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Motivations for Generative Models
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Motivations for Generative Models 

● Until now we saw methods that can reconstruct scene and objects from 

multiple images (SFM, Multiview Stereo, NeRF, Gaussian Splatting...)
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Motivation for generative models

● However, tasks like single view reconstruction are ill-posed.

● Deterministic model might collapse to average value.

● We should learn a distribution of all possible configurations instead of simply 

regression or fitting to observations

● Today we will explore diffusion model for conditional generation!
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Generative Models in 3D
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Generative Models in 3D

Being able to generate content is a very powerful capability, 

and has many applications.
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Text to 3D object

Trellis: Structured 3D Latents

for Scalable and Versatile 3D Generation. Xiang et al. CVPR 2025

Vintage copper rotary 

telephone with 

intricate detailing. 

Two-story brick 

house with red roof 

and fence. 

Bronze owl 

sculpture perched 

on a branch. 

Bronze owl 

sculpture perched 

on a branch. 
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Trellis: Structured 3D Latents

for Scalable and Versatile 3D Generation. Xiang et al. CVPR 2025

Image to 3D object



Generate 3D Scenes
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SynCity. Engstler et al. CVPR 2025



Generate 3D Scene... Still some work to do 
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Scene Splatter. Zhang et al. CVPR 2025

WonderWorld. Yu et al. CVPR 2025



Motion Generation

11UniMotion. Li et al. 3DV 2025



Generative Models – Main Architectures
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GAN: Adversal training

VAE: Maximize variational 

lower bound

Flow-based 

models: Invertible 

transform fo distribution

Diffusion 

Models: Gradually add 

Gaussian noise and then 

reverse



GAN



VAE



Diffusion Models



Trilemma: Quality, Diversity Speed



Diffusion Models



Diffusion Models for Image Generation

● Diffusion model is SOTA on image generation

• Stable Diffusion

• Flux

• Mid-Journey

• Dall-E

• ...



Diffusion Models for Image Editing
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• Flux.1 Kontext

(Jun 24 2025 !!!)



Diffusion Models for Image Editing
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• Flux.1 Kontext

(Jun 24 2025 !!!)



Diffusion - Theory
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Diffusion Probabilistic Models

● Diffusion model aims to learn the reverse of noise generation procedure
○ Forward step: (Iteratively) Add noise to the original sample

■ → The sample converges to the complete noise (e.g.,             )

○ Reverse step: Recover the original sample from the noise

■ → Note that it is the “generation” procedure
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Diffusion Probabilistic Models

● Diffusion model aims to learn the reverse of noise generation procedure
○ Forward step: (Iteratively) Add noise to the original sample

■ → Technically, it is a product of conditional noise distribution

○ Usually, the parameters are fixed (one can jointly learn them, but it is not beneficial)

○ Noise annealing (i.e., reducing noise scale ) is crucial to the performance
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Diffusion Probabilistic Models

● Diffusion model aims to learn the reverse of noise generation procedure
○ Forward step: (Iteratively) Add noise to the original sample

■ → Technically, it is a product of conditional noise distribution

○ Reverse step: Recover the original sample from the noise

■ → It is also a product of conditional (de)noise distribution

○ Use the learned parameters: denoiser (main part) and randomness
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Diffusion Probabilistic Models

● Diffusion model aims to learn the reverse of noise generation procedure
○ Forward step: (Iteratively) Add noise to the original sample

○ Reverse step: Recover the original sample from the noise

○ Training: Minimize variational lower bound of the model
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Diffusion Probabilistic Models

● Diffusion model aims to learn the reverse of noise generation procedure
○ Training: Minimize variational lower bound of the model

■ It can be decomposed to teh step-wise losses (for each step t)
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Diffusion Probabilistic Models

● Diffusion model aims to learn the reverse of noise generation procedure
○ Sampling: Draw a random noise then apply the reverse step

○ It often requires the 1000 reverse steps (very slow)
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Diffusion Probabilistic Models

● Diffusion model aims to learn the reverse of noise generation procedure
○ Sampling: Draw a random noise then apply the reverse step

