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Figure 1. From a monocular RGB video, our method tracks the human and object under occlusion and dynamic motions, without using
any object templates. Our method is trained only on synthetic data and generalizes well to real-world videos captured by mobile phones.

Abstract

Tracking human object interaction from videos is impor-
tant to understand human behavior from the rapidly grow-
ing stream of video data. Previous video-based methods re-
quire predefined object templates while single-image-based
methods are template-free but lack temporal consistency.
In this paper, we present a method to track human ob-
ject interaction without any object shape templates. We
decompose the 4D tracking problem into per-frame pose
tracking and canonical shape optimization. We first apply
a single-view reconstruction method to obtain temporally-

inconsistent per-frame interaction reconstructions. Then,
for the human, we propose an efficient autoencoder to pre-
dict SMPL vertices directly from the per-frame reconstruc-
tions, introducing temporally consistent correspondence.
For the object, we introduce a pose estimator that leverages
temporal information to predict smooth object rotations un-
der occlusions. To train our model, we propose a method
to generate synthetic interaction videos and synthesize in
total 10 hour videos of 8.5k sequences with full 3D ground
truth. Experiments on BEHAVE and InterCap show that our
method significantly outperforms previous template-based
video tracking and single-frame reconstruction methods.
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Our proposed synthetic video dataset also allows training
video-based methods that generalize to real-world videos.
Our code and dataset will be publicly released.

1. Introduction
Jointly reconstructing humans and objects is an important
task to understand humans and their interaction with the en-
vironment. In this paper, we address the problem of track-
ing human object interaction from a single RGB camera,
without any object templates. This is a very challenging
task due to depth scale ambiguity, heavy occlusions and dy-
namic human object motions. Moreover, the human and
object poses as well as shapes need to be estimated simul-
taneously as no prior templates are given.

Earlier work VisTracker [75] pioneered monocular inter-
action tracking by reasoning about the occluded object us-
ing visible frames and human information. However, they
rely on pre-defined object templates which limits its appli-
cability to general scenarios. Furthermore, they use per-
frame object pose estimator with ad-hoc smoothing to rea-
son occluded objects, which does not fully explore tem-
poral information. More recently, HDM [76] proposed
a template-free approach to reconstruct human and object
from single images. Their model trained only on synthetic
data shows strong generalization ability to real-world im-
ages. However, this method fails under heavy occlusions
and produces inconsistent shapes across frames.

To address these challenges, we propose InterTrack, in-
teraction tracking without object templates. We decompose
the 4D video reconstruction problem into per-frame pose
estimation and global shape optimization. This decompo-
sition greatly constraints the solution space of 4D recon-
struction, making the problem tractable. Specifically, we
start with the HDM [76] per-frame reconstructions which
provide initial 3D human and object point clouds that are
inconsistent across frames. For the human, we propose a
simple and efficient autoencoder, CorrAE, which directly
predicts the SMPL [41] vertices that are aligned with the
HDM human reconstructions. This allows us to obtain dis-
entangled SMPL pose and shape parameters for temporally
consistent optimization and introduces correspondence over
time. For the object, we introduce TOPNet, which lever-
ages temporal information to predict object rotation from
monocular RGB video. The temporal design allows ac-
curate object pose prediction even under heavy occlusions.
With the predicted rotations, we can then optimize the ob-
ject shape in canonical space as well as per-frame pose
transformations, leading to temporally consistent tracking.
Last, we jointly optimize human and object based on the
predicted contacts, leading to more plausible interactions.

Prior works [74, 75] train their methods on real data and
test on same set of object instances, which limits the gener-

alization to new objects [76]. Recent work ProciGen [76]
proposed a synthetic interaction dataset with 1M images
and 21k different object shapes. However, ProciGen con-
tains only static frames, making it impossible to train video-
based methods. To this end, we propose ProciGen-Video,
a method to generate synthetic interaction videos and we
generate 8.5k videos of 10 categories paired with full 3D
ground truth. This dataset allows us to train our object pose
estimator TOPNet that generalizes to real videos.

We evaluate our method on BEHAVE [5] and Inter-
Cap [26] dataset. Experiments show that our method sig-
nificantly outperforms VisTracker [75] (which requires tem-
plate) and HDM [76]. Our ablation shows that our CorrAE
achieves similar performance compared to SoTA human
registration method NICP [43] but is 30 times faster, and
our proposed TOPNet works significantly better than prior
category-level pose estimator CenterPose [39]. Results also
show that pre-training on our ProciGen-Video dataset helps
boost the performance and our model trained on synthetic
ProciGen-Video generalizes to real videos.

In summary, our key contributions are:
• We propose InterTrack, the first method to track full-body

dynamic object interaction from monocular RGB videos
without object templates.

• We introduce an efficient autoencoder for human registra-
tion that is 30 times faster with comparable performance.

• We propose a video-based object pose estimator that
leverages temporal information to predict object rotations
even under heavy occlusions.

• We introduce ProciGen-Video, a method to generate syn-
thetic videos for interaction. With this, we create a dataset
of 8.5k videos paired with full 3D ground truth.

