Hands-on Al based 3D Vision
Summer Semester 25

Lecture 4_0— From Classical to Modern Stereo Vision and Depth Estimation

Prof. Dr.-Ing Gerard Pons-Moll
University of Tibingen / MPI-Informatics

EBERHARD KARLS

UNIVERSITAT
TUBINGEN




Overview

* Intro

* Recap of Epipolar Geometry

« Stereo Matching and Depth Estimation
* Multiview Stereo Matching

« Monocular Depth Estimation



Recovering 3D from an Image

One of the main goals of 3D Vision is the reconstruction of 3D from images




Help artists
to speed-up
their
workflow

DreamCraft3D, Sun et al. ICLR 2024 4



Democratize 3D asset creation
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Recovering 3D from an Image

However 3D from an image is an ill-posed problem

During image formation, we lose depth information

Camera Image Volume



Recovering 3D from an Image

Luckily, we have more than one point of view on the word that surrounds us.

We can infer depth from our two-eye system

Oculus Quest 1 Meta Quest 2 Meta Quest 3

~

Wooden stereo viewing device, late 19th century.

i . Oculus/Meta Quest visors.
Swiss National Museum

=



Recovering 3D from an Image

We would like to replicate the same behaviour, for computers

Depth image

Left
Image

Right
Image




Epipolar Geometry

Recalls of epipolar geometry:

e Cameras with center O and O’
The line that connects them: base

e The intersections between the
Image planes and the baseline
are called epipoles (e, €')

e If a point p is observed in image
I the corresponding point p’
must lie along the corresponding
epipolar line in image I’

baseline



Epipolar Geometry

Mapping points of imagef to lines of image I'for canonical cameras:

e Essential Matrix F
P

pTEp’ =0 I I’
E—[T.|R

p!
P
7] is the matrix representation of the )<,
cross product with translation (skew)

@)

R is the Rotation Matrix

10



Epipolar Geometry

Mapping points of imagef to lines of image I
e Fundamental Matrix F

p'Fp' =0 I I

F=K'.EK'"!

with intripsic camera parameters K
and K respectively



Epipolar Geometry

If we have parallel image planes:

e Epipolar Lines are
horizontal and Epipoles

go to infinity
e Vy-coordinates are
equal
- - - -
/
p—= |V p=v




Image Rectification

The problem of warping camera planes to make them parallel is called
rectification

Existing algorithms solve
rectification by reprojecting
image planes onto a
common plane parallel to
the line between optical
centers




Image Redctification

A

corresponds to a set of
candidate points along the
same row in the left image

Computing rectifying homographies for stereo vision, Loop and Zhang, 1999 14



Image Rectification

After rectification, finding the essential matrix E becomes trivial.

' Ep' =0 E=[T]R
Image planes only differ by a translation: R=1 t=(T,0,0)
0 0 0
0o 7T 0

15



Stereo Matching



Stereo Matching

Given a pair of rectified stereo images, the goal of Stereo
Matching is to compute the disparity for each pixel in the
reference image, where disparity is defined as the horizontal
displacement between a pair of corresponding pixels in the
left and right images.

17



Disparity

Disparity can be used to calculate depth:
disparity: d = (x1 — X2)
Triangle Proportionality Theorem:

_ b
= z= q
This reduces depth estimation to 0

finding matches between
points of two rectified images
to calculate the disparity

Baseline B

18



Finding Matches between Images

Left Image Right Image

High-accuracy stereo depth maps using structured light,. Scharstein et al. 2003 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition

19



Stereo Matching and Similarity Metrics

Left Image | =

Similarity Metric Approaches

e Consist of sliding a
window along the epipolar
lines and compute a cost
through a Matching/Score
Function

Evaluation of Stereo Matching Costs on Images with Radiometric Differences.

Hirschmuller and Scharstein, TPAMI, 2009.
20



Left Image

"-’-q-.----‘-----

Scanline

ez \
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Choose a patch on the left image (red square
on the left image)

Look for a corresponding patch on the right
image, along the epipolar line (or scanline)

1. Use asliding awindow (squares on the
right image) on the right image, and
evaluating the score function.

3) Then, select the patch with the highest score
as a match (red square on the right image)

Evaluation of Stereo Matching Costs on Images with Radiometric Differences. Hirschmuller and Scharstein, TPAMI, 2009.