○ It often requires the 1000 reverse steps (very slow)

29



Denoising Diffusion Probabilistic Models (DDPM)

● DDPM reparametrizes the reverse distributions of diffusion models
○ Key idea: Predict the noise instead of the denoised signal

■ Since and     share most information, us it is redundant

■ → Instead, predict the residual and add to the original

○ Formally, DDPM reparametrizes the learned reverse distribution as

● and the step
○ wise objective can be reformulated as
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Denoising Diffusion Implicit Models (DDIM)

● DDIM roughly sketches the final sample, then refine it with the reverse 

process
○ Motivation:

■ Diffusion model is slow due to the iterative procedure

■ GAN/VAE creates the sample by one-shot forward operation

■ ⇒ Can we combine the advantages for fast sampling of diffusion models?

○ Technical spoiler:

■ Instead of naïvely applying diffusion model upon GAN/VAE, DDIM proposes a principled

approach of rough sketch + refinement
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Denoising Diffusion Implicit Models (DDIM)

● DDIM roughly sketches the final sample, then refine it with the reverse 

process
○ Key Idea:

■ Given      , generate the rough sketch     and refine

■ Unlike original diffusion model, it is not a Markovian structure

32



Denoising Diffusion Implicit Models (DDIM)

● DDIM roughly sketches the final sample, then refine it with the reverse 

process
○ Key Idea:

■ Given      , generate the rough sketch     and refine

○ Formulation: Define the forward distribution as

○ then, the forward process is derived from Bayes’ rule
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Denoising Diffusion Implicit Models (DDIM)

● DDIM roughly sketches the final sample, then refine it with the reverse 

process
○ Key Idea:

■ Given      , generate the rough sketch     and refine

○ Formulation: Forward process is

■ And the reverse process is
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Denoising Diffusion Implicit Models (DDIM)

● DDIM significantly reduces the sampling steps of diffusion model
○ Creates the outline of the sample after only 100 steps (DDPM needs thousands)
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Stable Diffusion

● Stable Diffusion, Rombach et al. 2022
○ Key Idea: Run the Diffusion Process in a latent space.
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Stable Diffusion

● Stable Diffusion, Rombach et al. 2022
○ Large-Scale Training: Laion 5B, containing 5 Billion Images with text annotations
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Multiview Image Diffusion
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From Image Diffusion to 3D

● Do 2D Diffusion Models have knowledge on 3D domain?

● How can we leverage image diffusion for 3D?
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Multiview Image Generation

● Multiview Diffusion
○ Goal: to produce multiple views of the same object or scene in a way that’s geometrically

consistent.
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Zero-1-to-3

● Zero-1-to-3: Train a diffusion model to generate novel views of an object.
○ Key Idea: Condition the geneation on an image of the object and rotation angles .

○ Trained on Objaverse
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Zero-1-to-3

● Zero-1-to-3: Train a diffusion model to generate novel views of an object.
○ Input: 

■ Image of the object and rotation angles .

○ Training Objective:

42Where is the embedding of the input view and relative camera extrinsics



Zero-1-to-3

● Zero-1-to-3: Train a diffusion model to generate novel views of an object.
○ Reconstruction:
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Zero-1-to-3

● Zero-1-to-3: Train a diffusion model to generate novel views of an object.
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Zero-1-to-3

● Zero-1-to-3: Train a diffusion model to generate novel views of an object.
○ Problem: consistency
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Zero-1-to-3

● 2D Multi View Diffusion has no explicit 3D representation (e.g. NeRF or 

3DGS). Thus, the 3D consistency of the generated images are not

constrained.
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Multiview Image Generation

• Problem: novel views are generated independently.