2. Related Works
General object tracking. Reconstructing and track-
ing objects from monocular videos has been studied for
decades [88]. Early works [46, 47] track objects with
TSDF fusion and are further improved with neural net-
works [68, 79]. They require depth which can be incon-
venient hence more recent works track human [30, 32, 70]
or learn general articulated objects [80, 81] from RGB
videos. Follow up works extend to learn shapes from casual
videos [82, 83] or unstructured images in the wild [38, 73].
These methods learn an explicit template shape, the defor-
mation skeleton and skinning weights. Orthogonal to this,
NPG [11] and KeyTr [49] represent shapes as basis points
and coefficients learned from videos. Despite impressive re-
sults, these methods assume single object and cannot handle
the compositional shape during human object interaction.
Interaction reconstruction and tracking. Interaction
modelling has recently received more and more atten-
tion in generation [35, 36, 54, 93, 97] and reconstruc-
tion [21, 74, 77, 90, 95]. Hand-object reconstruction has
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been well studied and recent methods are able to recover
interaction without any templates [55, 86, 87]. Full body
object interaction methods usually rely on template ob-
jects [8, 27, 45, 65, 71, 74, 91], with only one template-
free method [76] trained on large synthetic dataset. 3D
interaction from single images is heavily ill-posed hence
some methods leverage temporal information to improve
robustness, with works that track interaction from multi-
view[5, 24, 26, 28, 89] or monocular [29, 59] RGBD cam-
eras. From RGB camera only, researchers leverage pho-
tometric consistency [22] or large diffusion model [85] to
guide the reconstruction and lots of methods can obtain
good object shapes [14, 20, 25, 58, 84] from hand-object
interaction. Object shape is less constrained by the human
during full-body interaction hence methods rely on pre-
scanned point clouds [17, 18] or meshes [75, 78] to track the
interaction. Despite being robust to occlusion, the reliance
on object templates limits their applicability. In contrast,
our method deals with full-body dynamic object interaction
and does not require any object templates.
Correspondence estimation. Correspondence is the key
for video tracking. For 3D humans, registering common
templates like SMPL [41] to 3D scans is a classic problem
and has been studied in many works [3, 4, 10, 15, 16, 42,
43]. Most SoTA methods [3, 4, 10, 43] rely on optimization,
which is slow for video processing. In contrast, our CorrAE
directly predicts SMPL vertices which is more efficient.
For 3D objects, correspondence can be obtained via func-
tional maps [51, 52] or deep neural networks [11, 19, 57, 72,
94, 96]. However, learning-based methods can only process
shapes with aligned orientation which does not apply to our
objects that have arbitrary rotations during interaction. In-
stead, we first estimate the rotations and then optimize the
shape in canonical space.

3. Method
We present InterTrack, an approach to track interacting hu-
man and object from monocular video, without object shape
templates. This is very challenging as one needs to estab-
lish correspondences, and to reason about object pose/shape
simultaneously under heavy occlusion and dynamic motion.

Our key idea is to decompose 4D human and object into
per-frame poses and global consistent shapes. For the hu-
man, we propose a novel autoencoder that directly predicts
SMPL [41] vertices from unordered points, allowing us to
use the disentangled SMPL pose and shape parameters. For
the object, we introduce a video based object pose pre-
dictor that estimates temporally consistent object rotations.
This enables us to optimize one common shape in canonical
space and per-frame object transformations. An overview
of our method can be found in Fig. 2.

In this section, we first briefly discuss how do we obtain
per-frame 3D reconstruction with HDM [76] in Sec. 3.1.

We then introduce our novel CorrAE for human correspon-
dence and optimization in Sec. 3.2 (Fig. 2B), and TOPNet
for temporal rotation prediction and shape optimization of
objects in Sec. 3.3(Fig. 2C). We then jointly optimize hu-
man and object based contacts to obtain plausible interac-
tion (Fig. 2D, Sec. 3.4). Prior datasets either have only lim-
ited objects [5, 26] or static frames [76]. To train our video
pose estimator, we introduce a method to generate synthetic
video dataset for human object interaction (Sec. 3.5).

3.1. Preliminaries

Given an image sequence {Ii, i = 1, ..., T} from monocu-
lar RGB camera of a human interacting with an object, we
aim at reconstructing temporally consistent 3D human Hi

and object Oi for each image. We represent each human
and object as dense point clouds and obtain a sequence of
temporally coherent points where each point has correspon-
dence across frames.

We first apply HDM [76], a SoTA template-free ap-
proach to reconstruct interacting human and object for
each image. Specifically, given a single RGB image Ii,
HDM [76] reconstructs 3D point Ph

i ∈ RN×3,Po
i ∈ RN×3

of human and object respectively. They adopt a conditional
generation paradigm which iteratively denoises Gaussian
point clouds into clean human and object points, condi-
tioned on the pixel aligned image features for each points.

The HDM reconstruction provides strong prior of the
human-object shapes and interaction semantics like contact
points. However, the reconstructed points do not have corre-
spondence across frames due to the nature of the stochastic
diffusion process. Furthermore, the diffusion model outputs
point clouds in a normalized metric space, leading to differ-
ent sizes of human and object even if they are from the same
sequence. We address these problems next.

3.2. Consistent human reconstruction

The goal is to leverage the shape priors from the HDM
predicted points that are unordered and create a sequence
of points with cross-frame consistency. Several previous
methods can register the SMPL model [41] into human
point clouds [3, 4, 43]. However, these methods use slow
optimization which makes it difficult to apply to video
data. We propose to use a simple autoencoder, CorrAE
fae : RN×3 → RNs×3, which directly outputs the SMPL
vertices from unordered points.