Stereo Matching

Many similarity metrics were proposed.:
e Sum of Absolute Differences (SAD)

SAD = I (z,y) — Ir(z — d,y)
e Sum of Squared Differences (SSD)

SSD = Y (Ip(x,y) — Ir(z — d,y))’
e Normalized Cross-Correlation (NCC)
>-(Ir —I1)(Ir — IR))

VI — )2 Ik — In)?

NCC =

22



Cost Volume

Let's visualize the process:

Left Image

4 6

Right Image

23



Cost Volume

Let's visualize the process:

Choose a metric, and use the sliding window to compute the cost.

24



Cost Volume

Let's visualize the process:
Choose a metric, and use the sliding , '
window to compute the cost. |
The resulting 3D volume is
called cost volume, and
contains the result of
running the cost function
between each patch on the
left image, and each patch
on the corresponding
epipolar line of the right
image 25

Left Image Height




Evaluation of Stereo Matching Costs on Images with
Radiometric Differences. Hirschmuller and
Scharstein, TPAMI, 2009.

Ln SRS Al B

Ground Truth
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Limitations

27



Limitations — Repeated Patterns




Limitations — Window Size
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Limitations — Textureless Surfaces

Mismatch



Limitations — lllumination Change

31



Limitations — Foreshortening

Large Error

Small Error
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With a short baseline, small errors in estimating disparities result in

larger depth estimation errors
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Limitations — Occlusions

Occluded from O' \
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Modern Stereo Matching

Nowadays, directly evaluating cost functions
on hand-crafted features is not considered a

good approach.

Modern approaches use advanced

deep learning technigues to solve

Stereo Matching, by learning to extract features

from images.

A Survey on Deep Stereo Matching in the Twenties, Tosi et al. 2024
https://github.com/fabiotosi92/Awesome-Deep-Stereo-Matching

CNN-based Cost

Volume Aggregation
{Sec. 2.1.1)

AANet [4], WaveletStereo [7], Bi3D [10], CFNet [11]
UASNet [12], PCW-Net [13], SEDNet [14]

Neural Architectural
Search (NAS)

(Sec. 2.1.2)

LEAStereo [15], EASNet [15]

Foundational lterative RAFT-Stereo [5], ORStereo [17], ICGNet [27], DLNR [21]
(Sec.21) Optimization-based EAL-Stereo [19], IGEV-Stereo [20], CREStereo [15],
B ; (Sec. 2.1.3) CREStereo++ [22], Selective-Stereo [27], AnyStereo [23],
MC-Stereo [21], XR-Stereo [25], MoCha-Stereo [26]
Vision
Transformer-based STTR [4], CEST [22], ChiTransformer [27], GMStereo [2],
(Sec. 2.1.4) CroCo-Stereo [ 1], ELFNet [12], GOAT [37]
Markov

Random Field NMEF [34
(Sec. 2.1.5) ES)
Compact Cost
Volume Representation

Fast DS-CS 5], DecNet [36], ACVNet [27],

Efficient T (Sec221) PCVINet [2], et []
Oriented Efficient Cost

(Sec. 2.2) _ VolumeProcessing | CasStereo [40], BGNet [21],

' (Sec. 2.2.2) MABNet [42], TemporalStereo [1]
/ L Compact Architectures StereoVAE [44], MADNet 2 [45], CoEX [45],

