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Motivations for Generative Models



Motivations for Generative Models

e Until now we saw methods that can reconstruct scene and objects from
multiple images (SFM, Multiview Stereo, NeRF, Gaussian Splattlng )
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Motivation for generative models

e However, tasks like single view reconstruction are ill-posed.
e Deterministic model might collapse to average value.
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Deterministic: learn an average Generative model: learn a distribution

e We should learn a distribution of all possible configurations instead of simply
regression or fitting to observations
e Today we will explore diffusion model for conditional generation!



Generative Models in 3D



Generative Models in 3D

Being able to generate content is a very powerful capabillity,
and has many applications.



Text to 3D object

Two-story brick Vintage copper rotary Bronze owl Bronze owl
house with red roof telephone with sculpture perched sculpture perched
and fence. intricate detailing. on a branch. on a branch.

Trellis: Structured 3D Latents
for Scalable and Versatile 3D Generation. Xiang et al. CVPR 2025



Image to 3D object

Trellis: Structured 3D Latents
for Scalable and Versatile 3D Generation. Xiang et al. CVPR 2025



Generate 3D Scenes

l

SynCity. Engstler et al. CVPR 2025



Generate 3D Scene... Still some work to do

Scene Splatter. Zhang et al. CVPR 2025
WonderWorld. Yu et al. CVPR 2025
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Motion Generation

UniMotion. Li et al. 3DV 2025
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Generative Models — Main Architectures

Discriminator Generator

GAN: Adversal training x' || x—

D(x) G(z)

VAE: Maximize variational Encoder

lower bound * 94(2[x) 'w i
Flow-based Inverse
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Diffusion Models

Po(X¢—1|X¢)

G —————- Forward Diffusion
------ -» Reverse Diffusion



Trilemma: Quality, Diversity Speed
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Diffusion Models



Diffusion Models for Image Generation

Stable Diffusion
Flux
Mid-Journey
Dall-E




Diffusion Models for Image Editing

(b) Image context from Figure la: “The bird is now
sitting in a bar and enjoying a beer.”

(c) Image context from Figurfi 1b: (d) From Figure Ic: “Watch them from behind.”
“There are now two of these birds.”

Flux.1 Kontext
(Jun 24 2025 )
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Diffusion Models for Image Editing

’ T

(c) “she is now taking a selfie in the streets of
Freiburg, it’s a lovely day out.”

.

(b) “remove the thing from her face”

LN

(d) “it’s now snowing, everything is covered in snow.”

Flux.1 Kontext
(Jun 24 2025 1)
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Diffusion - Theory



Diffusion Probabilistic Models

e Diffusion model aims to learn the reverse of noise generation procedure
o Forward step: (Iteratively) Add noise to the original sample
m — The sample Zo converges to the complete noise 1 (e.g., ~N(0,1))
o Reverse step: Recover the original sample from the noise
m  — Note that it is the “generation” procedure

Reverse process

Po(X¢— 1|Xt)
@H H@ @H H

\__—’

Forward (diffusion) process
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Diffusion Probabilistic Models

e Diffusion model aims to learn the reverse of noise generation procedure
o Forward step: (Iteratively) Add noise to the original sample
m — Technically, it is a product of conditional noise distribution g(z;|x:—1)
o Usually, the parameters B:are fixed (one can jointly learn them, but it is not beneficial)
o Noise annealing (i.e., reducing noise scale 8: < 8:-1) Is crucial to the performance

/4
CJ(X1:T|X0) = H C_I(Xt|xt—1), Q(Xt|Xt—1) = N(Xt; v 1-— 5tXt—1,5tI)
t=1
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Diffusion Probabilistic Models

e Diffusion model aims to learn the reverse of noise generation procedure
o Forward step: (Iteratively) Add noise to the original sample
E - Technically it is a product of conditional noise distribution g(z;|x:—1)

q(x1:7(%0) : Hq Xe|xt-1),  q(Xe|xe—1) = N (x5 /1 — Bexe—1, BeI)

o Reverse step: Recover the original sample from the noise
m — Itis also a product of conditional (de)noise distribution pe(z:—1|x¢)
o Use the learned parameters: denoiser fg(main part) and randomness %,

i iy

po(xo.1) = p(XT) Hpe(xt—llxt)a Po(Xt—1]xt) = N (Xt—1; o (Xt, 1), o (x¢, 1))
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Diffusion Probabilistic Models

e Diffusion model aims to learn the reverse of noise generation procedure
o Forward step: (Iteratively) Add noise to the original sample
o Reverse step: Recover the original sample from the noise

i
q(x1:7[%0) 3=HQ(Xt|Xt—1), peo(Xo.1) = p(XT) H (xt—1[xt),

o Training: Minimize variational lower bound of the model pB(XO)

po(Xo.T)
q(x1.7|%0)