Specifically, we use PVCNN [40] as the point cloud en-
coder which encodes the human points Ph

i into a 1D latent
vector zhi . We then stack several MLP layers to decode the
latent vector into 3D points P̂h

i ∈ R3Ns , here Ns = 6890 is
the number of vertices in the SMPL model [41]. Thanks
to the regularity of MLP layers, the outputs P̂h

i are or-
dered points [72, 76, 96] and establish correspondence be-
tween different human point clouds. Different from [72, 76]
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Figure 2. Method Overview. Given an image sequence of human object interaction and HDM [76] reconstructions (A), we aim at obtaining
coherent tracking of the human and object across frames (E). We first use a simple yet efficient autoencoder CorrAE to obtain coherent
humans points and optimize human via the SMPL layer (B, Sec. 3.2). We then use a temporal object pose estimator TOPNet to predict the
object rotation, which allows us to optimize a common object shape in canonical space and fine tune pose predictions (C, Sec. 3.3). We
then jointly optimize human and object based on contacts to obtain consistent tracking (D, Sec. 3.4).

that require aligned object shapes, the key to handle hu-
mans with different orientations is to train the network using
Chamfer distance combined with vertex to vertex error:

Lae = dcd(fae(P),P) + λv2v||fae(P)−VSMPL||22 (1)

where VSMPL,P are the vertices and surface samples from
SMPL meshes respectively. We train this model on the
ground truth SMPL meshes from synthetic ProciGen [76]
dataset and find it works well on the reconstructed point
clouds from HDM [76]. More importantly, it is much faster
than traditional optimization-based method [43], see Tab. 5.

With our CorrAE, one can establish correspondence
across frames and then optimize the human representa-
tion for human tracking. One straightforward option is to
optimize the latent code zhi of each frame with temporal
smoothness loss. However, the latent space is not inter-
pretable, without decoupling of the human pose and shape.
Instead, we leverage the SMPL representation [41] which
has disentangled pose and shape parameter space.

Specifically, we first use the smplx library [53] to ob-
tain each frame’s SMPL parameters θi,βi from our CorrAE
predictions P̂h

i . Note that our CorrAE is the key here as
without correspondence, it is impossible to obtain accurate
SMPL parameters [3, 4]. We then compute a mean body

shape β̄ = 1
T

∑
i βi as the shape parameter for the full se-

quence and optimize only the per-frame translation ti, scale
si and local poses θi. Let H(θ,β) denote the SMPL model
that outputs SMPL vertices given pose and shape param-
eters, we compute the human points in camera space by:
Hi = siH(θi, β̄) + ti. We optimize the per-frame param-
eters θi, ti, si to fit into original HDM human reconstruc-
tions Ph

i with temporal smoothness and pose regularization:

Lhum =

T∑
i

λh
cddcd(P

h
i ,Hi)+λpLpr(θi)+λh

aLacc(H) (2)

here Lpr is the pose prior loss [3, 23, 62], and Lacc(H) =∑T
i=2 ||Hi−2Hi−1+Hi−2||22 is a smoothness loss based on

acceleration. We show in Tab. 5 that optimizing via SMPL
model is better than optimizing the latent vectors directly.

3.3. Rigid object shape reconstruction

Similar to the human points, the object points Po
i pre-

dicted by HDM [76] are also unordered and lack tempo-
ral consistency. Furthermore, the model generates differ-
ent 3D shapes when the object is occluded in the image,
making tracking more challenging. In a video, the ob-
ject can be decomposed into one global shape in canonical
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space and per-frame relative transformations. Estimating
object pose without shape is however non-trivial as the ob-
ject can be fully occluded during interaction. Methods like
COLMAP [56] and OnePose [60] fail to track the object due
to limited object features. To this end, we propose TOPNet,
a transformer-based network that leverages the temporal in-
formation to predict object rotations in a video. Our idea is
to use transformer [63] to exchange features across frames
and output smooth object poses.

Specifically, we first use DINOv2 encoder [50] followed
with two additional convolution layers [73] to compress
each input image Ii into a feature vector FI

i . We con-
catenate the image feature with human pose information
Fh

i and object visibility ratio vi ∈ [0, 1] (0-fully occluded
and 1-fully visible). The human feature Fh

i = (θi,Ji,J
′
i)

consists of SMPL pose θi, 3D joint location Ji and joint
velocity J′

i. Hence, the feature vector for each image is
Fi = (FI

i ,F
h
i , vi). We then stack features from W consec-

utive frames as a feature matrix F = (F1, ...,FW ) and use
transformer encoder [63] to exchange temporal information.
The attention layer in transformer outputs more temporally
consistent features which are sent to MLP to predict object
rotation, represented via the 6D representation [98]. We
train our TOPNet with L1 distance between the predicted
rotations R̂ = {R̂1, ..., R̂W } and ground truth Ri, and ac-
celeration loss Lacc (Eq. (2)): Lrot =

∑
i ||R̂i − Ri||1 +

λp
aLacc(R̂). Our TOPNet is trained with W=16 consecutive

frames to learn temporal correlations due to limited data IO
speed. At test time, we find it better to use a longer window
W=64 and average predictions of each frame in different
sliding windows. See Supp. for analysis.

Training this model requires ground truth object pose in
a video during realistic interaction. We propose a method
to synthesize such video dataset in Sec. 3.5. At training
time, we use ground truth human pose and object visibil-
ity. At test time, we use PARE [33] to estimate the human
pose. For the object, we render the HDM object predictions
twice, with and without reconstructed human points, and
then compute the mask area ratio as the visibility ratio.