FADNet [+7], HITNet [14], PBCStereo [1],

Architectures {Sec. 22.3) AAFS [50], MobileStereoNet [51]
(Sec. 2)
Semantic Stereo RTS2-Net [77],
f (Sec. 2.3.1) SGNet [1]
Noml{;:slslzci i;creo NA-Stereo [51]
C. 2.3.2
Multi-Task
(Sec. 2.3)
Stereo and Optical Flow
Estimation DWAREF [57], Effiscene [56],
(Sec. 2.3.3) Feature-Level Collaboration [57]
Depth-Guided Sensor Pseudo-LiDAR++ 1], LiStereo [79], 87 [001],
{Sec. 2.4.1) LSMD-Net [+1], VPP-Stereo [+2]
Event-Sterea DDES [7], SE-CFF [54], SCSNet [+5], DTC-SPADE [#4],
(Sec. 2.4.2) ADES [07], EL-Stereo [+4], EFS [, SAFE [711]
B Gated Stereo Gated Stereo [71]
Beyond Visible (Sec. 2.4.3)
Spectrum
(Sec. 2.4) Pattern-Projection ActiveStereoNet | I,Pnlka Lines [73], Activezero [71],

(See. 2.4.4) MonoStereoFusion [75], Activezero++ [7n]

34

Cross-Spectral Stereo | . Grereo [77], UCSS [75], S&-MCE [79],
(Sec. 2.45) RGB-MS [<], DPS-Net [+1], Gated-RCCB [47]



Modern Stereo Matching

Learning to match windows

Left Image
Reference Example (taken from left image)
Positive Example (taken from right image).
The central pixels is the same as the central
3D point of the reference image. .
Right Image

Negative Window (taken from right image).
The central pixels is different from the
central 3D point of the reference image. Stereo Matching by Training a Convolutional Neural
Network to Compare Image Patches. Zbontar and LeCun,
JMLR, 2016. 35




Modern Stereo Matching

Similarity score

CNN + Siamese networks | Fully-connected, Sigmoid |

l Fully-connected, ReLLU |

a. Extract features with a network, and predict :
the matching cost [0, 1]. | Fully-connected, ReLU |

b. For each patch, find the best match | Fully-connected, ReLU |

c. Training: triplets of reference, [ Concatenate |
positive and negative patches. BCELoss. | Convolution, ReLU | |  Convolution, ReLU
I Convolution, ReLU I I Convolution, ReLU
| Convolution, ReLLU | | Convolution, ReLLU

i i
Left input patch Righ input patch
Reference Positive Negative Stereo Matching by Training a Convolutional Neural

Network to Compare Image Patches. Zbontar and

LeCun, JMLR, 2016. 36



Modern Stereo Matching Label: 1

Similarity score

| Fully-connected, Sigmoid |
l Fully-connected, ReLLU |

| Fully-connected, ReLU |
I Fully-connected, ReLU |

| Concatenate |

| Convolution, ReLLU | | Convolution, ReLU

| Convolution, ReLU Convolution, ReLU

||
| Convolution, ReLLU | I Convolution, ReLLU

i i
Left input patch Righ input patch

Stereo Matching by Training a Convolutional Neural

" Network to Compare Image Patches. Zbontar and
Reference Positive LeCun, JMLR, 2016, 37




Modern Stereo Matching Label: 0

Similarity score

| Fully-connected, Sigmoid |
l Fully-connected, ReLLU |

I Fully-connected, ReLU |
I Fully-connected, ReLU |

[ Concatenate |
| Convolution, ReLLU | | Convolution, ReLU |
I Convolution, ReLU I I Convolution, ReLU ]
| Convolution, ReLLU | | Convolution, ReLLU |
i i
Left input patch Righ input patch

Stereo Matching by Training a Convolutional Neural

: Network to Compare Image Patches. Zbontar and
Reference Negative LeCun, JMLR, 2016, 38




Modern Stereo Matching

GC-Net:
- End-to-End architecture, trained with L1 loss (GT disparity vs predicted disparity)
- Key idea: calculate disparity cost volume and apply 3D convolutions on it
- 1) extracts features with 2D convolutions 2) Cost volume contruction 3) 3D
convolutions 4) Disparity map prediction

) 1 _ b\_@“‘ i} \ -
b J+7={ =1 | | T

= \FY dih 4
(Sharcd Weights O J | ~Shared Weights

A2l I | - ST ] (-
= ULl . f |

- widh |

Input Stereo Images 3D Deconvolution Soft ArgMax Disparities

2D Convolution ‘ Cost Volume ‘ Multi-Scale 3D Convolution

End-to-End Learning of Geometry and Context for Deep Stereo Regression. Kendall et al. ICCV, 2017. 4



Modern Stereo Matching

RAFT-StereO'

[ ]
....................................................

