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Overview

• Intro

• Recap of Epipolar Geometry

• Stereo Matching and Depth Estimation

• Multiview Stereo Matching

• Monocular Depth Estimation
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Recovering 3D from an Image

One of the main goals of 3D Vision is the reconstruction of 3D from images
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Help artists

to speed-up

their

workflow

DreamCraft3D, Sun et al. ICLR 2024 4



Democratize 3D asset creation

Feat2GS, Chen et al. CVPR 2025 5



Recovering 3D from an Image

However 3D from an image is an ill-posed problem

During image formation, we lose depth information
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Recovering 3D from an Image 

Luckily, we have more than one point of view on the word that surrounds us. 

We can infer depth from our two-eye system

Wooden stereo viewing device, late 19th century. 

Swiss National Museum
Oculus/Meta Quest visors.
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Recovering 3D from an Image 

We would like to replicate the same behaviour, for computers

Left 

image

Right

image

Depth image 
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Recalls of epipolar geometry:

● Cameras with center O and O’

The line that connects them: baseline

● The intersections between the 

image planes and the baseline

are called epipoles (e, e’)

● If a point p is observed in image

, the corresponding point p’ 

must lie along the corresponding

epipolar line in image

Epipolar Geometry

baseline 9



Epipolar Geometry

Mapping points of image    to lines of image    for canonical cameras:

● Essential Matrix

is the matrix representation of the

cross product with translation (skew)

is the Rotation Matrix
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Mapping points of image    to lines of image    :

● Fundamental Matrix

with intrinsic camera parameters      

and         respectively

Epipolar Geometry

11



If we have parallel image planes:

● Epipolar Lines are 

horizontal and Epipoles

go to infinity

● y-coordinates are

equal

Epipolar Geometry

v’

u’
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The problem of warping camera planes to make them parallel is called

rectification

Existing algorithms solve 

rectification by reprojecting

image planes onto a 

common plane parallel to 

the line between optical 

centers

Image Rectification

13



Computing rectifying homographies for stereo vision, Loop and Zhang, 1999

Image Rectification

A point in the right image

corresponds to a set of 

candidate points along the 

same row in the left image
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After rectification, finding the essential matrix becomes trivial.

Image planes only differ by a translation:

Image Rectification
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Stereo Matching
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Given a pair of rectified stereo images, the goal of Stereo

Matching is to compute the disparity for each pixel in the 

reference image, where disparity is defined as the horizontal

displacement between a pair of corresponding pixels in the 

left and right images.

Stereo Matching
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Disparity

Disparity can be used to calculate depth:

disparity:

Triangle Proportionality Theorem:

This reduces depth estimation to 

finding matches between

points of two rectified images 

to calculate the disparity 18



Finding Matches between Images

High-accuracy stereo depth maps using structured light,. Scharstein et al. 2003 IEEE Computer Society Conference on Computer 

Vision and Pattern Recognition

Right ImageLeft Image
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Stereo Matching and Similarity Metrics

Evaluation of Stereo Matching Costs on Images with Radiometric Differences. 

Hirschmuller and Scharstein, TPAMI, 2009.

Similarity Metric Approaches

● Consist of sliding a 

window along the epipolar

lines and compute a cost

through a Matching/Score 

Function
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Evaluation of Stereo Matching Costs on Images with Radiometric Differences. Hirschmuller and Scharstein, TPAMI, 2009.

1) Choose a patch on the left image (red square

on the left image)

2) Look for a corresponding patch on the right

image, along the epipolar line (or scanline)

1. Use a sliding a window (squares on the 

right image) on the right image, and 

evaluating the score function. 

3) Then, select the patch with the highest score 

as a match (red square on the right image)
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Many similarity metrics were proposed: 

● Sum of Absolute Differences (SAD) 

● Sum of Squared Differences (SSD) 

● Normalized Cross-Correlation (NCC) 

Stereo Matching
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Cost Volume

Let's visualize the process:

Left Image Right Image 23



Let's visualize the process:

Choose a metric, and use the sliding window to compute the cost.

Cost Volume
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Let's visualize the process:

Choose a metric, and use the sliding 

window to compute the cost.

The resulting 3D volume is

called cost volume, and

contains the result of 

running the cost function

between each patch on the

left image, and each patch

on the corresponding

epipolar line of the right

image

Cost Volume
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Evaluation of Stereo Matching Costs on Images with 

Radiometric Differences. Hirschmuller and 

Scharstein, TPAMI, 2009.
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Limitations
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Limitations – Repeated Patterns
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Limitations – Window Size
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Limitations – Textureless Surfaces

Mismatch 30



Limitations – Illumination Change
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Limitations – Foreshortening

With a short baseline, small errors in estimating disparities result in 

larger depth estimation errors

Large Baseline Small Baseline

Large Error

Small Error
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Limitations – Occlusions

Occluded from O' Occluded from O
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Nowadays, directly evaluating cost functions

on hand-crafted features is not considered a

good approach.

