, Yilun Sheng, Yujian Liu, Yujie Lu, and Wenhu
Chen. Vbench: Comprehensive benchmark suite for video
generative models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2024. 3

[24] Sadeep Jayasumana, Srikumar Ramalingam, Andreas Veit,
Daniel Glasner, Ayan Chakrabarti, and Sanjiv Kumar. Re-
thinking fid: Towards a better evaluation metric for image
generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
9307–9315, 2024. 4

[25] Yoonwoo Jeong, Jinwoo Lee, Chiheon Kim, Minsu Cho, and
Doyup Lee. NVS-Adapter: Plug-and-Play Novel View Syn-
thesis from a Single Image, 2024. 3

[26] Yash Kant, Aliaksandr Siarohin, Ziyi Wu, Michael
Vasilkovsky, Guocheng Qian, Jian Ren, Riza Alp Guler,
Bernard Ghanem, Sergey Tulyakov, and Igor Gilitschenski.
SPAD: Spatially Aware Multi-View Diffusers. 2, 3

[27] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4), 2023. 3, 1

[28] Xin Kong, Shikun Liu, Xiaoyang Lyu, Marwan Taher, Xiao-
juan Qi, and Andrew J Davison. EscherNet: A Generative
Model for Scalable View Synthesis. 2, 3, 5, 6, 7, 8, 4

[29] Max Ku, Tianle Li, Kai Zhang, Yujie Lu, Xingyu Fu, Wen-
wen Zhuang, and Wenhu Chen. Imagenhub: Standardiz-
ing the evaluation of conditional image generation models.
In Proceedings of the Twelfth International Conference on
Learning Representations (ICLR), 2024. 3

[30] Jeong-gi Kwak, Erqun Dong, Yuhe Jin, Hanseok Ko, Shweta
Mahajan, and Kwang Moo Yi. ViVid-1-to-3: Novel View
Synthesis with Video Diffusion Models. 3, 5, 6, 8, 4

[31] Lingen Li, Zhaoyang Zhang, Yaowei Li, Jiale Xu, Wenbo
Hu, Xiaoyu Li, Weihao Cheng, Jinwei Gu, Tianfan Xue, and
Ying Shan. Nvcomposer: Boosting generative novel view
synthesis with multiple sparse and unposed images, 2024. 3

[32] Peng Li, Yuan Liu, Xiaoxiao Long, Feihu Zhang, Cheng
Lin, Mengfei Li, Xingqun Qi, Shanghang Zhang, Wenhan
Luo, Ping Tan, et al. Era3d: High-resolution multiview
diffusion using efficient row-wise attention. arXiv preprint
arXiv:2405.11616, 2024. 3

[33] Mingxiang Liao, Qixiang Ye, Wangmeng Zuo, Fang Wan,
Tianyu Wang, Yuzhong Zhao, Jingdong Wang, Xinyu Zhang,
et al. Evaluation of text-to-video generation models: A dy-
namics perspective. Advances in Neural Information Pro-
cessing Systems, 37:109790–109816, 2024. 3

[34] Tingting Liao, Hongwei Yi, Yuliang Xiu, Jiaxiang Tang,
Yangyi Huang, Justus Thies, and Michael J. Black. TADA!
Text to Animatable Digital Avatars. In International Confer-
ence on 3D Vision (3DV), 2024. 2

[35] Kunhao Liu, Fangneng Zhan, Yiwen Chen, Jiahui Zhang,
Yingchen Yu, Abdulmotaleb El Saddik, Shijian Lu, and Eric
Xing. Stylerf: Zero-shot 3d style transfer of neural radiance
fields. 2023. 3

[36] Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Mukund
T, Zexiang Xu, and Hao Su. One-2-3-45: Any Single Im-
age to 3D Mesh in 45 Seconds without Per-Shape Optimiza-
tion. In Annual Conference on Neural Information Process-
ing Systems (NeurIPS), 2023. 2, 3

[37] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tok-
makov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-3:
Zero-shot one image to 3d object, 2023. 2, 3, 6, 7