E[—logps(x0)] <E, [—log
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Diffusion Probabilistic Models

e Diffusion model aims to learn the reverse of noise generation procedure
o Training: Minimize variational lower bound of the model

E[—log ps(x0)] < Eq | —log ngi(lx; Ii()))]

m It can be decomposed to teh step-wise losses (for each step t)

E, [PKL(Q(XﬂXo) | p(xr)) + > Dicr.(q(%e—1xs,%0) || Po(Xe—1%2)) - logpe(x()lxgl

L > Li 1 Lo

1) Prior Matching 2) Denoising Matching 3) Reconstruction term
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Diffusion Probabilistic Models

e Diffusion model aims to learn the reverse of noise generation procedure

o Sampling: Draw a random noise Xt then apply the reverse step py(X,;|X;)
o It often requires the 1000 reverse steps (very slow)

A |
- - -

ﬁu.--kukkwvvvvvvw

Do(Xp 1 |X;)
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Diffusion Probabilistic Models

e Diffusion model aims to learn the reverse of noise generation procedure
o Sampling: Draw a random noise Xt then apply the reverse step py(X,;|X;)
o It often requires the 1000 reverse steps (very slow)

Less noise at the start

v

Less diversity in the samples
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Denoising Diffusion Probabilistic Models (DDPM)

e DDPM reparametrizes the reverse distributions of diffusion models
o Key idea: Predict the noise instead of the denoised signal X;_4
m SinceX;.;and X; share most information, us it is redundant
m — Instead, predict the residual €4(x,, t) and add to the original
o Formally, DDPM reparametrizes the learned reverse distribution as

po(xe,t) = % (Xt = %Go(xtat))

e and the step
o wise objective L, 1 can be reformulated as

Buxoe | € = €o(vamo + VI = e 0)|]
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Denoising Diffusion Implicit Models (DDIM)

e DDIM roughly sketches the final sample, then refine it with the reverse

process

O Motivation:
m Diffusion model is slow due to the iterative procedure
B GAN/VAE creates the sample by one-shot forward operation
B = Can we combine the advantages for fast sampling of diffusion models?

O Technical spoiler:
B Instead of naively applying diffusion model upon GAN/VAE, DDIM proposes a principled

approach of rough sketch + refinement
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Denoising Diffusion Implicit Models (DDIM)

e DDIM roughly sketches the final sample, then refine it with the reverse

process
O Key ldea:
m Given X7, generate the rough sketch g and refine PolxX.|x,)
B Unlike original diffusion model, it is not a Markovian structure

@ @ — @—'@ @ — @ — @—

Q “q(@s|zo, o) T q(@2|T1, 20)

m>|m,)

Original Diffusion Non-Markovian
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Denoising Diffusion Implicit Models (DDIM)

e DDIM roughly sketches the final sample, then refine it with the reverse

process

O Key ldea:
m Given X7, generate the rough sketch g and refine PolxX.|x,)

Do \ P N N\ N\
8—8 -6 © 8 9 —a
9 9 g q(w;lm o) 1 ‘I(iB |21, 20) '

’I(-T ‘mx)

O Formulation: Define the forward distribution q(x.,|x,, x,) as

qa(wt—llwt,wo) =N (\/at—l-’b‘o afe \/1 = 0t-1 — Uf . \/— yO¢
O then, the forward process is derived from Bayes’ rule
9o (Tt—1|Tt, T0)go (Tt|T0)
9o (Tt—1|20) 33
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Denoising Diffusion Implicit Models (DDIM)

e DDIM roughly sketches the final sample, then refine it with the reverse

process

O Key ldea:
m Given X7, generate the rough sketch g and refine PolxX.|x,)

Po o PN Po AR N
O —O-O—6 O—@ 6 —
. v q 9 Tq(xz|xe, o) T q(@2|T1,20) '

