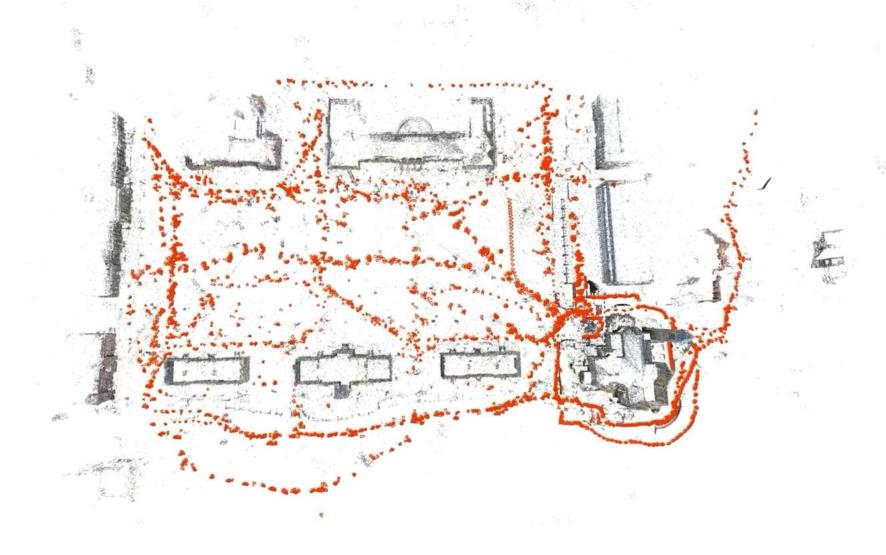
Hands-On Al Based 3D Vision Summer 25

Lecture 09 – Learning-Based 3D Reconstruction Prof. Dr. Gerard Pons-Moll University of Tübingen / MPI-Informatics