With the predicted rotations, we can then decompose
the object tracking into global shape and per-frame ob-
ject pose optimization. Specifically, we optimize an object
shape O ∈ RN×3 in canonical space and its correspond-
ing rotation Ri, translation toi and scale soi at frame i. We
transform the object from canonical space to frame i via:
O′

i = soiORi + ti. We optimize the shape and pose to fit
into 2D object masks Mi and HDM object reconstructions:

Lobj =

T∑
i

λo
cddcd(O

′
i,P

o
i ) + λoccLocc-sil(π(O

′
i),Mi)+

λo
aLacc(O′) + λr

aLacc(R) + λt
aLacc(T ) + λs

aLacc(s) (3)

where π(·) denotes differentiable rendering and Locc-sil is

the occlusion aware silhouette loss [91]. Lacc is temporal
smoothness (Eq. (2)) for a sequence of object points: O′ =
{O′

1, ...,O
′
T }, rotations R, translations T and scales s.

We initialize the canonical object shape O from HDM
reconstruction of one random frame where the object visi-
bility is higher than a threshold σ. For more details about
loss weights λ∗, see Supp.

3.4. Joint human object optimization

The shape optimization discussed in Sec. 3.2 and Sec. 3.3
deals with human and object separately which can lead to
unrealistic interaction. Hence, we propose to further jointly
optimize human and object together to satisfy contacts pre-
dicted by the initial HDM [76] reconstructions.

HDM reconstructs separate human Ph
i and object Po

i

point clouds, which allows computing the contact points to
pull our optimized human and object together when there
are contacts. Specifically, we identify the human points that
are in contact as the points whose distance to the object is
smaller than a threshold: P̃h

i = {ph
i,j |mink|ph

i,j − po
i,k|2 <

δ, ∀j, k ∈ {1, ..., N}}. The corresponding object points
po
i,k are identified as the object contacts P̃o

i . We then trans-
fer the contact points to the optimized human Hi and object
points O′

i by finding their closest points in P̃h
i , P̃

o
i . De-

noting the transferred contact points as H̃i, Õi, the joint
optimization objective combines contact distance loss and
separate human and object losses:

Ljoint = Lhum + Lobj + λc

∑
i

||H̃i − Õi||22 (4)

where Lhum and Lobj are defined in Eq. (2) and Eq. (3) re-
spectively. See Supp. for more loss weight details.

3.5. ProciGen-V: Synthetic Interaction Videos

Training our video-based TOPNet requires video datasets of
human object interaction. Previous methods[74, 75] were
trained on BEHAVE[5] and InterCap [26] which cannot
generalize to other objects as shown in [76]. Capturing
more interaction is not scalable due to the compositional-
ity of human object interaction. Recent work ProciGen [76]
can generate interaction with new objects but is limited to
static frames only. To this end, we introduce ProciGen-
Video, a method to synthesize videos for interaction.

We start with ProciGen [76], which generates new in-
teractions by replacing the real captured object with new
shapes from the same category. To generate an interac-
tion video, we sample a chunk of an interaction sequence
with human and object poses from real data. We then ran-
domly select one shape of the same category from shape
databases [7, 12] and replace the original object with the
new shape. We initialize the object pose for the new shape
via dense correspondence [96]. This initialization can have
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interpenetration as the new shape is different from the orig-
inal, hence, we further fine-tune the human and object pose
to satisfy contacts and temporal smoothness. We then ren-
der the human with SMPL-D texture [2] and object with
original textures to obtain images in blender. Please see
Supp. for optimization details and example videos.

We apply our method to generate interaction videos of 10
different object categories with interaction motions sampled
from BEHAVE and InterCap training set, and object shapes
from Shapenet [7], Objaverse [12]. This leads to around 10
hours of video with 8477 sequences and 2M images. We
call this dataset ProciGen-Video, or ProciGen-V for short.
Since all the objects used in our dataset are aligned in the
canonical space, models trained on our data have category-
level pose estimation ability and they generalize well to real
data (Fig. 1, Tab. 1, Tab. 3). We will release our ProciGen-
video dataset to facilitate future research.

4. Experiments
In this section, we first compare our method against prior
works on reconstructing human object interaction from im-
ages or videos and then evaluate our ProciGen-V dataset.
We further ablate the design choices of our human, object
and joint optimization modules. We include network archi-
tecture and training details in supplementary.

4.1. Comparison with prior methods

Baselines. We compare our method against image-based
methods CHORE [74], HDM [76] and video based method
VisTracker [75]. CHORE relies on known object tem-
plates while HDM is template-free. VisTracker also re-
quires known object templates but it improves CHORE on
video by leveraging image aligned SMPL and temporal in-
formation. HOLD [14] is a template-free method for video
based hand-object tracking that is relevant to us. However,
it relies on hand-specific inverse skinning and hand-object
contact annotations which makes it not directly applicable
to our setup. Hence we do not consider HOLD as a baseline.
Datasets. We conduct experiments on the BEHAVE [5],
InterCap [26], synthetic ProciGen [76] and our ProciGen-
V datasets. BEHAVE and InterCap capture realistic hu-
mans interacting with 20 and 10 objects, respectively. Pro-
ciGen extends these dataset by replacing the objects with
shapes from ShapeNet [7], Objaverse [12], and ABO [9]
datasets and synthesizing new interaction images. Follow-
ing HDM [76], we first train HDM and our CorrAE on the
ProciGen dataset and then fine tune HDM on BEHAVE and
InterCap training sets. Our TOPNet is also first trained on
ProciGen-V and then tuned on BEHAVE and InterCap. We
test the methods on sequences from the 10 overlapping cat-
egories between ProciGen-V and BEHAVE as well as In-
terCap. In total there are 66 test sequences (51k images) in
BEHAVE and 15 sequences (2k images) in InterCap.