’;(3’21@1 )

0o (Tt—1|Tt, Z0)qo (Tt|20)
9o (wt—l IwO)

O Formulation: Forward processis  qq(®¢|Ti—1,20) =

B And the reverse process is

(t)

x — V1 -y’ (T

Ti—1 = at—l( : \/a_t 8 ( t)) +\/1—at—1—0'?'€((9t)($t)+ O€¢
t & ~

“ predicted ="

S

random noise

: B
“direction pointing to @¢+”

N >
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Denoising Diffusion Implicit Models (DDIM)

e DDIM significantly reduces the sampling steps of diffusion model
O Creates the outline of the sample after only 100 steps (DDPM needs thousands)

sample timesteps sample timesteps
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Stable Diffusion

e Stable Diffusion, Rombach et al. 2022

O Key ldea: Run the Diffusion Process in a latent space.

Latent Space

. Diffusion Process

Denoising U-Net €g o 2T

Pixel Space

emanti
Ma
Text

Repres
entations

denoising step crossattention  switch

skip connection concat

6onditionina
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Stable Diffusion

e Stable Diffusion, Rombach et al. 2022

O Large-Scale Training: Laion 5B, containing 5 Billion Images with text annotations

cat

Conception animale
diillustration de chat de
probl...

What is this cat doing?
- more at
megacutie.co.uk ...

10+ Times 'Stupid Cat
Drawings' Made
Everyone Laug...

42+ Times 'Stupid Cat
Drawings' Made

ik sit pasa

Gato, El Gato, and
Laik: otra vez se me ha
bugeado...

Dibujos realistas gatito
- en la alfombra

WHRZIH S »
maine-coon-black-cat- At c SR INO
portrait VWAELL #RIR

#ER fan 8T — b #

fEdh...

Mouser painting by
Lynda Nolte

124
AL

#cats #DailyDoodle

"Oil on Canvas -
""Dignan"" - Dignan,
the loner, w...

Korna see nymaior,
4TO THI PHCYCHTh
KAaKyIO-TO XPCHb, a...

Drawings On Black
Paper Ideas ; Drawings
On Black ...

)

Poorly Drawn Cat

L@ Y

You bie mat box Michael

Michael, Stuff, and
Cat: This is Michael.
Michael ...

Cat, Neko Poster
Fonts, Japanese Poster,
Japanese ...
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Multiview Image Diffusion



From Image Diffusion to 3D

e Do 2D Diffusion Models have knowledge on 3D domain?

e How can we leverage image diffusion for 3D?
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Multiview Image Generation

e Multiview Diffusion

O Goal: to produce multiple views of the same object or scene in a way that’'s geometrically
consistent.

Input Synthesized 7 Synthesized

\‘( Down 30° Left: 90° )j

40



Zero-1-to-3

e Zero-1-to-3: Train a diffusion model to generate novel views of an object.
O Key Idea: Condition the geneation on an image of the object and rotation an(R, T)
O Trained on Objaverse

Input View (RGB)

\\»7'531?47
Latent Diffusion Model \,’/ -

Gaussian Noise Output View (RGB) 41



Zero-1-to-3

e Zero-1-to-3: Train a diffusion model to generate novel views of an object.
O Input:
B Image of the object and rotation angles (R, T).

Input View (RGB)

&
[ % ) (R, T) ]
. —
Zero-1-to-3
»

Latent Diffusion Model | - —
Gaussian Noise Output View (RGB)

O Trainina Objective:

IIlélIl Ezr«-«‘l(m),t,ervN(O,l)||€ — €f (zta t, C(.’L’, R, T))H%

Where C(:U, R, T) is the embedding of the input view and relative camera extrinsics



Zero-1-to-3

e Zero-1-to-3: Train a diffusion model to generate novel views of an object.

O Reconstruction:
Q » Zero-1to3 B VL

+
[ &.‘, (Ry, Tyl

S’pMSE

o5 K

Rendering Input View

(5, (R T

Vg Zero-1-t0-3 & «

+
(8 R, T3

Ml Volumetric Rendering

V& Zero-1-to-3 & « ‘?Q?

(R.T) Relative Viewpoint Transform Neural Field % 43

from Input View



Zero-1-to-3

e Zero-1-to-3: Train a diffusion model to generate novel views of an object.