• Recent works that improve consistency:
 Synchronized Multiview Noise Prediction

• SyncDreamer, Liu et al. ICLR 24
§ Epipolar Geometry

• EpiDiff, Huang et al. CVPR 24
§ Temporal Consistency

• SV3D, Voleti et al. ECCV 24
§ Leverage 3D Consistency

• Gen-3dffusion, Xie et al.
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SyncDreamer, Liu et al. ICLR 24 

• Goal: Given an image ,  we want to generate      novel views 

by learning the joint distribution 

• Key Idea: Condition a novel view with images generated from other 

views.
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SyncDreamer, Liu et al. ICLR 24 

• Forward Process: is a direct extension of the vanilla DDPM, where 

noises are added to every view independently.
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SyncDreamer, Liu et al. ICLR 24

• Backward Process: Similarly, it is constructed as
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SyncDreamer, Liu et al. ICLR 24 

• Backward Process:

 To condition the generation of a view on all the other N views at the same time, 

they project features in 3D, apply convolutions, and then construct a view 

frustum by interpolating features.
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SyncDreamer, Liu et al. ICLR 24 

• Loss: 
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SyncDreamer, Liu et al. ICLR 24 
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• Better 3D 

reconstructions



EpiDiff, Huang et al. CVPR 24

• Key Idea: Exploit Depth-aware 3D attention and Epipolar constraints to 

ensure depth consistency across different novel views
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EpiDiff, Huang et al. CVPR 24

1) Cross attention with 

neighboring epipolar lines

2) Self attention for spatial 

consistency
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EpiDiff, Huang et al. CVPR 24
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SV3D, Voleti et al. CVPR 24

• Key Idea: Finetune Stable Video Diffusion on videos of rotating object. Condition on 

elevation and azimuth angles to control the camera movement.
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SV3D, Voleti et al. CVPR 24

• Conditioning: to control the camera movement, they condition on 

camera positions.
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• Consistency: SV3D is based on Stable Video Diffusion (SVD), which 

already implements some techniques to improve consistency across the 

generated video.

■ SVD is a variant of Stable Diffusion adapted for video generation.

■ It reaches temporal coherence by adding temporal attention and 3D 

convolutions to Stable Diffusion's U-Net.

59

SV3D, Voleti et al. CVPR 24



SV3D, Voleti et al. CVPR 24
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Gen-3Diffusion: Sync 2D Diffusion & 3D Recon

• Key Idea: Synchronizing 2D Multiview Diffusion and 3D diffusion-

based Generative models
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Algorithm
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Explicit 3DGS helps 2D Diffusion



Reconstruction avatar appearance

Input Image SiTH SiFUGen-3Diffusion



Reconstruction avatar geometry

Input Image ICON ECONGen-3Diffusion



Strong generalization



Limitations of Multiview Diffusion
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Multiview Diffusion and Ground Truth

● As we said at the beginning of the lecture, reconstructing an object from a 

single image is an ill-posed problem.

● One of the main limitations of multiview diffusion is that benchmarks are 

based on Ground Truth data
○ Problem: What is Ground Truth in a Generative task?
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Let's play a game. Which is the GT?
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Input View

180° Generated Views



Let's play a game. Which is the GT?
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Input View

Generated Views GT



Let's play a game. Which is the GT?
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Input View 180° GT

Hidden in the front view

Mirrored

It does not make sense to compare a generated view

to a fixed GT view.



MVGBench, Xie et al.
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● Comprehensive benchmark that evaluates
○ 3D geometric consistency

○ 3D texture consistency

○ Image Quality

○ Semantic Consistency



MVGBench, Xie et al.
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● 3D geometric and texture consistency



MVGBench, Xie et al.
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● Semantic Metrics
○ FID score

○ Pretrained VLM for question answering on the overall quality of the generated view

● Image Quality Metrics
○ Pretrained VLM to assess

■ Class consistency

■ Color consistency

■ Style consistency



MVGBench, Xie et al.
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Conclusion
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Conclusion

● In this lecture we saw
○ how Diffusion Models work

○ How can we leverage diffusion models to generate multiview images

○ We saw some limitations of Multiview Diffusion.

● Next Lecture:

○ Multiview Diffusion is not the only way to exploit Diffusion for 3D

■ Score Distillation Sampling

○ Methods that do not leverage on Image Diffusion

■ PointDiffusion

■ Hunyuan3D 2.0

■ Trellis
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The End
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