Evaluation Metrics. Following [61, 76], we evaluate the
shape accuracy using F-score with threshold 0.01m. We
report the F-score for human, object and combined shape.

Method Human↑ Object↑ Comb.↑

B
E

H
AV

E HDM synth. only 0.3574 0.4118 0.4118
Ours synth. only 0.3780 0.4658 0.4488

HDM 0.3909 0.5111 0.4622
Ours 0.4113 0.5849 0.5169

In
te

rC
ap

HDM synth. only 0.3570 0.4342 0.4080
Ours synth. only 0.3715 0.5141 0.4646

HDM 0.4325 0.6267 0.5362
Ours 0.4463 0.6329 0.5555

Table 1. Reconstruction results (F-sc.@0.01m) on BEHAVE [5]
and InterCap [26] of template-free methods. Synth. only denotes
model trained only on synthetic ProciGen[76] and our ProciGen-
V. Our method consistently outperforms HDM [76] in all settings.

We first compare with template-free method HDM [76]
in Tab. 1. HDM is image-based method that cannot rea-
son temporal consistency and fails when the object is oc-
cluded. Following HDM [76], we also report the results
when both methods are trained only on the synthetic Proci-
Gen and ProciGen-V datasets (synth. only). It can be seen
that our method consistently improves over HDM in both
without and with training on real data.

We then compare with CHORE [74] and VisTracker [75]
that require object templates. For fair comparison, we adapt
our method to use the same object template as the shape
O and optimize only the transformation parameters. We
report the results in Tab. 2 following the same Procrustes
alignment used by CHORE [74] to avoid depth-scale am-
biguity. CHORE predicts noisy object poses when they
are occluded, leading to inconsistent tracking. VisTracker
improves CHORE via ad-hoc pose smoothing and infill-
ing which is still suboptimal. Our method takes tempo-
ral information into account in the first place and produces
more stable tracking. Notably, our method without tem-
plate (Tab. 1) also archives better performance compared
to template-based VisTracker and CHORE. We show some
qualitative comparisons of our method without template and
baselines in Fig. 3. It can be seen that our method is more
robust to occlusions and produces coherent object shapes.

4.2. Evaluating the ProciGen-Video dataset

Our ProciGen-V dataset allows us to train a video-based
pose estimator that generalizes to other instances of the
same category as all the poses are defined w.r.t an aligned
canonical space. To evaluate this, we train our object pose
TOPNet on ProciGen-V, BEHAVE, and a combination of
both. For other parts of our method, we use the same HDM
trained on ProciGen [76] only and perform the same opti-
mization process. Due to compute limitation, we test only
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Input image VisTracker HDM Ours VisTracker - side HDM - side Ours - side

Figure 3. Comparing our method against VisTracker [75] and HDM [76] on BAHEVE (row1-2) [5] and InterCap (row3-4) [26]. VisTracker
relies on post-hoc processing to refine object pose which is inaccurate and HDM reconstructs inconsistent object shapes (row 1-2) or
interactions (row 3-4). Our temporal based pose estimation and optimization leads to consistent shape and interaction.

Method Human↑ Object↑ Comb.↑

B
E

H
AV

E CHORE [74] 0.3807 0.4423 0.4224
VisTracker [75] 0.4189 0.5607 0.5012
Ours + template 0.4972 0.5854 0.5525

In
te

rC
ap CHORE [74] 0.4065 0.4972 0.4601

VisTracker [75] 0.4293 0.5316 0.4902
Ours + template 0.4826 0.5349 0.5349

Table 2. Reconstruction results (F-sc.@0.01m) on BEHAVE [5]
and InterCap [26] for template based methods. Our method ob-
tains more accurate tracking in both datasets.

on 14 BEHAVE sequences (9.1k images). We report the
object pose error, the chamfer distance between predicted
and GT rotation applied to GT meshes, and the final track-
ing results in Tab. 3. It can be seen that the performance
gap between models trained on synthetic and real data is
small and pre-training model on our ProciGen-V can boost
the performance.

TOPNet Training Data Obj. CD ↓ Hum.↑ Obj.↑ Comb.↑
a. ProciGen-V only 4.859 0.3392 0.4662 0.4327
b. BEHAVE only 3.175 0.3376 0.4815 0.4385
c. ProciGen-V+BEHAVE 2.922 0.3392 0.4980 0.4468

Table 3. Training object pose TOPNet on different datasets.
Our TOPNet trained only on our synthetic ProciGen-V generalizes
to unseen instances in BEHAVE [5]. Further fine-tuning the model
on real data archives the best performance.