-
W EEE S
S EE S
S @Y Bded

Randomly Sampled Novel Views



Zero-1-to-3

e Zero-1-to-3: Train a diffusion model to generate novel views of an object.
o Problem: consistency

-5
==

Input View New View (Different Samples)
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Zero-1-to-3

e 2D Multi View Diffusion has no explicit 3D representation (e.g. NeRF or
3DGS). Thus, the 3D consistency of the generated images are not
constrained.

©

©
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Multiview Image Generation

« Problem: novel views are generated independently.

« Recent works that improve consistency:

= Synchronized Multiview Noise Prediction
« SyncDreamer, Liu et al. ICLR 24
§ Epipolar Geometry
- EpiDiff, Huang et al. CVPR 24
§ Temporal Consistency
- SV3D, Voleti et al. ECCV 24
§ Leverage 3D Consistency
Gen-3dffusion, Xie et al.
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SyncDreamer, Liu et al. ICLR 24

. Goal: Given an imagey, we want to generate {x5’,--%s"} novel views
by learning the joint distribution pe(x§"™ly) := pe (Xé),-- xi"[y)

- Key Idea: Condition a novel view with images generated from other
Views.

Synchronized Multiview Noise Predictor

Spatial volume View frustum volume
(F,v,v,V)

[:] ? SyncDreamer
Modules
2> Pretrained
D U zero-123

Input view y Target view x™ Target view x\")
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SyncDreamer, Liu et al. ICLR 24

. Forward Process: Is a direct extension of the vanilla DDPM, where
noises are added to every view independently.

T N
1:N 1:N 1: N 1:N n n)
(x5 |x§ >>—Hq<x§ NxE ) = T TT o™ 1™

t=1n=1

where g(x{™ |[x\")) = N (x{™; VT = Bix{™,, B:1)

49



SyncDreamer, Liu et al. ICLR 24

- Backward Process: Similarly, It IS constructed as

T N
N lN 1: N 1:N n (1:N
po(x§i)) = )) Hp (x5 YY) = p( e ) TT T po (™) x5,

t=1n=1

n N n 1:N
where pg(xg_)l|xgl )) = N(X§ )1,,ué )( § ),t),afl)

1—{1't

mn 1:N 1 i Bt ) 1: N
py? (¢ ) = 7o (Xi e }:f)) :
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SyncDreamer, Liu et al. ICLR 24

- Backward Process:
= To condition the generation of a view on all the other N views at the same time,
they project features in 3D, apply convolutions, and then construct a view
frustum by interpolating features.

&, Unproject j ] Spatial volume View Fffuusm;l volume
N Ty j
- features (F,.V,V,V) ,D,H,W)

Interpolate

=

B . | 1:N
Target views KE )
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SyncDreamer, Liu et al. ICLR 24

« Loss:

(=1

Jt:XOI:N) anae(I:N) |:

£890849

&
‘A EREXER
m & o P

Input View SyncDreamer Zerol23

mn n 1:N
e — e (<", 1)l



SyncDreamer, Liu et al. ICLR 24

« Better 3D
reconstructions

‘. | l"\, &
Input View SyncDreamer Zerol2

J \ ") .
5t M
\ X
! AL
)~
v A
| \l)

3

53



EpiDiff, Huang et al. CVPR 24

. Key Idea: Exploit Depth-aware 3D attention and Epipolar constraints to
ensure depth consistency across different novel views

Loss

~N(0,1)
XT steps

T~ | - —~

. Diffise | _Concat ||| ()T
€ O I nAr
Target views x1:N g
i P
| Cross-Attn ~ ang
CLIP +aptN ——— | U 9

[ Positional Encoding ]
Input view y [ R, — ] U Base model (frozen)
1
| , | RayselfAm | (] Eca Block

Cameras [R, T]l’N

\
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EpiDiff, Huang et al. CVPR 24

'IL“’
¢l
10%

1) Cross attention with
neighboring epipolar lines

F nearest views

l

2) Self attention for spatial

consistency

-~ DDD
e -08-0
% .
DDD QKT
—»D[jKD -Softmax(\/a)'V
....................... . —B8 -0
Q
vV
., QK"
_,CJ - SOf”"“"(W)'V
Q 55