[38] Yuan Liu, Cheng Lin, Zijiao Zeng, Xiaoxiao Long, Lingjie
Liu, Taku Komura, and Wenping Wang. Syncdreamer: Gen-
erating multiview-consistent images from a single-view im-
age. arXiv preprint arXiv:2309.03453, 2023. 2, 3, 5, 6, 7, 8,
4

[39] Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu,
Zhiyang Dou, Lingjie Liu, Yuexin Ma, Song-Hai Zhang,
Marc Habermann, Christian Theobalt, et al. Wonder3d: Sin-
gle image to 3d using cross-domain diffusion. arXiv preprint
arXiv:2310.15008, 2023. 3, 6

[40] Yuanxun Lu, Jingyang Zhang, Shiwei Li, Tian Fang, David
McKinnon, Yanghai Tsin, Long Quan, Xun Cao, and Yao

10



Yao. Direct2.5: Diverse text-to-3d generation via multi-view
2.5d diffusion. Computer Vision and Pattern Recognition
(CVPR), 2024. 2, 3

[41] Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl,
Markus Steinberger, Francisco Vicente Carrasco, and Fer-
nando De La Torre. Taming 3dgs: High-quality radiance
fields with limited resources. In SIGGRAPH Asia 2024 Con-
ference Papers, New York, NY, USA, 2024. Association for
Computing Machinery. 1

[42] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
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MVGBench: a Comprehensive Benchmark for Multi-view Generation Models

Supplementary Material

In this supplementary, we first discuss the implementa-
tion details, including our MVGBench metrics (Sec. 6.1)
and evaluation experiment setups (Sec. 6.2). We then show
additional evaluation result and analysis in Sec. 7, and con-
clude with discussion of limitations.

6. Implementation Details

We discuss the details of our metrics and experiment se-
tups. Our benchmark suite and pre-trained models will be
publicly released.

6.1. MVGBench Metric Implementation
View sets split. For 3D consistency metric, we split the
generated multi-view images into two subsets and fit 3DGS
separately to them. We allow small overlap when the total
number of generated views is small. There are three differ-
ent number of output views for all the methods we evalu-
ated: 16, 18, 21, see Tab. 5. The view indices for the two
subsets are: 1). Output 16 views: [0, 2, 4, 5, 6, 8, 9, 10, 11,
12, 14], [1, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15]. 2). Output 18
views: [0, 1, 2, 4, 6, 8, 10, 12, 14, 16], [0, 1, 2, 3, 5, 7, 9,
11, 13, 15, 17]. 3). Output 21 views: the first (input) view
is excluded and rest is divided into two non-overlap views,
namely [0, 2, 4, 6, 8, 10, 12, 14, 16, 18], [ 1, 3, 5, 7, 9, 11,
13, 15, 17, 19].

3DGS optimization. We use the original version of
3DGS [27] for optimization. We explored more advanced
version of 3DGS but found that they are either less accurate
for object level multi-views [19, 41, 76] or the runtime is
too long [77]. We hence stick to the original 3DGS version
and randomly sample 100k points from unit cube [-1, 1] to
initialize the Gaussians and optimize for 10k steps. White
background is used during optimization as all methods gen-
erate images with white background.

Test view rendering. We render the optimized 3DGSs
into RGB and depth images to compute the depth, cPSNR,
cSSIM, cLPIPS metrics. To produce comparable numbers,
the test views have to be the same for two 3DGSs and across
all methods, for the same test object. The test views should
be diverse so that is does not favor output elevation angles
specific to some methods while it should also be close to
the views used to fit 3DGS, otherwise the calculated scores
are dominated by 3DGS fitting error instead of multi-view
inconsistency. To this end, we use two setups to choose
the views for rendering: a). Random views sampled from a