Dot Product + Average Pooling

i S — Gated Recurrent Unit (GRU [1]) to
""" iteratively predict the disparity map

> ) o«

r-----F

— Backbones for feature extraction

Disparity

40

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching. Lipson et al. 3DV, 2021.



RAFT-Stereo Resutls

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching. Lipson et al. 3DV, 2021.

41



Downstream Task

Stereo4D: Learning How Things Depth Estimation
Move in 3D from Internet Stereo Videos. Jin et al.
CVPR 25
o Input:
m Stereo Video
o Output:
m  Movement of points in 3D (tracks)
o Key idea:
m Extract:

e Depth with Stereo Matching (RAFT[1])
e Camera Trajectory (SfM / COLMAP)
e 2D point tracking (BootsTAP [2])

[1] RAFT: Recurrent all-pairs field transforms for optical flow. Teed et al. ECCV, 2020

[2] BootsTAP: Bootstrapped Training for Tracking-Any-Point. Doersch et al. ICCV,
2024

3D Tracks




Downstream Task

Camera Position Disparity Map (from RAFT) Point Tracking

Stereo4D: Learning How Things Move in 3D from Internet Stereo Videos

43



"l.-

Stereo4D: Learning How Things Move in 3D from Internet Stereo Videos




Other Applications of Rectified Images



View Morphing
Io \ -7 /
X // / |
!lf'\\ /// ///

Rectified images can be used for
view morphing

Y e R R R N
L VoAb A
T _IL—|_L_A“ \

Virtual Cameras

46

View morphing, Seitz and Dyer, 1996

Morpr:%id View




View Morphing

Zo

Zo.25 Zo.5
View morphing, Seitz and Dyer, 1996

Zo.75

A

47



Active Stereo

Some methods replace one of the two cameras with a projector:
Object

Direction of travel
—

CCD image
plane

o

CCD

& Cylindrical lens

A Volumetric Method for Building Complex Models from Range Images, Curless and Levoy, SIGGRAPH 96

48



Active Stereo

Some methods replace one of the two cameras with a projector:

A Volumetric Method for Building Complex Models from Range Images, Curless and Levoy, SIGGRAPH 96

49



Active Stereo

Some methods replace one of the two cameras with a projector

https://graphics.stanford.edu/papers/digmich_falletti/

50



Multiview Stereo Matching

51



Multiview Stereo Matching

We can extend the problem of Stereo Matching to multiple cameras

52



Multiview Stereo Matching

Multiple-baseline Stereo:

e Problem: we have N images (N = 9 for the example), and we
want to reconstruct a 3D depth map

A Multiple-Baseline Stereo. Okutomi et al. 1993in IEEE Transactions on Pattern Analysis and Machine Intelligence

53



Multiview Stereo Matching

Multiple-baseline Stereo:

e Choose a view as reference, and slide a window across epipolar lines of other
Images. Store the inverse depth relative to the

reference image fo  &n ' L

e Combine multiple Il ‘ii\/\w § ::: —e= Bea
baseline stereo pairs ol '~ L §
O SN
L A
Ul SVAVEV,

inverse depth/,
A Multiple-Baseline Stereo. Okutomi et al. 1993in IEEE Transactions on Pattern Analysis and Machine Intelligence



Multiview Stereo Matching

Multiple-baseline Stereo:

e Pros g Ty

) g §14oao_ e nL
o Simple | S -3 53
[ 8
Cons | | § ool
o Computationally g 3
. M @ 5000
expensive . -
o Sensible to light change eV ¥
and noise | VAN oo
L VAV eV
) 2AVANVAVS

A Multiple-Baseline Stereo. Okutomi et al. 1993in IEEE Transactions on Pattern Analysis and Machine Intelligence
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Multiview Stereo Matching

Voxel Coloring:

e Key idea:

o Given a set of basis images
and a grid of voxels, we
wish to assign color values to
voxels in a way that is
consistent with all of the
images.