N frames



EpiDiff, Huang et al. CVPR 24

W*fﬁ“\?%f\?\'fﬁ%

= e&x? = "? = \\’7



SV3D, Voleti et al. CVPR 24

* Key Idea: Finetune Stable Video Diffusion on videos of rotating object. Condition on
elevation and azimuth angles to control the camera movement.

l E SV3D

Al S|4 |

Novel Multi-view Synthesis 3D Optimization Generated Meshes



SV3D, Voleti et al. CVPR 24

. Conditioning: to control the camera movement, they condition on

camera positions.

fcrd
’ >LCLIP §

v

> Zt—1

;; )
v ,
! = g AREIRE
2t - PSTEREL - 1EHEH
HEE HIH I
7} S O 7} S
A = =
Cameras
©i20)5=1 C § — U-Net
-IN€
W W

N T

@ : Fully Connected @ : Embedding v : VAE Encoder
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SV3D, Voleti et al. CVPR 24

. Consistency: SV3D is based on Stable Video Diffusion (SVD), which
already implements some techniques to improve consistency across the
generated video.

m SVD is a variant of Stable Diffusion adapted for video generation.
m It reaches temporal coherence by adding temporal attention and 3D
convolutions to Stable Diffusion's U-Net.
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SV3D, Voleti et al. CVPR 24

L W W W

SV3D (ours) Stable Zero123 Zero123 XL Ground-Truth
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Gen-3Diffusion: Sync 2D Diffusion & 3D Recon

Key ldea: Synchronizing 2D Multiview Diffusion and 3D diffusion-

based Generative models

Explicit 3D representation ensures 2D
multiview consistency
03 &
3D Gaussian Splats
- Diffusion Model
Strong Multiview Shape Prior
helps 3D generation

2D Multi-view
Diffusion Model

Synchronized at J
each diffusion timestep t

S| =
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(B) 3D generation guided by 2D multi-view prior

2D Multi-View

Diffusion Model €4

&
I /

multi-view X,

e

(A) Context x¢ timestep t

3D inconsistent
estimation R;‘t

3D consistent
3 tgt
renderings X

20)
3D Gaussian
“ Splats §
‘/ v
2D shape prior & BN
’I
S

e

(C) Consistent sampling guided by
3D representation

- e s s s - e o

|
|
I
3P Gaussian 3D Cons.lstent |
Generator g P ) & sampling i
tgt //ﬁ X%
- t [
4— i
Iterative reverse sampling = [
________________________ L L T S S O R T B L T o T L L L P U s I e LA I g L LS g It AL L U Ly LU U L S
TS 3D Consistent Reverse _ue” i
Seo Sampling Step - (D) 3D Gaussian Splats G
[
_> _, —> , —; _;
|
’
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Algorithm

Algorithm 1 Joint 2D & 3D Diffusion Training

Algorithm 2 3D Consistent Guided Sampling

Input: Dataset of posed multi-view images xggt, 78, xhovel  Input: A context image x“ and text y; Converged 2D diffusion

7%, a context image x°, text description y

model ¢y and 3D generative model g4

Output: Optimized 2D multi-view diffusion model ¢y and 3D- Output: 3D Gaussian Splats G of the 2D image x*

N

o ®

1
2
3:
4:
5.
6

GS generative model g4

: repeat
{x:)gta xlaovel, xc, y} o Q({x:)gt’ xl(‘)lovel, xc’ y})
t ~ Uniform({1,...,T}); e ~ N(0,I)

xg = \/o‘Ttx:)t + /1 — aze

2 = T VT Greo (P, x, 1, 1)

G =gs (x:gt, 1", iogt) / / Enhance conditional 3D gener-
ation with 2D diffusion prior )’(fft from eg

{)A(Bgt, %5°¢l} = renderer G, {n'&, Wnovel})

Compute loss L;ota1 ( Eq. (9))
Gradient step to update €, go

: until converged

3

AN T T

x2 ~ N(0,1)
fort=1T,...,1do

~tgt tgt - t
xog — \/ti—t(xtg - \/1 —_ atﬁe(xtgtaxc’y,t))

5 t; ~ tgt
g= 9¢ (xtgta t, xc, xog )