4.3. Evaluating object pose estimators

We propose TOPNet, a video based method to predict cat-
egory level object rotations conditioned on human pose.
We compare our TOPNet against a prior method Center-
Pose [39] for category-level pose estimation. Note that we
exclude methods [34, 37] that require additional optimiza-
tion as it is too slow to process video data or methods that
require object templates [48, 66, 92] or depth [6, 67, 69].
We train CenterPose, our TOPNet with and without human
pose condition on our synthetic ProciGen-V and test it on
14 BEHAVE sequences (same as Sec. 4.2 Tab. 3a). Results
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Input image w/o 2D loss Oursw/o 3D loss

Figure 4. The effects of 2D and 3D losses for object optimiza-
tion. Without the2D mask loss, the object shape is very noisy and
without 3D chamfer loss the relative object position is incorrect.

are shown in Tab. 4. CenterPose predicts noisy pose un-
der occlusions while our model with human conditioning
achieves the best overall results.

Method Obj. CD↓ Hum.↑ Obj.↑ Comb.↑
a. CenterPose + Our opt. 7.889 0.3332 0.3272 0.3641
b. Ours w/o hum. cond. 4.910 0.3380 0.4610 0.4286
c. Ours full model 4.859 0.3392 0.4662 0.4327

Table 4. Object pose error (Chamfer Distance in cm) and joint
tracking results using different object pose estimator. Our tempo-
ral based TOPNet predicts more accurate object poses than Cen-
terPose [39] and human condition improves the performance.

4.4. Evaluating human reconstruction module

We propose a simple yet efficient network CorrAE to obtain
correspondence for a sequence of unordered human points.
Keeping other modules the same as Tab. 3a, we compare
results of using our CorrAE or a human registration method
NICP [43] for the human reconstruction part in Tab. 5. It
can be seen that our method achieves similar performance
but is much faster than NICP. We also report the results of
optimizing the latent code of CorrAE instead of optimiz-
ing SMPL parameters in Tab. 5b. The latent space entan-
gles human pose and shape which is less controllable than
SMPL model [41]. Optimizing the latent code also leads to
unsmooth surface points, please see supplementary for ex-
amples and more analysis. Optimizing via the SMPL layer
leads to better human reconstruction (Tab. 5c).

Method Hum.↑ Obj.↑ Comb.↑ Corr. Time↓
a. NICP + our opt. 0.3380 0.4669 0.4325 72.322
b. Ours opt. latent 0.3281 0.4631 0.4283 0.001
c. Ours 0.3392 0.4662 0.4327 2.553

Table 5. Different methods for human optimization and the
runtime (seconds/image) to obtain correspondences. NICP [43]
obtains similar results yet the runtime is significantly longer than
our autoencoder (b, c). Optimizing through the SMPL body model
achieves a good balance between runtime and accuracy.

4.5. Importance of different losses

We ablate the effect of the 2D mask loss (Locc-sil) and the 3D
chamfer loss (dcd) for object optimization (Eq. (3)) in Fig. 4.

It can be seen that omitting both will lead to a low-fidelity
object shape. We also ablate our contact-based pose refine-
ment in Tab. 6 and Fig. 5. Quantitatively, the contact re-
finement has tiny difference yet qualitatively it significantly
improves the physical plausibility of the reconstructed in-
teraction (Fig. 5). Without this refinement, the object will
be floating in the air which is not physically plausible.

Input image w/o contact refinement with contact refinement

Figure 5. Ablating the influence of the contact-based refinement.
Without contact, the hand and object can be far apart, leading to
implausible interaction.

Method Hum. Obj. Comb.
a. w/o contact refinement 0.3430 0.4653 0.4338
b. Ours full model 0.3392 0.4662 0.4327

Table 6. Contact based refinement leads to tiny quantitative dif-
ference but more plausible interaction qualitatively, see Fig. 5.

5. Limitations and Future Works
Despite impressive performance on benchmark datasets and
strong generalization to real videos, there are still some lim-
itations of our method. First, our method does not recon-
struct the textures of the human and object. Our method is
easily compatible with Gaussian Splating [31] and adding
colors to each point could potentially further constraint the
optimization [11]. Second, our dataset contains only the
categories from BEHAVE and InterCap. Future works can
capture more objects or explore synthesizing new interac-
tions without real data. Multi-human, multi-object inter-
action with deformable object tracking are also interesting
directions to explore. We leave these for future works. We
also provide example failure cases and analysis in Supp.

6. Conclusion
In this paper, we present InterTrack, the first approach
to track full-body interaction with dynamic object from
monocular RGB video without pre-scanned object tem-
plates. Our first contribution is a simple yet efficient au-
toencoder CorrAE to directly predict SMPL vertices from
unordered human reconstructions. Our second contribution
is a video-based pose estimator TOPNet that leverages tem-
poral information to predict smooth rotation under occlu-
sions. We also introduce a method to generate synthetic
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videos for interaction and we synthesize 10-hour videos of
∼8.5k sequences for training video based methods.

Our experiments on BEHAVE and InterCap show that
our method significantly outperforms prior template-free
and template-based approaches. Ablation studies also show
that our method trained on our synthetic video dataset gen-
eralizes to real data. We also show that our CorrAE is much
more efficient than SoTA human registration method with
similar performance and our TOPNet is more accurate than
another category-level pose estimator method. Our code,
models and dataset will be publicly released.
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Supplementary Material

In this supplementary, we provide more implementation
details for our tracking method and synthetic video genera-
tion. We also further analyze the design considerations and
discuss typical failure cases of our method. Please refer to
our supplementary video for video tracking results.

7. Implementation Details
We discuss the network architecture, training, and optimiza-
tion details in this section. Our code will be publicly re-
leased with clear documentation to foster future research.