o By carving out inconsistent
voxels, we retrieve a 3D
reconstruction of the scene

Photorealistic Scene Reconstruction by Voxel Coloring. Seitz et al. 1999 International Journal of Computer Vision

A

56



Multiview Stereo Matching Input Images

Voxel Coloring:

e Algorithm:
a. Initialize a 3D volume that
encloses the scene.
b. For each voxel:
I.  Projectitinto all images
where it is visible.
ii. Extract color values
from those projections.
li. Compute
photo-consistency
(e.g., color variance).
c. If photo-consistent — keep, else — remove ("carve"). Reconstruction
d. Proceed in visibility order (back-to-front w.r.t cameras).

902 voxels 4,898 voxels 21,174 voxels 71,841 voxels

57
Photorealistic Scene Reconstruction by Voxel Coloring. Seitz et al. 1999 International Journal of Computer Vision



Multiview Stereo Matching Input Images

Voxel Coloring:

e Pros:
o Simple and intuitive
o Naturally handles occlusions via visibility

reasoning.
o No explicit feature matching needed.
e Cons:

o Low resolution due to voxel size.

o Computationally expensive (especially
in dense grids).

o  Sensitive to calibration and lighting
variation.

902 voxels 4,898 voxels 21,174 voxels 71,841 voxels

Reconstruction

58
Photorealistic Scene Reconstruction by Voxel Coloring. Seitz et al. 1999 International Journal of Computer Vision



Multiview Stereo Matching

Plane-Sweep Stereo

e Imagine taking a 3D scene and slicing it into a series of fronto-parallel planes
at different depths.
e Projects all views onto these planes using known camera poses

<— projective re-sampling of (X,Y,Z)

7 put image

virtual camera

59



Multiview Stereo Matching

Plane-Sweep Stereo

e For each pixel, measures
photoconsistency (or feature
consistency) for each plane, and
choose the depth that gives the
lowest (or highest) variance

/ .
put image

comp051te ;
virtual camera 60



Multiview Stereo Matching

Multi-View Stereopsis

Accurate, Dense, and Robust Multi-View Stereopsis. Furukawa et al. CVPR ‘07

61



Multiview Stereo Matching

*/* Detected features

Multi-View Stereopsis

e Overall approach:

(@]

Divide the input images
in patches, and find
feature correspondence
along epipolar lines
Triangulate 3D points

based on feature matches

Reconstruct the surface
from the pointcloud

M / W Features satisfying epipolar

(Harris/DoGQG)
WIS Y
1 1 1 1 1 # o M

R s R
1 1 NS

-

Accurate, Dense, and Robust Multi-View Stereopsis. Furukawa et al. CVPR ‘07
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Modern Multiview Stereo Matching



Modern Multiview Stereo Matching

Modern Multiview Stereo Matching exploits data-driven deep learning
techniques.

64



Modern Multiview Stereo Matching

MVSNet proposes Cost Volume aggregation:
e Extract features, calculate cost volume and aggregate them with a cost metric,

predict the depth map

, mmmmm Conv + BN + ReLU, Stride=1 |
| W Conv + BN + ReLU, Stride=2 !
| = Conv, stride = 1 !
n 1 i ©  Concatenation 1
> . @  Addition !
E _______________________________
8 I Shared Weights
5
=]
I Shared Weights Initial Depth Map
o
=T
=]
E |
g I I e B EE C
E - Variance Soft
MVSNet. ks . Metric Argmin e .
o
Yao et al. Refined Depth Map
ECCV 18 Feature Differentiable Cost Volume Depth Map
Extraction Homography Regularization Refinement




Modern Multiview Stereo Matching
R-MVSNet (CVPR2019) extends MVSNet by adding a recurrent neural network

————————————————————————————————————————————

— | | Softmax
v ‘ | ‘ I  C(0) C(1) C.(2) C/(D-1) T P
I : :
L I S R -

y— Loss
|| S R R E 0
l—
C(0)

& -

GT Depth Map

ﬁ C(”ﬁ C@Jg C(D”ﬁ

Feature Extraction Recurrent Regularization Loss Computation
= (Conv + BN + ReLU, stride = | s Conv, stride = 1 E—— Cost Maps Differentiable Homography Warping
mmmm Conv + BN + RelU, stride=2 w—— (GRU unit