A tgt

X, = renderer (g, '8t

peo1 (', Xg) = YHCZRudyE 4 xEPeg ' // Guide 2D
sampling with 3D consistent multi-view renderings
t tgt .~ (_tgt .t 2
xtg_t] ~N (xtgil; Ky (xtgtaxogt) aﬁt—ll))
end for

return G = g, (xt,gt X8 xSt = O)

63



Explicit 3DGS helps 2D Diffusion

e
(o
1z ?a’:ﬁ' \
L s
Stet ?
XO N

3D-inconsistent
from 2D MVD
generation

Stgt
X

3D-consistent
from 3D-GS
Rendering

—
e

Do

timestep ¢

-

+
#

— | 9

Pt |\t

= b= di= b= di= b=
e e |||\ || | Ve




Reconstruction avatar appearance

LK,

Input Image Gen-3Diffusion SiTH SiFU




Reconstruction avatar geometry

Input Image Gen-3Diffusion ICON ECON



Strong generalization

3D-GS Rendering

3D-GS Rendering

3D-GS Rendering

2

\

ﬁ
7

3D-GS Rendering

Q
A

\

L

3D-GS Rendering




Limitations of Multiview Diffusion



Multiview Diffusion and Ground Truth

e As we said at the beginning of the lecture, reconstructing an object from a
single image is an ill-posed problem.
e One of the main limitations of multiview diffusion is that benchmarks are

based on Ground Truth data
o Problem: What is Ground Truth in a Generative task?
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Let's play a game. Which is the GT?

Input View

W W

180° Generated Views
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Let's play a game. Which is the GT?

N

Input View

Generated Views

~

GT
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Let's play a game. Which is the GT?

Hidden in the front view

Mirrored

Input View 180° GT

It does not make sense to compare a generated view
to a fixed GT view.
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MVGBench, Xie et al.

e Comprehensive benchmark that evaluates
O 3D geometric consistency
O 3D texture consistency
O Image Quality
O Semantic Consistency

Evaluation metrics . :
Metric dimensions

_— T

3D geometric consistency 3D texture consistency Image quality Semantic consistency

Chamfer Depth c¢SSIM  ¢PSNR  cLPIPS oFID  IQ-vlm Style  Object class  Color
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MVGBench, Xie et al.

e 3D geometric and texture consistency

Input image
& cameras

MVG

View set 1

e®..

3DGS

i i ﬁttmg

V1ew set 2

as &

3DGS
ﬁttmg

ﬁ TestQ v<1¢ews Ik
Chamfer o
5 <

b Render

Render & ‘

depth, cPSN R,
¢SSIM, cLPIPS
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MVGBench, Xie et al.

e Semantic Metrics
O FID score

FID(r,9) = lur — gl + Tr(Zr + g — 2/TrZg):

where (ur, 2r) and (ug 2¢) are the mean and covariance of the real data and model distributions,
respectively.

o Pretrained VLM for question answering on the overall quality of the generated view

e Image Quality Metrics
o Pretrained VLM to assess

m Class consistency

m Color consistency

m Style consistency
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MVGBench, Xie et al.

N
(o)}

3D consistency cPSNR 1

b
S

CO3D dataset (real)

N
—

N
Do
1

N
o

—
(0¢]
1

—
(®)]

‘ ‘
¢
v >
Ll
bof N
<
+ @
0.2 0.3 0.4 0.5
Image quality IQ-vlm 1

+ O %o 0OREVA DO

Methods
Ours
EpiDiff
EscherNet
Free3D
Hi3D
MVDFusion
SV3D

SyncDreamer

V3D
ViewFusion
Vivid123
Zerol23
Zerol123-xl1

—
o 28-

S
N
D

L

GSO dataset (synthetic)

)
=

tency cPSN

N
N
L

nsis

3D co

N
o
1

—
o
1

®
© ©
v e
= 2
4 A
-
0.5 0.6 0.7 0.8

Image quality [Q-vim 1
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Conclusion
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Conclusion

e In this lecture we saw
o how Diffusion Models work
o How can we leverage diffusion models to generate multiview images
o We saw some limitations of Multiview Diffusion.

e Next Lecture:
o Multiview Diffusion is not the only way to exploit Diffusion for 3D
m Score Distillation Sampling
o Methods that do not leverage on Image Diffusion
s PointDiffusion
= Hunyuan3D 2.0
n Trellis
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The End