Modern approaches use advanced

deep learning techniques to solve 

Stereo Matching, by learning to extract features

from images.

Modern Stereo Matching

A Survey on Deep Stereo Matching in the Twenties, Tosi et al. 2024

https://github.com/fabiotosi92/Awesome-Deep-Stereo-Matching 34



Learning to match windows

Modern Stereo Matching

Stereo Matching by Training a Convolutional Neural 

Network to Compare Image Patches. Zbontar and LeCun, 

JMLR, 2016.

Reference Example (taken from left image)

Positive Example (taken from right image). 

The central pixels is the same as the central

3D point of the reference image.

Negative Window (taken from right image). 

The central pixels is different from the 

central 3D point of the reference image.

Left Image

Right Image
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CNN + Siamese networks

a. Extract features with a network, and predict

the matching cost [0, 1]. 

b. For each patch, find the best match

c. Training: triplets of reference, 

positive and negative patches. BCELoss.

Modern Stereo Matching

Stereo Matching by Training a Convolutional Neural 

Network to Compare Image Patches. Zbontar and 

LeCun, JMLR, 2016.

Reference Positive Negative
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Modern Stereo Matching

Reference Positive

Label: 1

37

Stereo Matching by Training a Convolutional Neural 

Network to Compare Image Patches. Zbontar and 

LeCun, JMLR, 2016.



Modern Stereo Matching

NegativeReference

Label: 0

38

Stereo Matching by Training a Convolutional Neural 

Network to Compare Image Patches. Zbontar and 

LeCun, JMLR, 2016.



GC-Net:

• End-to-End architecture, trained with L1 loss (GT disparity vs predicted disparity)

• Key idea: calculate disparity cost volume and apply 3D convolutions on it

• 1) extracts features with 2D convolutions 2) Cost volume contruction 3) 3D 

convolutions 4) Disparity map prediction

Modern Stereo Matching

End-to-End Learning of Geometry and Context for Deep Stereo Regression. Kendall et al. ICCV, 2017. 39



RAFT-Stereo:

• Key idea: Use a recursive architecture (GRU, green blocks) to iteratively

refine a disparity map

Modern Stereo Matching

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching. Lipson et al. 3DV, 2021. 40

Backbones for feature extraction

Dot Product + Average Pooling

Gated Recurrent Unit (GRU [1]) to 

iteratively predict the disparity map



RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching. Lipson et al. 3DV, 2021.

RAFT-Stereo Resutls

41



Stereo4D: Learning How Things

Move in 3D from Internet Stereo Videos. Jin et al.

CVPR 25
○ Input: 

■ Stereo Video

○ Output:

■ Movement of points in 3D (tracks)

○ Key idea:

■ Extract:

● Depth with Stereo Matching (RAFT[1])

● Camera Trajectory (SfM / COLMAP)

● 2D point tracking (BootsTAP [2])

Downstream Task

[2] BootsTAP: Bootstrapped Training for Tracking-Any-Point. Doersch et al. ICCV,

2024

[1] RAFT: Recurrent all-pairs field transforms for optical flow. Teed et al. ECCV, 2020
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Downstream Task

Stereo4D: Learning How Things Move in 3D from Internet Stereo Videos

Camera Position Disparity Map (from RAFT) Point Tracking
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Stereo4D: Learning How Things Move in 3D from Internet Stereo Videos 44



Other Applications of Rectified Images
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Rectified images can be used for 

view morphing

View morphing, Seitz and Dyer, 1996

View Morphing
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View Morphing

View morphing, Seitz and Dyer, 1996
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Some methods replace one of the two cameras with a projector:

Active Stereo

A Volumetric Method for Building Complex Models from Range Images, Curless and Levoy, SIGGRAPH ’96 48



Some methods replace one of the two cameras with a projector:

Active Stereo

A Volumetric Method for Building Complex Models from Range Images, Curless and Levoy, SIGGRAPH ’96 49



Some methods replace one of the two cameras with a projector

Active Stereo

https://graphics.stanford.edu/papers/digmich_falletti/ 50



Multiview Stereo Matching
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We can extend the problem of Stereo Matching to multiple cameras

Multiview Stereo Matching
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Multiple-baseline Stereo:

● Problem: we have     images (          for the example), and we

want to reconstruct a 3D depth map

Multiview Stereo Matching

A Multiple-Baseline Stereo. Okutomi et al. 1993in IEEE Transactions on Pattern Analysis and Machine Intelligence
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Multiple-baseline Stereo:

● Choose a view as reference, and slide a window across epipolar lines of other 

images. Store the inverse depth relative to the 

reference image

● Combine multiple

baseline stereo pairs

Multiview Stereo Matching

A Multiple-Baseline Stereo. Okutomi et al. 1993in IEEE Transactions on Pattern Analysis and Machine Intelligence
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Multiple-baseline Stereo:

● Pros
○ Simple

● Cons
○ Computationally 

expensive

○ Sensible to light change

and noise 

Multiview Stereo Matching

A Multiple-Baseline Stereo. Okutomi et al. 1993in IEEE Transactions on Pattern Analysis and Machine Intelligence
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Voxel Coloring:

● Key idea: 
○ Given a set of basis images 

and a grid of voxels, we 

wish to assign color values to

voxels in a way that is 

consistent with all of the 

images.

○ By carving out inconsistent

voxels, we retrieve a 3D

reconstruction of the scene

Multiview Stereo Matching

Photorealistic Scene Reconstruction by Voxel Coloring. Seitz et al. 1999  International Journal of Computer Vision
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Voxel Coloring:

● Algorithm: 
a. Initialize a 3D volume that 

encloses the scene.

b. For each voxel:

i. Project it into all images 

where it is visible.

ii. Extract color values 

from those projections.

iii. Compute 

photo-consistency 

(e.g., color variance).

c. If photo-consistent → keep, else → remove ("carve").

d. Proceed in visibility order (back-to-front w.r.t cameras).

Multiview Stereo Matching

Photorealistic Scene Reconstruction by Voxel Coloring. Seitz et al. 1999  International Journal of Computer Vision

Input Images

Reconstruction
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Voxel Coloring:

● Pros:
○ Simple and intuitive

○ Naturally handles occlusions via visibility 

reasoning.

○ No explicit feature matching needed.

● Cons:
○ Low resolution due to voxel size.

○ Computationally expensive (especially 

in dense grids).

○ Sensitive to calibration and lighting 

variation.

Multiview Stereo Matching

Photorealistic Scene Reconstruction by Voxel Coloring. Seitz et al. 1999  International Journal of Computer Vision

Input Images

Reconstruction
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Multiview Stereo Matching

Plane-Sweep Stereo

● Imagine taking a 3D scene and slicing it into a series of fronto-parallel planes 

at different depths.

● Projects all views onto these planes using known camera poses
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Multiview Stereo Matching

Plane-Sweep Stereo

● For each pixel, measures 

photoconsistency (or feature 

consistency) for each plane, and 

choose the depth that gives the 

lowest (or highest) variance
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Multiview Stereo Matching

Multi-View Stereopsis

Accurate, Dense, and Robust Multi-View Stereopsis. Furukawa et al. CVPR ‘07
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Multiview Stereo Matching

Multi-View Stereopsis

● Overall approach:
○ Divide the input images

in patches, and find 

feature correspondence

along epipolar lines

○ Triangulate 3D points

based on feature matches

○ Reconstruct the surface

from the pointcloud

Accurate, Dense, and Robust Multi-View Stereopsis. Furukawa et al. CVPR ‘07
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Modern Multiview Stereo Matching
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Modern Multiview Stereo Matching

Modern Multiview Stereo Matching exploits data-driven deep learning 

techniques.
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MVSNet proposes Cost Volume aggregation:

● Extract features, calculate cost volume and aggregate them with a cost metric,

predict the depth map

Modern Multiview Stereo Matching

MVSNet. 

Yao et al. 

ECCV 18
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R-MVSNet (CVPR2019) extends MVSNet by adding a recurrent neural network

Modern Multiview Stereo Matching
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Additional Readings:

● MVSAnywhere: Zero-Shot Multi-View Stereo, Izquierdo et al. CVPR 2025

● Stereo Anywhere: Robust Zero-Shot Deep Stereo Matching Even Where Either

Stereo or Mono Fail. Bartolomei et al. CVPR 2025

● Selective-Stereo: Adaptive Frequency Information Selection for Stereo Matching. 