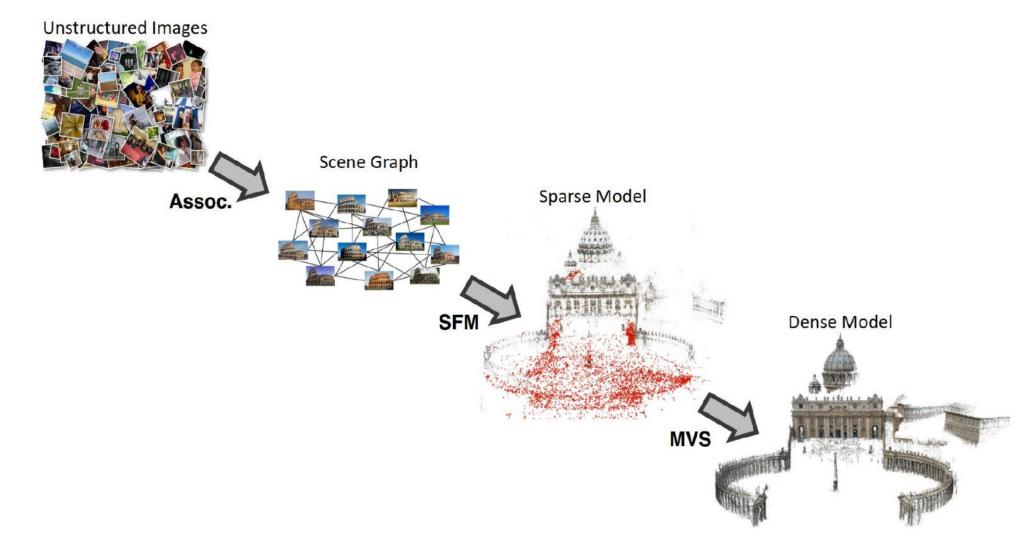
Reconstruction: Core of 3D



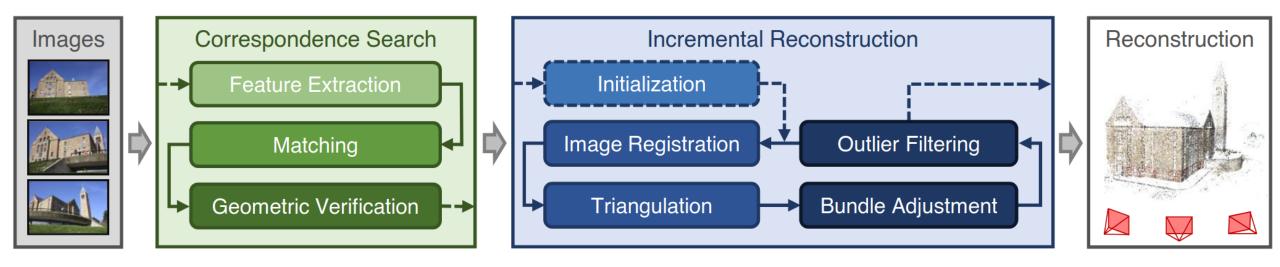
1



Classical Reconstruction Pipeline



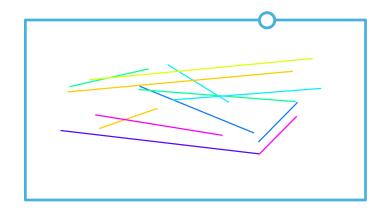
COLMAP: SotA Incremental SfM Pipeline



- Requires enough images with overlaps
- Many subproblems: Point Matching, Essential Matrix Estimation, Triangulation, Pose Estimation, ...
- No subproblem is solved perfectly
- No communication between components
- Brittle and prone to errors -> error propagation
- Slow (repeated BA)