fixed range, and b). Fixed views that differ 15 elevation de-
grees from generated multi-views. For both setup K = 16
views are used for rendering, and each object might have
different test views but the same views are always used
across methods for fair comparison.
Random test views are used for best setup performance,
robustness w.r.t to lighting and azimuth conditions. As ex-
isting methods generate multi-view images with elevation
angle ranging from 0 to 30 degrees (Tab. 5), we uniformly
sample elevation from range [-15, 45], azimuth from [0,
360], and camera distance from [1.5, 1.9]. The field of view
(Fov) is fixed at 42 degree such that it does not favor any of
the methods evaluated.
Fixed test views are used for generalization to real images
and robustness w.r.t to different elevation degrees. In these
setups, the output elevation differ a lot and it is difficult to
define a common range where 3DGS fitting also works well
and we can sample elevation from. To this end, we take 8
views with equal azimuth distance from 8.5 to 360 degree
and the elevation is 15 degree higher than the elevation of
generated multi-views. The other 8 views have the same
azimuth angles but the elevation is 15 degree lower than
the output multi-view elevation. The fov and camera dis-
tance are fixed to 42 degree and 3.2m. We choose these az-
imuth, fov, and distance to not favor any methods. Note that
this will lead to consistency scores that are not comparable
across different output elevations, which address next.

Normalization of the consistency scores. The exact
scores of our consistency metrics depend on the views used
to render test images and the raw numbers are not directly
comparable if the views are different. This is the case
when we want to evaluate the robustness of a method w.r.t
to different elevation angles (see discussion above). We
hence propose to normalize the raw numbers using the up-
per bound scores obtained from ground truth multi-view im-
ages. Let egt, emvg be the raw consistency score defined in
Sec. 3.1 using MVG and GT images of the same camera
views. The normalized error emvg, n is computed as:

eimvg, n =

{
emvg

egt
if type(e) ∈ {cPSNR, cSSIM},

1− emvg

max emvg
if type(e) ∈ {CD, depth, cLPIPS}.

(5)
here max emvg is the maximum error for this metric among
our evaluated methods. This yields a score between 0 and 1
and it is always the higher the better. This normalization is
also used to visualize the bottom plots in Fig. 1.
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Prompt templates for VLM based metrics. We pro-
pose four metrics based on the pretrained 73B InternVL2.5
VLM [8]. The same model is used to obtain the reference
attributes (Sec. 3.2) via three-round prompts given multi-
view images. The three sequential prompts are: 1). “Here
are images of a daily object, what is the appearance style
of this object? Ignore the background, focus on the appear-
ance, style and design instead of describing the object type,
return the appearance style only and in less than 5 words.”,
2). “Which object it is? Just return the class name, do not
repeat question. Use daily used common words. If there are
multiple possibilities, return like this: classname 1 or class-
name2 or classname3...”, 3). “What is the main color(s) of
this object? simply answer the color(s), summarize to less
than 4 colors.”

We then use the answers from these prompts as the refer-
ence attributes and evaluate the semantic consistency using
the following templates: 1). class: “Is [obj cls] presented
in this image? just answer yes or no.” 2). color: “Does
the object (possibly [obj cls]) shown in this image have the
color(s): [color]? just answer yes or no. 3). “Is the ap-
pearance style of the object (possibly [obj cls]): [style]? just
answer yes or no.”

We also use the same model to asses the image qual-
ity (IQ-vlm) which we find align well with human percep-
tion. The prompt template is: “Is this image an overall
high-quality image with good overall structure, good visual
quality, nice color harmony, clear object and free of strange
artifacts and distortions? just answer yes or no.”.

Runtime performance. The most compute expensive
steps in our evaluation pipeline are 3DGS optimization and
VLM assessment, which takes around 76s (two subsets) and
12s per input image to finish on L40s GPU. In total it takes
around 2.7 hours to evaluate 100 objects which is still rea-
sonable. More advanced techniques such as better 3DGS
initialization [9] or VLM inference via API call could be
adopted to speed up evaluation. We leave these for future
works.

6.2. Experiment Setups

User study. We conduct user studies to verify our oFID
score and VLM based metrics, each with 400 questions an-
swered by 10 users. As 400 questions are too many for one
single user study survey, we divide it into 8 smaller surveys,
each with 50 questions. We then recruit 10 users to finish
each survey and no overlap is allowed for different surveys.
Hence in total we have 80 different users to participate one
user study. This ensures sufficient diversity and statistically
meaningful results. We show example questions from our
user studies in Fig. 8 and Fig. 9.

Figure 8. Example question from our user study on the alignment
between our VLM based metrics and human preference.