Wang et al. CVPR 2024

● Cross-spectral Gated-RGB Stereo Depth Estimation. Brucker et al. CVPR 2024

● MoCha-Stereo: Motif Channel Attention Network for Stereo Matching. Chen et 

al. CVPR 2024

Modern Multiview Stereo Matching
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Modern Multiview Stereo Matching

Learning-based Multi-View Stereo: A Survey. Wang et al, preprint 2024

What we saw until 

now

What we will see in 

future lectures

68



Monocular Depth Estimation
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Monocular Depth Estimation

Monocular Depth Estimation is the task of estimating the depth value (distance 

relative to the camera) of each pixel given a single (monocular) RGB image.
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Monocular Depth Estimation

Recent Deep Learning advancements made Monocular Depth Estimation possible
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Monocular Depth Estimation

Learning from direct supervision:

● Data

● Architecture

● Training Objective

Input Image Predicted Depth Ground Truth

Error
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Monocular Depth Estimation

● Collecting Real World 

Data

NYU Depth Dataset V2, Silberman et al. ECCV 12

Cheap sensors made Monocular

Depth Estimation possible.

(stereo sensors, Time-of-Flight (ToF) 

sensors, Structured Light sensors…)

Kinect from Microsoft. 

73



Monocular Depth Estimation

● Synthetic Data

High-Resolution Synthetic RGB-D Datasets for Monocular Depth Estimation. Rajpal et al. CVPR 23
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Monocular Depth Estimation

● Architecture
○ CNNs, GANs, Diffusion Models…

Convolutional Neural Networks

Generative Adversal Networks

Diffusion Models
75



Monocular Depth Estimation

Sobczak et al. 2021
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Monocular Depth Estimation

● Training Objective
○ A simple training objective could be to lower the error between prediction and ground truth

Error

Input Image Predicted Depth Ground Truth
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Monocular Depth Estimation

Ill-posed problem
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Monocular Depth Estimation

Sometimes we can fight back…

Scale-invariant mean square 

error:

Depth Map Prediction from a Single Image using a Multi-scale Deep Network. Puhrsch et al. NeurIPS 2014

Use mean depth to measure 

relationship between points instead of 

their absolute value
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Monocular Depth Estimation

Sometimes we can fight back…

Scale-invariant mean square 

error:

Why log-space?

If your output is off by a multiplicative constant               , by applying the loss in 

log-space we have                                , which is constant across all pixels so the 

loss ignores it, hence the scale invariance. 80



Monocular Depth Estimation

Sometimes we can fight back… but we cannot do magic

Testing sota method “Depth Anything V2” (Yang et al. NeurIPS 2024) on Ames room illusion.

Demo: https://huggingface.co/spaces/depth-anything/Depth-Anything-V2
81

https://huggingface.co/spaces/depth-anything/Depth-Anything-V2


Monocular Depth Estimation

Improve Monocular Depth Estimation:

● Acquire more data

● Improve network architecture

● Formulate better training objectives
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Monocular Depth Estimation

Today, Monocular Depth Estimation is a very active field

Survey on Monocular Metric Depth Estimation. Zhang, ArXiv preprint 2025
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Monocular Depth Estimation

● Depth Anything proposes a semi-supervised self-learning approach to 

enhance generalization
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Monocular Depth Estimation

● Depth Anything proposes a semi-supervised self-learning approach to 

enhance generalization
○ First, a teacher model learns monocular depth estimation (supervised).

Teacher model
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Monocular Depth Estimation

● Depth Anything proposes a semi-supervised self-learning approach to 

enhance generalization
○ First, a teacher model learns monocular depth estimation (supervised).

○ Then, a student model learns to mimic teacher’s predictions on unlabeled images under input 

perturbation (color distortions, and CutMix [1])

Student model

[1] Cutmix: Regularization strategy to train strong classifiers with localizable features. Yun et al. ICCV 2019
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Monocular Depth Estimation

● Exploiting Feature Extraction Backbones
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Monocular Depth Estimation

● Exploiting Feature Extraction Backbones

Vision Transformers for Dense Prediction. Ranftl et al. ICCV 2021 88



Monocular Depth Estimation

● Depth Pro (ICLR 2025)
○ Key idea: 1) Extract patches at multiple scales 2) Extract features with ViT[1] encoder 3) 

decode the output inverse depth and focal length.

[1] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. Dosovitskiy et al. ICLR 2021 89



Conclusions
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Conclusions

In this lecture we saw Stereo Matching, which consists of computing disparity maps given two
reference image.

We saw how it is possible to compute depth from disparity maps, and reviewed both classical and 
recent methods for disparity map computation.

We then extended the problem formulation to Multiview Stereo Matching, and saw how to 
reconstruct a geometry from multiview images, and how to predict the depth from MVS.

We reviewed the problem of Monocular Depth Estimation, and analyzed some of the current state-
of-the-art methods.
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The End
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