Bottleneck: Bundle Adjustment

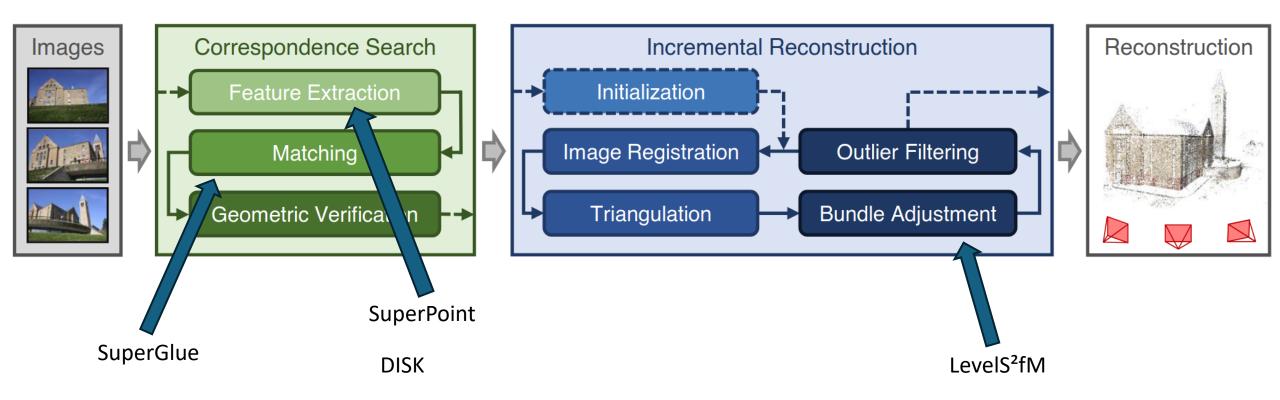
COLMAP



Bundle Adjustment

Traditional with Learned Components

Recent trend: Replace certain parts of SfM pipeline with learned modules



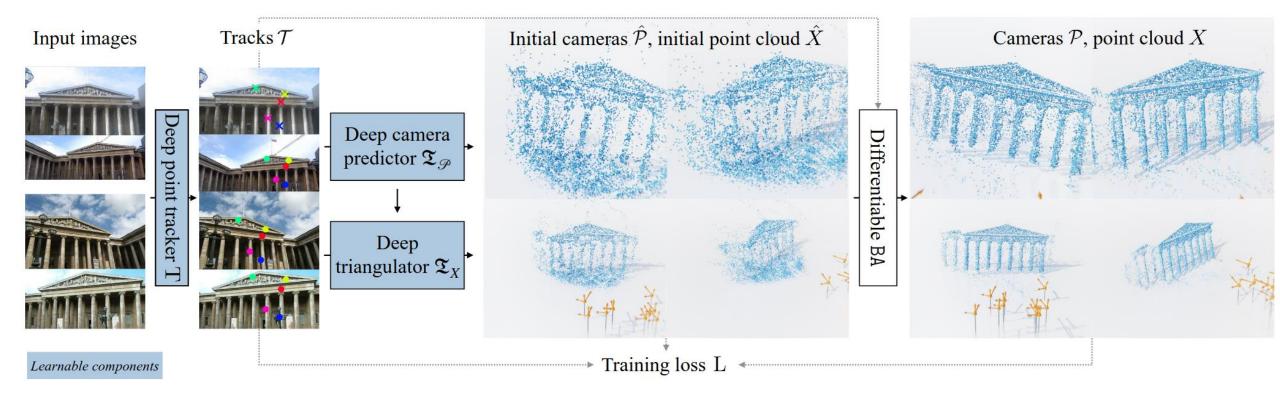
A Spectrum of Methods

Traditional Optimization-based

- Epipolar Geometry
- Pose Estimation
- Triangulation
- Bundle Adjustment
- ...

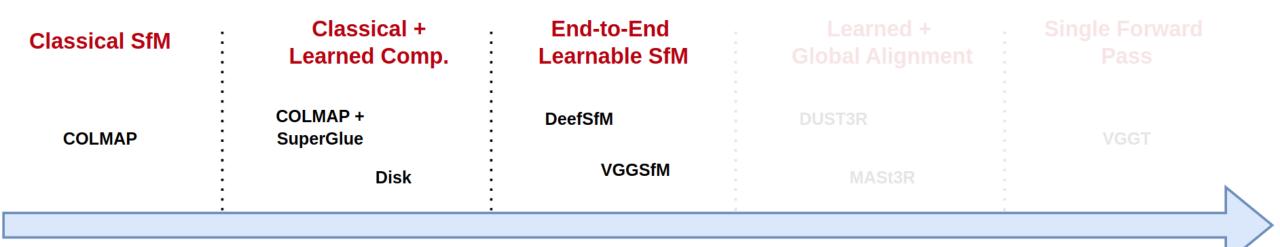
- Modern Learning-based
- Feature Extraction / Matching
- Monocular Depth Prediction
- Cross-View Attention
- ...

End-to-End Learnable SfM Pipelines



Visual Geometry Grounded Deep Structure From Motion, Wang et al. CVPR '24 DeepSFM: Structure From Motion Via Deep Bundle Adjustment, Wei et al. ECCV '20

A Spectrum of Methods



Traditional Optimization-based

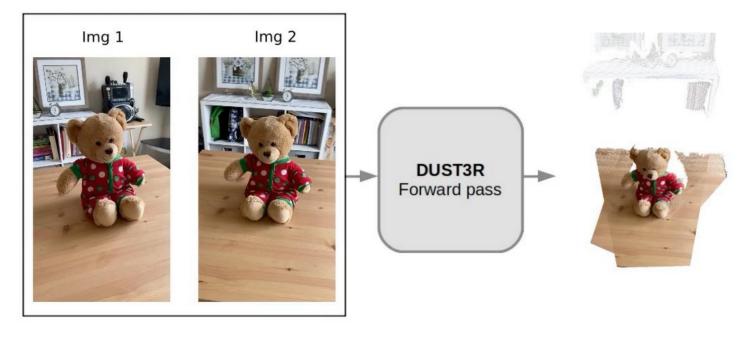
- Epipolar Geometry
- Pose Estimation
- Triangulation
- Bundle Adjustment
- •

...