———— Regularized Cost Maps &Variance Cost Metric
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Modern Multiview Stereo Matching

Additional Readings:

e MVSAnywhere: Zero-Shot Multi-View Stereo, Izquierdo et al. CVPR 2025

e Stereo Anywhere: Robust Zero-Shot Deep Stereo Matching Even Where Either
Stereo or Mono Fail. Bartolomei et al. CVPR 2025

e Selective-Stereo: Adaptive Frequency Information Selection for Stereo Matching.
Wang et al. CVPR 2024

e Cross-spectral Gated-RGB Stereo Depth Estimation. Brucker et al. CVPR 2024

e MoCha-Stereo: Motif Channel Attention Network for Stereo Matching. Chen et
al. CVPR 2024
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Modern Multiview Stereo Matching

What we saw until
now

What we will see in
future lectures

MVS

|

1

T {Tradifional Methods

} {(cOLMAP [+7], P-MVS [14], Gipuma [14].. |

—(Datasets & Benchmarks HScanNet [26], DTU [21], Tanks and Temples I:,‘]..J

—(Pipeline

HCamera Calibration, View Selection, Multi-View Depth Estimation, Depth Fusion ]

Online Methods MVDepthNet [25], DeepvideoMVS [30], SimpleRecon [4]... ]

Direct 3D CNN} {Mvsmet [15], C/DER [33]... j

Learning-based Methods
with Depth Estimation

Learning-based Methods
without Depth Estimation

RNN } —[R-MVSNet [36],/ D*HC-RMVSNet [3 ]]

Offline Methods

Coarse-to-fine HCasMVSNet [31], UCSNet [38]... j

|

Iterative Update PatchmatchNet [39], TterMVS [40]... J

End-to-end H]'DACS [41], RC-MVSNet | 1;]...]
Multi-stage HU-MVSNet [13], KD-MVS [ L]}
{&mi—Supervised HSGT—MVSNet [45] j
HAtlas [1¢], NeuralRecon [+7]... ]

HH{VolsDE [15], News [], Geo-Neus [501.)

L 3D Gaussian Splatting-based i

Large feed-forward

{Voxel—based

NeRF—b ased

SuGaR [51], 2DGS [52], PGSR [57]... j

LRM [5/], DUSE3R [*5], MASER [50]...

{Future Research DireCﬁOl‘lSHDataset & Benchmarks, View Selection, Depth Fusion, Features, Run-time & Memory Efficiency, Prior Assistance)

Learning-based Multi-View Stereo: A Survey. Wang et al, preprint 2024
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Monocular Depth Estimation



Monocular Depth Estimation

Monocular Depth Estimation is the task of estimating the depth value (distance
relative to the camera) of each pixel given a single (monocular) RGB image.

70



Monocular Depth Estimation
Recent Deep Learning advancements made Monocular Depth Estimation possible

monocular depth estimation
Search term

+ The Compare

The whole world  ~ 2004 - Present ~ All the categories ~ Google search ~

[«
N

Interest in time @ -

71



Monocular Depth Estimation

Learning from direct supervision:

e Data
e Architecture
e Training Objective

vOv Oy
T

VANV AANV

a

Error

Input Image & Predicted Depth Y Ground Truth ¥



e Collecting Real World
Data

Kinect from Microsoft.

Cheap sensors made Monocular
Depth Estimation possible.
(stereo sensors, Time-of-Flight (ToF)
sensors, Structured Light sensors...)