Evaluation setup for existing methods. We show the in-
put and output setups for all the methods we evaluate in the
best-setup performance experiment in Tab. 5. We use am-
bience light of 1.0 and zero azimuth angle for this setup.
The rendering setup is the same for robustness evaluation
except for the attribute we want to evaluate (elevation, light
intensity, and azimuth angle). For generalization to real
images, we cannot control the rendering anymore hence
we use the same input image crop for different methods,
which has 0.2 margin from the object bounding box to im-
age boarder. The number of output views of each method
remain the same as in best-setup evaluation.

MVG design choice experiments. We use the 150k kiui
objects filtered by LGM [52] as our training data. Follow-
ing same camera parameters in SV3D [54], we render each
object from 84 views and randomly pick 21 views at train-
ing time. We adopt the dynamic orbit rendering from SV3D
which adds perturbations of azimuth and elevation angles to
the equally distributed static orbit. We pre-compute the la-
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Figure 9. Example question from our user study on the alignment
between our oFID score and human preference.

tent features of CLIP [44], SVD [46], DINOV2 [42] and
ConvNextV2 [59] to speed up training. We use batch size
of 64, learning rate of 2e-5 for all the experiments. The to-
tal training steps is 26k for camera embedding experiments
and 50k for all other experiments.

7. Additional Results and Analysis
Full evaluation results. We show all scores of our MVG-
Bench from all evaluated methods on four datasets in Tab. 6
(GSO [12]), Tab. 7 (Omni3D [63]), Tab. 8 (CO3D [45]),
and Tab. 9 (MVImgnet [75]). It can be seen that our method
achieves the best overall 3D consistency and on par perfor-
mance on image quality and semantic consistency.

Methods struggle with fine-grained details. We rank the
input images based on the 3D consistency score (cPSNR)
from different methods and visualize the 10 common in-
puts that have the worst scores in Fig. 10. It can be seen

Methods Fov Elev. Dist.(m)#Out views
SyncDreamer based 49.1 30 1.5 16[17, 21, 38, 72, 80]
V3D [9] 60 0 2.0 18
SV3D [54], ours 33.8 12.5 2.35 21
Zero123 based 49.1 0 1.85 21[2, 11, 28, 30, 74]

Table 5. The input rendering (Fov, camera elevation degree and
distance) and number of output views of each method for the best
performance evaluation.

Figure 10. The most challenging test images from GSO[12],
Omni3D[63], MVImgnet[75] and CO3D[45]. Methods produce
the most 3D inconsistent images for these inputs due to their com-
plex geometric structure or high frequency details.

that the common challenging images are the objects with
complex and fine-grained geometric structures and textures
such as bicycle, flowers, text boxes. Diving further into this
problem, we find that the autoencoder used in all MVGs
already destroys the high frequency structures after one sin-
gle pass through the autoencoder. We show two examples
in Fig. 11. To further understand the effect on 3D consis-
tency, we send the ground truth multi-view images of 30
GSO objects [28] through the autoencoder of SV3D [54].
The consistency scores before and after the autoencoder are
(CD / depth / cPSNR / cSSIM / cLPIPS): 2.58 / 9.82 / 31.94
/ 0.94 / 0.03 (before), 2.69 / 9.05 / 30.29 / 0.92 / 0.04 (af-
ter). It can be clearly seen that the 3D texture consistency
scores already degrade after single feedforward through the
autoencoder. Interestingly, the depth error, sensitive to in-
consistency in edges, decreases which indicates the images
are indeed smoother with high-frequency details lost.

8. Limitations and Future Work

We present the first comprehensive benchmark to evalu-
ate 3D consistency of object multi-view generation mod-
els. Despite robust to various settings, there are still limita-
tions of our benchmark. First, our method cannot evaluate
methods that generate very few views (<10) as the 3DGS
fitting is very inaccurate and fitting error instead of multi-
view inconsistency dominates our consistency scores. One
possible solution is to replace 3DGS fitting with pre-trained
models that can take few-views as input and directly regress
3DGS, such as LGM [52]. This however requires the model
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Method
Geometry consistency Texture consistency Image quality Semantic consistency
CD ↓ depth ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ IQ-vlm ↑ class ↑ color ↑ style ↑