- Modern Learning-based
- Feature Extraction / Matching
- Monocular Depth Prediction
- Cross-View Attention
- ...

DUSt3R: Shifting The Paradigm

DUSt3R takes **unposed** images **without prior information about camera calibration** as input



Input: Image Pair

Output: Point Maps

First steps towards 3D foundation models?

Point Maps

- Dense, pixel-aligned 3D point cloud $\mathbf{X} \in \mathbb{R}^{W imes H imes 3}$
- Forms a 1-to-1 mapping between image pixels and 3D scene points

$$\mathbf{I}_{i,j} \leftrightarrow \mathbf{X}_{i,j}$$

- More structured than point cloud
- Easy conversion:

 $\mathsf{Pointmap} \leftrightarrow \mathsf{Depth}\;\mathsf{Map}$

DUSt3R Task

Input:

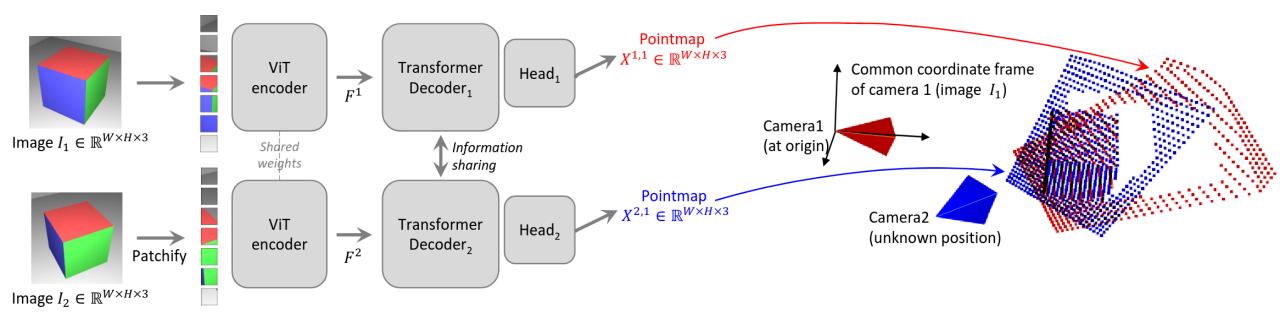
- Two images of a scene
- Different viewpoints

Output:

- Two pointmaps
- <u>Aligned</u> in C1's frame

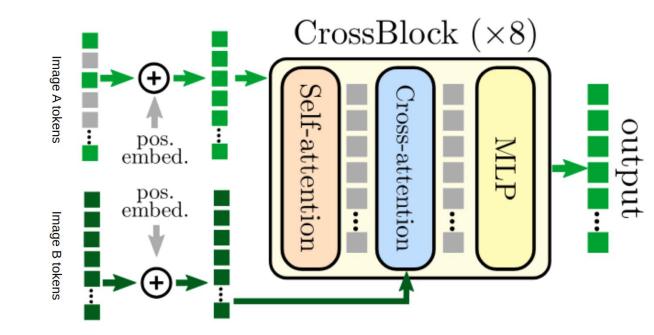
DUSt3R Architecture (without confidence)

- Siamese vision transformer encoder
- Multi-block transformer decoder that shares information between views via cross-attention
- Separate regression heads output pointmaps in frame of cam 1