NYU Depth Dataset V2, Silberman et al. ECCV 12



N

Monocular Depth Estimation

thetic Data

\‘

e 5Syn

High-Resolution Synthetic RGB-D Datasets for Monocular Depth Estimation. Rajpal et al. CVPR 23
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Monocular Depth Estimation

et \NE
. ArCh iteCtu re MNIST training data 1 real
o CNNs, GANs, Diffusion Models... ﬁ a E/

latent sample, z sample
(fake) data
el e e Faten Generative Adversal Networks
4 Y

orward SDE (data — noise)
dx = f(x,t)dt + g(t)dw 4)@

ore fu on

n3units  Output dx = [f(x, t) - dt +g t)dW
Convolutional Neural Networks

Reverse SDE (noise — data)

Input n1 channels n1channels n2 channels n2 channels

Diffusion Models
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Monocular Depth Estimation

160

138,0 143,7

S

60,2 62,4
44,5 I I

33,0

Sobczak et al. 2021

21,8 23,0 256

11,7 13,4
H B

6,8
o

8 8 ¢ | °

[90TX] s1@212weled jo Jaqunu
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Monocular Depth Estimation

e Training Objective
o A simple training objective could be to lower the error between prediction and ground truth

VATAN . VATAN . VATAN .
Y SNY N
/A\”/A\”/A\

a

Error

5

Input Image & Predicted Depth Y Ground Truth Y

Ly, 9) = llyi—@l> y=Ff(z)

- 77
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Monocular Depth Estimation

lll-posed problem

Problem: Scale / Depth Ambiguity A

....
=
=
el

-

,—.—::'—'-'-*:"" i Small,

A small, close object looks exactly S
the same as a larger, farther-away

object. Absolute scale / depth are

ambiguous from a single image

.....
"
=
-

close
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Monocular Depth Estimation

Sometimes we can fight back...

Scale-invariant mean square
error:

L(y,9) = » _|/logy; —log@; + a(y, )||’

/

Use mean depth to measure

R 1 R
a(y,§) = — > (logg; — logy;)

I3

-
-
-
-~
™
~
-

A small, close object looks exactly
the same as a larger, farther-away L
object. Absolute scale / depth are S=o
ambiguous from a single image Sea

relationship between points instead of

their absolute value

Depth Map Prediction from a Single Image using a Multi-scale Deep Network. Puhrsch et al. NeurlPS 2014
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Monocular Depth Estimation

Sometimes we can fight back...

Scale-invariant mean Sguare Problem: Scale / Depth Ambiguity
error.

L(y,9) = » _|/logy; —log@; + a(y, §)||’ O

-
o~
-
-
~.
~
-

A small, close object looks exactly

1
a(y’ :Q) — ; Z(log Qz — log yi) the same as a larger, farther-away . T

; object. Absolute scale / depth are e
t ambiguous from a single image S

Why log-space”? )
If your output is off by a multiplicative constant¥ = S - ¥, by applying the loss in

log-space we have log(y) — log(9) = log(s), which is constant across all pixels so the
loss ignores it, hence the scale invariance.
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Monocular Depth Estimation

Sometimes we can fight back... but we cannot do magic

Testing sota method “Depth Anything V2” (Yang et al. NeurlPS 2024) on Ames room illusion.
Demo: https://huggingface.co/spaces/depth-anything/Depth-Anything-V2
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https://huggingface.co/spaces/depth-anything/Depth-Anything-V2

Monocular Depth Estimation

Improve Monocular Depth Estimation:

e Acquire more data
e Improve network architecture
e Formulate better training objectives
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Monocular Depth Estimation

Today, Monocular Depth Estimation is a very active field

Method Publication  Category Inference  Dataset Output  Source
Zoedepth Bhat et al. (2023) Arxiv discriminative  single real metric  open
Depth Anything Yang et al. (2024a CVPR "24 discriminative  single real metric  open
Patch Fusion Li et al. (2024a CVPR "24 discriminative  multiple  real metric  open
Unidepth Piccinelli et al. (2024) CVPR 24 discriminative  single real metric  open
Marigold Ke et al. ||[2()24 CVPR "24 generative multiple  synthetic relative  open
DMD‘Saxend et al. \ 2023) Arxiv generative multiple  real metric  close
Depth Anything v2| Yang et al. 4202413} NeurIPS ’24  discriminative  single real+synthetic metric  open
GeoWizard Fu et al. ECCV 24 generative multiple  real+synthetic relative  open
Patch Reﬁn&ﬁﬂﬁi{'ﬂfﬂb ECCV 24  discriminative multiple  real+synthetic metric  open
Depth pr0|Bochkovsk11 et al. ‘( 2024} Arxiv discriminative multiple  real+synthetic metric  open
DAC Guo et al. (2025 Arxiv discriminative  single real+synthetic metric  open