7.1. CorrAE and human optimization

For our human CorrAE, we adapt the encoder from
PVCNN [40] which is also used in [44, 76]. It compresses
input point clouds of shape N × 3 into downsampled point
feature of shape 512 × 16. We add two additional point
convolution layer [40] to further compress it into latent vec-
tor zh of shape 1024 × 1. The latent code is then sent to
one MLP layer, followed by 6 blocks of MLP layers with
residual connection. The MLP compress the latent code to
512 dimension and each block consists of three MLP layers
with LeakeyReLU activation. The output dimensions of the
MLPs in each block are 256, 256, 512. The 512 dimension
feature vector is then sent to a large MLP which predicts
6890 SMPL vertices as a single vector.

We train our CorrAE with a loss weight λv2v = 100 for
the vertex to vertex loss and use Adam optimizer with learn-
ing rate of 3e-4. The model is trained on the GT SMPL
meshes from ProciGen training set. It takes around 12
hours to finish training on 4 RTX8000 GPUs with batch
size 32. The loss weights for the human optimization are:
λh

cd = 100, λp = 1e − 5, λacc = 100. We use Adam of
learning rate 0.001 and stochastic gradient descent to opti-
mize the human pose parameters, with a batch size of 256.
We optimize for 2500 steps which takes ∼30 minutes on an
A40@40GB GPU.

7.2. TOPNet and oject optimization

For the object pose TOPNet, we combine DINOv2[50] im-
age encoder with transformer [63]. DINOv2 encodes image
of shape 3×224×224 into a feature grid of 768×16×16.
We then add three 2D convolution layers with kernel size 4,
group normalization and leaky ReLU activation to further
compress the feature grid into a vector of shape 1×1×768.
This operation is similar to the one used in MagicPony [73].
The dimension of human feature is 294 = 25× 6+ 24× 6,
which consists of 25 body joints and their velocities and
SMPL body pose represented as rotation 6D[99]. We en-
code the human feature using two MLPs with a latent di-

mension 128 and output dimension 128. The human feature
is then concatenated with object visibility and image feature
vector and sent to transformer with 3 encoder layers [63].
Each encoder layer has 4 heads and feed forward dimen-
sion of 256. The temporal features are then sent to 3 MLP
layers with output dimensions of 128, 64, and 6.

We train the model with learning rate 3e-4 (Adam op-
timizer) and batch size 16, temporal window size 16. It
takes around 31 hours to converge on 4 RTX8000 GPUs.
We train two models for all 10 categories in ProciGen-V
dataset: one for large objects (chair, table, monitor) and
another one for small symmetric objects (all the rest cate-
gories). The loss weights for the object optimization are:
λo

cd = 10, λocc = 0.001, λr
a = 1000, λt

a = 200, λs
a = 1000.

We optimize canonical shape and per-frame poses with a
batch size of 64. For models trained on synthetic data only
we optimize for 16k steps as the initial shape is less accu-
rate, which takes around 2 hours. For models fine-tuned
on real data, we optimize only 6k steps which takes 50-60
minutes on one A40 GPU.

7.3. Joint optimization

The loss weights for the human (Lhum) and object (Lobj)
loss terms are the same as the ones used for separate op-
timization. The contact loss weight λc = 10. Note that
we optimize only the SMPL body pose and object rotation
parameters as this is used only for fine tuning the poses.

Similar to separate optimization, we use Adam with
learning rate 0.001 for human and 6e-4 for object. We re-
fine for 2500 steps with batch size 64, which takes in total
∼35 minutes on one A40 GPU.

7.4. ProciGen-Video data generation

We start from ProciGen proposed in [76] to procedurally
generate interaction videos for new object shapes. The goal
is to change the human and object shape and render new
videos. We first sample a chunk of human and object poses
from interaction sequences in real data. The human is repre-
sented using SMPL [41] pose Θ = {θ1, ...,θN} and shape
B = {β1, ...βN} parameters, here 1, ..., N are the time
index. We compute dense correspondence between origi-
nal object shape and new shape using an autoencoder [96],
which allows transferring contacts from original shape to
new shape. We also use the correspondence to initialize the
pose Ti ∈ R4×4 for the new object [76]. The initializa-
tion can lead to interpenetration problem, hence we further
optimize the body poses Θ, shapes B and object transfor-
mations T = {T1, ...TN} to satisfy contacts and temporal
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Figure 6. Number of distinct object shapes used in our ProciGen-V dataset. Our method is scalable and can generate interaction for new
object shapes within these categories.

Figure 7. Distribution of interaction sequences per category in our ProciGen-V dataset. Our dataset is balanced for most categories
except for chair which contains more complex shape and interactions.

smoothness:

L(Θ, T ,B) = λcLc+λnLn+λcolliLcolli+λinitLinit+λaccLacc
(5)

where the contact loss Lc, normal loss Ln, interpenetration
Linit and initialization penalty Linit are defined in [76]. And
Lacc is the temporal smoothness loss defined in Eq. (2) ap-
plied to a sequence of SMPL vertices. Note that we also
randomly sample a body shape parameter from the MGN
dataset [2] to replace the original shape for more diversity.
The loss weights used are: Lc = 400, Ln = 6.25, Lcolli =
9, Linit = 100, Lacc = 10.