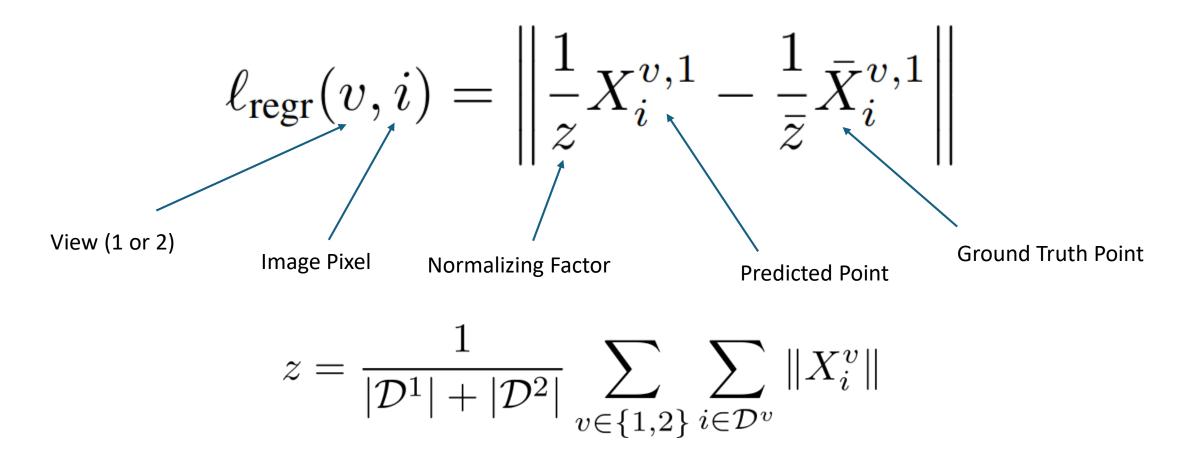
Dust3R Decoder Blocks

- Self attention across all patches of an image
- Cross attention for information sharing between images
- Multiple blocks in series



DUSt3R Training Objective

3D Regression Loss



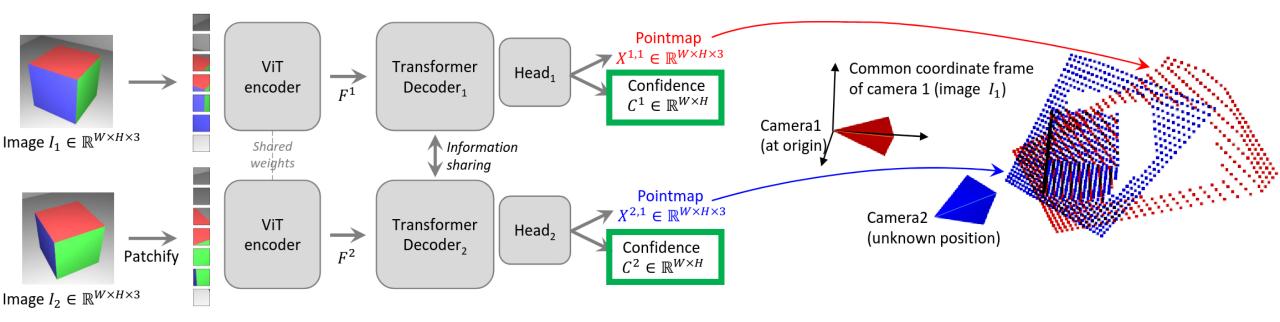
Dealing With Ambiguous Points

What are the ground truth positions for these points?

Even we humans are not confident. Can we make a model with confidence scores?

Confidence-Aware Model and Training

- Head not only regresses pointmap but also gives confidence score
- How do we train this without ground truth?



Confidence-Aware Loss

Overall Training Loss:

$$\mathcal{L}_{conf} = \sum_{v \in \{1,2\}} \sum_{i \in \mathcal{D}^v} C_i^v \ell_{regr}(v,i) - \alpha \log C_i^v$$