Ours 3.15 14.20 28.93 0.90 0.05 20.46 0.82 0.86 0.94 0.93
SyncDreamer[38] 2.99 17.29 26.83 0.87 0.07 22.72 0.53 0.84 0.96 0.94
SV3D-tune 3.34 16.49 27.71 0.88 0.06 19.06 0.80 0.89 0.95 0.96
SV3D[54] 3.47 19.65 26.75 0.86 0.07 21.31 0.77 0.85 0.92 0.93
Hi3D[72] 3.29 21.69 24.60 0.84 0.09 18.68 0.87 0.89 0.95 0.95
V3D[9] 4.25 28.08 23.84 0.81 0.12 21.20 0.77 0.86 0.96 0.91
EscherNet[28] 4.34 20.61 23.89 0.79 0.11 24.71 0.57 0.77 0.90 0.88
MVDFusion[17] 4.77 38.74 21.44 0.76 0.15 25.60 0.48 0.88 0.94 0.94
ViewFusion[74] 5.33 40.20 22.34 0.80 0.14 22.03 0.63 0.82 0.92 0.92
EpiDiff[21] 5.77 50.65 20.28 0.72 0.19 16.53 0.77 0.89 0.97 0.94
Free3D[80] 6.03 44.27 20.26 0.77 0.18 27.30 0.73 0.78 0.82 0.90
Vivid123[30] 7.57 43.97 21.74 0.81 0.18 38.91 0.63 0.66 0.78 0.80
Zero123[2] 10.99 63.72 17.37 0.67 0.29 21.35 0.73 0.82 0.90 0.93
Zero123-xl[11] 15.40 68.13 17.10 0.66 0.30 20.72 0.72 0.83 0.91 0.94

Table 6. Best setup performance on the GSO [12] dataset.

Method
Geometry consistency Texture consistency Image quality Semantic consistency
CD ↓ depth ↓ PSNR ↑ SSIM ↑ LPIPS ↓ oFID ↓ IQ-vlm ↑ class ↑ color ↑ style ↑

Ours 2.98 11.63 29.09 0.92 0.04 15.47 0.54 0.77 0.85 0.88
SyncDreamer[38] 2.93 13.60 27.24 0.89 0.06 5.94 0.24 0.64 0.85 0.79
Hi3D[72] 3.13 17.63 25.25 0.88 0.08 16.07 0.55 0.74 0.87 0.84
SV3D-tune 3.16 14.11 27.69 0.91 0.05 15.00 0.51 0.79 0.88 0.89
SV3D[54] 3.46 19.46 26.02 0.88 0.07 17.60 0.50 0.69 0.85 0.85
V3D [9] 4.51 23.62 23.01 0.85 0.12 17.70 0.46 0.70 0.84 0.85
EscherNet[28] 5.01 23.25 21.87 0.77 0.14 22.39 0.41 0.60 0.80 0.79
MVDFusion[17] 5.67 47.96 19.04 0.76 0.19 26.89 0.21 0.69 0.83 0.82
EpiDiff[21] 6.78 57.31 18.37 0.73 0.21 14.61 0.52 0.79 0.89 0.88
ViewFusion[74] 7.88 54.32 17.90 0.73 0.24 16.96 0.44 0.68 0.85 0.87
Free3D[80] 8.02 52.58 16.97 0.72 0.25 23.78 0.50 0.61 0.77 0.79
Zero123-xl[11] 13.67 70.17 13.64 0.60 0.39 17.86 0.51 0.67 0.84 0.86
Zero123[2] 14.17 70.32 14.15 0.62 0.38 17.62 0.51 0.69 0.84 0.88
Vivid123[30] 14.31 56.07 17.80 0.76 0.26 27.98 0.50 0.56 0.74 0.74

Table 7. Best setup performance on the Omni3D [63] dataset.