Once optimized, we use SMPL-D registration [2] which
adds per-vertex offsets to the SMPL vertices to model cloth-
ing deformation and texture. For the object, we use the

original textures from the CAD model. We also add small
random global rotation and translation to the full sequence
to increase diversity. We render the human and object in
blender with random lighting and no backgrounds. Some
example renderings can be found in ADD REF.

We generate interaction videos for 10 object categories.
The interaction poses are sampled from BEHAVE [5]
and InterCap [26], object shapes are sampled from Obja-
verse [12] and ShapeNet [7]. The distribution of distinct
object shapes can be found inFig. 6, and the number of in-
teraction sequences per-category can be found in Fig. 7. The
original BEHAVE and ShapeNet are captured at 30fps, we
generate synthetic data at 15fps and each sequence has 64
frames (4.27 seconds). In total, we generate 8477 sequences
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Figure 8. Object pose error versus the temporal window size
used at inference time. The model was trained with window
size=16. Averaging predictions of each frame in different slid-
ing windows consistently leads to better pose estimations.

which amounts to 10 hours long videos. Our method can
scale up to include more objects and longer videos, which
is much more scalable than capturing real data.

8. Additional Analysis and Result
In this section, we provide additional analysis to the de-
sign considerations of our human and object reconstruction
modeuls. We also show generalization to unseen category.
Please refer to our video for more results and comparison.

8.1. Object pose TOPNet

Our TOPNet computes cross attention between W consecu-
tive images and directly predicts W rotations for them. We
train our model with W = 16 due to limited IO speed: with
a batch size of 16, it needs to load 256 images with corre-
sponding GT data which already takes 0.6 ∼ 1 second. Us-
ing longer window size significantly increases the training
time. In contrast, we find that the learned attention weights
can be applied larger window size even though the model is
trained for W = 16 only. We plot the object pose error with
different test time window size in Fig. 8. Here we report
the pose error as the vertex to vertex error (cm) after ap-
plying predicted and GT rotation to the GT object vertices.
We apply a sliding window of size W to process the full se-
quence, which means each image can appear several times
at different sliding windows. We average predictions of all
possible sliding windows, which also leads to smoother and
more accurate pose, see Fig. 8 (with running average).

8.2. Human Reconstruction

We compare the correspondence across frames from HDM
and our method in Fig. 9. HDM is image-based method and
outputs point clouds without any ordering. On the other
hand, our method tracks the point across the full sequence.

We argue in Sec. 3.2 that the latent space of our Cor-
rAE is less interpretable which leads to slightly worse re-
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Figure 9. Visualization of the correspondence. HDM [76] out-
puts unordered points while our method consistently tracks the hu-
man and object across frames.

Input image Optimize latent code Optimize via SMPL

Figure 10. The problem of optimizing CorrAE latent code. The
latent space of our CorrAE entangles human pose and shape. Op-
timizing it directly also leads to less smooth surface.

sult compared to optimizing via SMPL layer (Tab. 5). Here
we visualize another problem of optimization via the Cor-
rAE: the surface points become less smooth, see Fig. 10. It
can be seen that some points on the feet spread out from
the original position, leading to a noisy surface. In contrast,
optimizing via SMPL layer guarantees a smooth surface.

8.3. Generalization to unseen categories

Our model was trained on ten common daily life object
categories. It works well for new object instances of the
same category, as can be seen in Fig. 1 and our supplemen-
tary video. We also test our method on unseen category in
Fig. 11. In general, our method can work on new categories
that are similar to those seen in our training set.

9. Failure Case Analysis
We show two typical failure cases of our method in Fig. 12.
Overall, our method tracks humans reliably in most cases
while object tracking is more challenging due to occlusions
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Figure 11. Generalization to unseen category. We test our method to unseen category blackboard. It can be seen that our method can
reconstruct the shape and tracks the human object interaction.

Input image Ours Ours - side Input image Ours Ours - side

Figure 12. Example failure cases. Our method fails to reconstruct the object shape (left) as only one view of the object is seen in the
entire video. It can also struggle to predict extreme rare pose (right), leading to less faithful shape and tracking.

and lack of template shapes. Our method can produce noisy
object shape when there are not enough views to reconstruct
the object. In Fig. 12 left, the chair remains static in the
full sequence, hence our method only receives information
about the chair in back side view. The object shape aligns
well with the input image but the 3D structure is not coher-
ent. Future works can further improve our method by im-
posing stronger object shape prior. For example, optimizing
via a well-behaved latent space which provides better out-
put shape.

Our method can also predict noisy object pose under rare
interaction like Fig. 12 right. In this sequence, noisy poses
dominate the optimization, leading to inaccurate shape and
tracking. Training on more object poses or with additional
data augmentation is a possible direction to explore. Foun-
dationpose [69] trained their model on millions of differ-
ent objaverse [12] objects hence has better generalization.
However, they rely on CAD model and depth input. One in-
teresting direction is to develop methods that can iteratively
improve object shape reconstruction and pose estimation.

With our TOPNet, one can obtain initial object reconstruc-
tion, which should be helpful to improve object pose esti-
mation. This iterative mutual improvement should lead to
better shape and pose tracking.

Further more, our method does not deal with object sym-
metries explicitly. Future works can adopt good practices
from object pose estimation community [13, 56, 64] to fur-
ther enhance the robustness of our method.
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Figure 13. Example sequences from our ProciGen-Video dataset. We generate realistic interactions with diverse object shapes. Please
refer to our supplementary video for more examples.
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