Hands-on Al based 3D
Vision
Tutorial 1, Apr 29th 2025



Schedule

Recap:

e Rotation Matrices
e Homogeneous Coordinates

Assignment 1 Topics and Tips:

e Affine and Projective Transformations
e Perspective / Orthographic Projection
e Pose Estimation



Rotation Matrices

L J\f’b_

)'x))'yaz’Z)T




Understanding Rotation Matrices

e Group of rotation matrices SO(3):

RR" =T =R'Rand detR=1

What about det R = —17

e Important properties of rotation matrices:
o Rows (and columns) of R form orthonormal bases
o Rotations have no effect on dot products: {Rx, Ry> = <ZC, y>
o Rotations are angle- and length-preserving (theoretical exercise)



Understanding Rotation Matrices

e Group of rotation matrices SO(3):

RR" =T =R'Rand detR=1

What about det R = —17

OO =
e )

o = O
| I




Understanding Rotation Matrices

e Group of rotation matrices SO(3):

RR" =T =R'Rand detR=1

What about det R = —17

Bunny is looking to the left now!



Coordinate System Conventions

Orthogonal matrices with det = -1 swap coordinate system orientations!

We will always assume right-hand coordinate systems!



Rotating Coordinate Systems

Rotation matrix to rotate old frame to new frame

@ 11| |T12

-~ axes of new coordl_nate
/ system expressed in old

\ T/ =

axes of old coordinate

system expressed in new
frame

2 Axis
06 02 02 06

74529 0.03578994 0.79485327]
303717 -0.93374421 -0.1894142 ]
1051 0.35614721 -0.57648117]]

D.7354




Rotating Objects / Points

e How can we use rotation matrices to rotate an object into a desired pose?

e By using the object-to-world rotation matrix
e Express object axes in new frame!
e You will do this in the programming exercise on Transformations!



Translations and Homogeneous Coordinates

e Translation by t: x, —x +t
e Cannot be expressed as matrix
matrix operation in 3D

e \We need homogeneous coordinates
o Add a fictitious 4th component 1
o 3D point = Line in 4D

Translation as Product:

Homogenization Dehomogenization

)

PR
H(y/w)zx X = OT 1 X

z/w

I
b
b
I

e SN
E nve 8




Rigid Transformations

e Rigid Transformation = Rotation + Translation
e Can be neatly expressed in homogeneous coordinates:

= | ts
ot 1

In which frame is t defined?



Projective Transformations

e Projective transformations are

Type Matrix Preserves
represented by invertible matrices
Rigid [Ig ﬂ Lengths
H c R*
. . : : . Similarity sR Ot Angles
e Hierarchy of projective transformations: [o 1]
e In theoretical exercise 1 you will show
some properties of the different Affine 5 1 Parallclism
transformation types
Projective H Straight lines

i)

theoretical exercise 1



How to think about affine transformations

e Affine transformations are of the form: A t
e A can be any invertible 3x3 matrix OT 1

Rotations are special cases
Mirroring is also allowed
Non-uniform scaling shearing is affine
Anything else?

o O O O



How to think about affine transformations

e Affine transformations are of the form: A t
e A can be any invertible 3x3 matrix OT 1

o Rotations are special cases
o  Mirroring is also allowed
o Non-uniform scaling shearing is affine
o Anything else?
SVD will be important for other exercises too!
Singular Value Decomposition: Affine transformations are

A = UEVT combinations of
T 1. rotation + mirroring
U, V are orthogonal (i.e. rotations + mirroring) non-uniform scaling

2.
E IS a diagona| matrix 3. rotation + mirroring
4. translation



Image Formation

(Programming Exercise)

e Perspective Projection

World Camera
Coords Coords

U X
v EEp v
W V4

Film
Coords

B )

Pixel
Coords

) X
Y
V4

g <c

>

e Orthographic Projection

Object

Projector\

é Projection plane

copP

DOP

/Q)bjed

™~ Projector

Projection plane

e

eeeeeeeee

Forward Projection onto image plane.
3D (X,Y,Z) projected to 2D (x,y)

Conventions in this assignment:

P=K[R t]=

xxxxxxxxx

xxxxxxxxx

fz/w

Oy /W
fy/h oy/h| [R t]

Camera View
Coordinate System



What you will see in the exercise

e ook at method
o Rotate the camera to look

towards the object

e Perspective Projection

e Orthographic Projection




Camera Pose Estimation
(Theory + Progr Exercise)

e Given 3D-2D point correspondences
we want to know:

Where is the camera located in 3D space?

e You will derive and implement a simple
algorithm that estimates R and t by
solving a system of linear equations

3D Point Cloud and Camera




Hints for Theoretical Exercise 2

e You will estimate the camera pose problem by solving a system of linear
equations in the least squares sense:
min [|M6||3
16]|=1
0 is a flattened vector containing R and t
e How do you solve such problems? (SVD)

Solving for 0 yields candidates for R and t
o Scale is wrong!
o Ris not necessarily a rotation matrix
e Hints:
o To find “closest” orthogonal matrix, use SVD again, and drop diagonal matrix
o How can you salvage the situation if the resulting matrix has det -1?
(Note that [ M]3 = [ M(~6)|3)
o talso needs to be scaled. We accept different answers here.



o~

Points & =

Theoretical Part (29 Points):

1) 3D Transformations (14 Points)
a) i 2P, i 2P, iii 2P (+ iiii 2P *bonus®)
b) i2P,ii 2P
c) 4x1P
2) Estimating Camera Pose from 3D-2D
Correspondences (15 Points)
a) 1P
b) 6P
c) 1P
d 1P
e) 4P
) 2P

Coding Part (60 Points):

Part O: Installation and Introduction (0
Points)

Part 0.1: Notebook 00 - PyTorch (**Not
mandatory™) (8 *Bonus Points*)

Part 1: Notebook 01 - Transformations (78
Points)

Part 2: Point Cloud Projection (16 Points)
Part 3: Direct Linear Transform (DLT)
algorithm for camera pose estimation (76
Points)



Questions

Write an email at

ta 3dvision@listserv.uni-tuebingen.de



mailto:ta_3dvision@listserv.uni-tuebingen.de