Method
Geometry consistency Texture consistency Image quality Semantic consistency
CD ↓ depth ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ IQ-vlm ↑ class ↑ color ↑ style ↑

Ours 3.10 16.94 25.99 0.88 0.06 23.40 0.29 0.80 0.86 0.82
SyncDreamer[38] 3.04 13.48 25.30 0.88 0.06 30.96 0.12 0.69 0.83 0.70
SV3D-tune 3.43 19.99 24.32 0.85 0.08 21.71 0.26 0.82 0.84 0.83
SV3D[54] 3.48 25.80 23.72 0.87 0.13 24.19 0.29 0.76 0.87 0.78
EscherNet[28] 5.14 26.46 20.34 0.71 0.14 28.54 0.26 0.71 0.79 0.72
Hi3D[72] 5.60 31.09 20.92 0.81 0.12 25.51 0.35 0.75 0.82 0.75
MVDFusion[17] 5.77 47.43 17.50 0.71 0.20 27.16 0.19 0.75 0.82 0.78
EpiDiff[21] 7.71 58.58 15.66 0.64 0.26 20.58 0.31 0.84 0.86 0.82
ViewFusion[74] 7.75 49.76 16.49 0.77 0.29 22.10 0.33 0.82 0.85 0.82
Vivid123[30] 9.81 56.38 15.31 0.69 0.29 35.89 0.49 0.70 0.76 0.72
V3D[9] 10.45 58.71 16.39 0.71 0.26 28.76 0.32 0.72 0.85 0.77
Free3D[80] 11.15 60.95 14.42 0.76 0.33 32.84 0.32 0.71 0.75 0.75
Zero123[2] 12.06 64.74 13.16 0.55 0.38 21.22 0.38 0.84 0.87 0.86
Zero123-xl[11] 12.58 66.99 12.97 0.54 0.38 20.83 0.34 0.85 0.86 0.84

Table 8. Evaluation results on the CO3D[45] dataset with manually selected front view and annotated elevation angles.

to be robust to diverse camera setups which is still an ongo- ing research. Second, we curated four datasets which cov-
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Method
Geometry consistency Texture consistency Image quality Semantic consistency
CD ↓ depth ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ IQ-vlm ↑ class ↑ color ↑ style ↑

Ours 3.04 17.58 26.43 0.88 0.06 22.10 0.37 0.74 0.88 0.84
SyncDreamer[38] 2.87 15.35 25.44 0.88 0.06 30.64 0.17 0.59 0.84 0.79
SV3D-tune 3.37 21.94 24.97 0.85 0.08 22.04 0.34 0.72 0.88 0.82
SV3D[54] 3.39 26.17 23.99 0.83 0.09 22.07 0.33 0.71 0.87 0.79
EscherNet[28] 5.35 29.55 20.31 0.72 0.15 25.78 0.32 0.66 0.82 0.78
Hi3D[72] 6.24 33.72 21.42 0.81 0.12 25.77 0.41 0.63 0.83 0.78
MVDFusion[17] 6.29 50.54 17.27 0.70 0.22 28.45 0.26 0.62 0.80 0.78
EpiDiff[21] 8.05 61.91 15.85 0.64 0.27 20.21 0.42 0.74 0.86 0.84
ViewFusion[74] 8.26 54.27 16.14 0.63 0.28 21.77 0.39 0.72 0.84 0.84
Free3D[80] 10.64 60.00 14.77 0.65 0.33 33.58 0.38 0.60 0.70 0.75
Vivid123[30] 10.67 58.06 15.81 0.69 0.30 35.84 0.56 0.56 0.68 0.75
V3D [9] 10.74 65.40 16.30 0.71 0.26 27.89 0.40 0.65 0.79 0.79
Zero123-xl[11] 12.04 67.08 13.45 0.55 0.38 20.51 0.41 0.74 0.85 0.87
Zero123[2] 12.11 66.76 13.61 0.56 0.38 20.83 0.42 0.74 0.85 0.86

Table 9. Evaluation results on the MVImgNet [75] dataset with manually selected front view and annotated elevation angles.
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Figure 11. Degradation of image quality after passing through the
autoencoder of SV3D [54]. Clearly the high frequency details are
destroyed by the autoencoder.

ers mainly daily objects, and most of them are indoor. It
would be interesting to also consider outdoor objects such
as buildings, statues or complex compositional shapes such
as human-human or human-object interactions. Last but not
least, we evaluate the robustness w.r.t lighting, elevation and
azimuth angles. Real life objects have much more attributes
that can affect the performance, such as the material, shad-
ing condition, specific object categories. One can do more
comprehensive analysis could be done using our proposed
metrics to understand the progress of SoTA methods. We
leave these for future works.
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