Survey on Monocular Metric Depth Estimation. Zhang, ArXiv preprint 2025
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Monocular Depth Estimation

e Depth Anything proposes a semi-supervised self-learning approach to

enhance generalization

Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data

Lihe Yang! Bingyi Kang?’ Zilong Huang? Xiaogang Xu®* Jiashi Feng? Hengshuang Zhao'*
'HKU 2TikTok 3CUHK L74)8)
T project lead 1 corresponding author

https: depth-anything.githul

Figure 1. Our model exhibits impressive generalization ability across extensive unseen scenes. Left two columns: COCO [36]. Middle two:
SA-1B [27] (a hold-out unseen set). Right two: photos captured by ourselves. Our model works robustly in low-light environments (1st and
3rd column), complex scenes (2nd and 5th column), foggy weather (5th column), and ultra-remote distance (5th and 6th column), ezc.
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Monocular Depth Estimation

e Depth Anything proposes a semi-supervised self-learning approach to

enhance generalization
o First, a teacher model learns monocular depth estimation (supervised).

labeled image

labeled prediction manual label

Teacher model

—_—
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Monocular Depth Estimation

e Depth Anything proposes a semi-supervised self-learning approach to

enhance generalization
o First, a teacher model learns monocular depth estimation (supervised).
o Then, a student model learns to mimic teacher’s predictions on unlabeled images under input
perturbation  (cc@r distortions, and CutMix [1])

labeled image labeled prediction manual label

Student model L~

unlabeled prediction pseudo label
86

[1] Cutmix: Regularization strategy to train strong classifiers with localizable features. Yun et al. ICCV 2019



Monocular Depth Estimation

e Exploiting Feature Extraction Backbones

DINOv2: Learning Robust Visual Features
without Supervision

Maxime Oquab**, Timothée Darcet**, Théo Moutakanni**,

Huy V. Vo*, Marc Szafraniec*, Vasil Khalidov*, Pierre Fernandez, Daniel Haziza,
Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba,
Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat,

Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal',

Patrick Labatut*, Armand Joulin*, Piotr Bojanowski*

Meta Al Research ! Inria

(c)

Figure 1: Visualization of the first PCA components. We compute a PCA between the patches of the
images from the same column (a, b, ¢ and d) and show their first 3 components. Each component is matched
to a different color channel. Same parts are matched between related images despite changes of pose, style
or even objects. Background is removed by thresholding the first PCA component.

NYUd ADE20K

SUN-RGBd

KITTI

Input OpenCLIP-G DINOv2-g Input OpenCLIP-G DINOv2-g

Figure 7: Segmentation and depth estimation with linear classifiers. Examples from ADE20K,
NYUd, SUN RGB-D and KITTI with a linear probe on frozen OpenCLIP-G and DINOv2-g features.
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Monocular Depth Estimation

e Exploiting Feature Extraction Backbones

Vision Transformers for Dense Prediction

René Ranftl Alexey Bochkovskiy Vladlen Koltun

MiDaS (MIX 6)

Vision Transformers for Dense Prediction. Ranftl et al. ICCV 2021
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Monocular Depth Estimation

e Depth Pro (ICLR 2025)

o Key idea: 1) Extract patches at multiple scales 2) Extract features with ViT[1] encoder 3)
decode the output inverse depth and focal length.
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[1] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. Dosovitskiy et al. ICLR 2021

Inverse depth
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Focal length N
Head
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Conclusions
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Conclusions

In this lecture we saw Stereo Matching, which consists of computing disparity maps given two
reference image.

We saw how it is possible to compute depth from disparity maps, and reviewed both classical and
recent methods for disparity map computation.

We then extended the problem formulation to Multiview Stereo Matching, and saw how to
reconstruct a geometry from multiview images, and how to predict the depth from MVS.

We reviewed the problem of Monocular Depth Estimation, and analyzed some of the current state-
of-the-art methods.
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The End