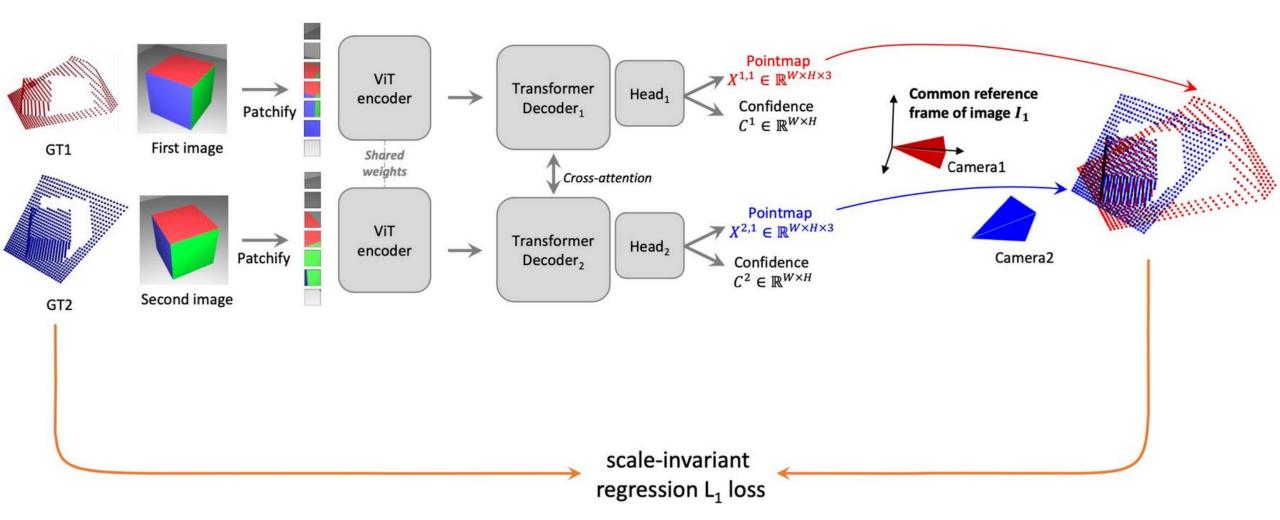
Confidence of pixel i in view v

Regression Loss

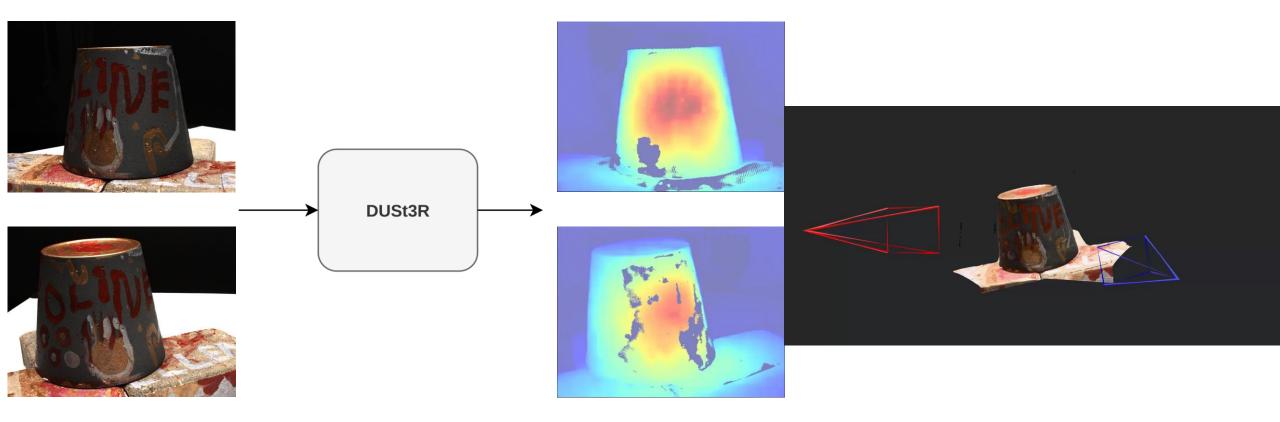
Regularization weight / Penalty for uncertainty

To force extrapolation in uncertain areas:

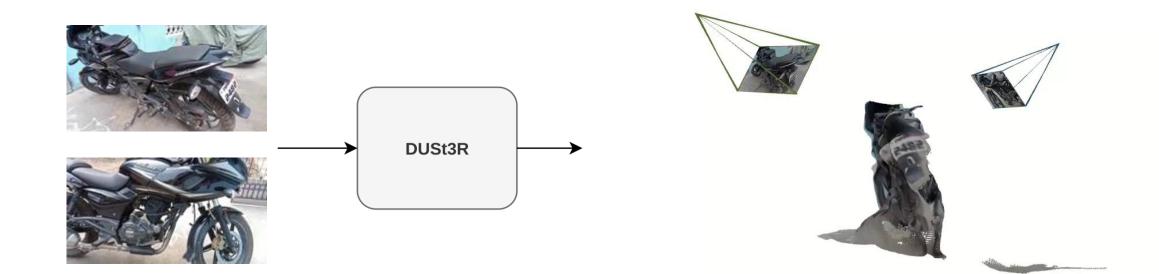
DUSt3R Final Pipeline



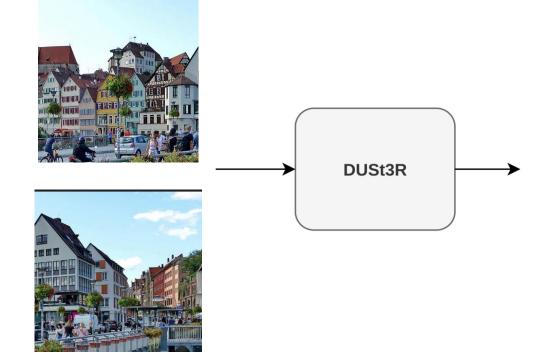
Example: Reconstruction + Confidence Maps

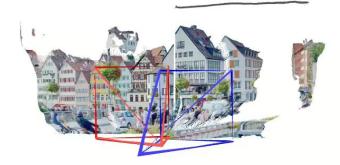


Heavy Viewpoint Changes

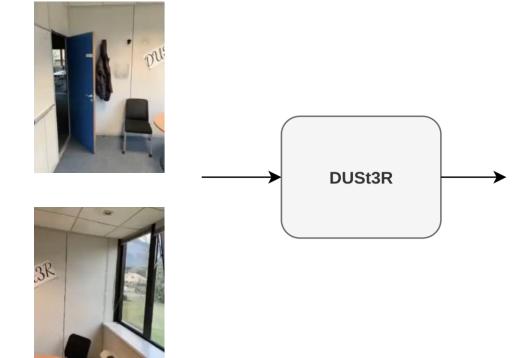


No Overlap



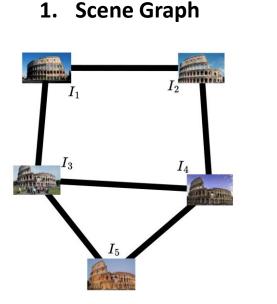


No Overlap

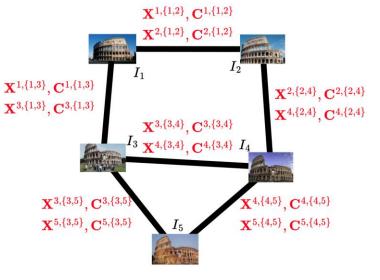


Multi-View Reconstruction

- DUSt3R only takes 2 views as input, what if we have more views?
- We are interested in *globally aligned pointmaps* $\{\chi^v \in \mathbb{R}^{W \times H \times 3}\}_{v \in V}$
- Requires rotating/scaling pairwise predictions into common world frame



2. Pairwise Reconstruction



3. Global Optimization

Optimize for

- Per-edge scale σ_e
- Per-edge rigid transform $P_e \in \mathbb{R}^{3 \times 4}$
- Per-view global pointmap $\,\chi^n\,$

$$\chi^* = \underset{\chi,P,\sigma}{\operatorname{arg\,min}} \sum_{e \in \mathcal{E}} \sum_{v \in e} \sum_{i=1}^{HW} C_i^{v,e} \| \chi_i^v - \sigma_e P_e X_i^{v,e} \|$$

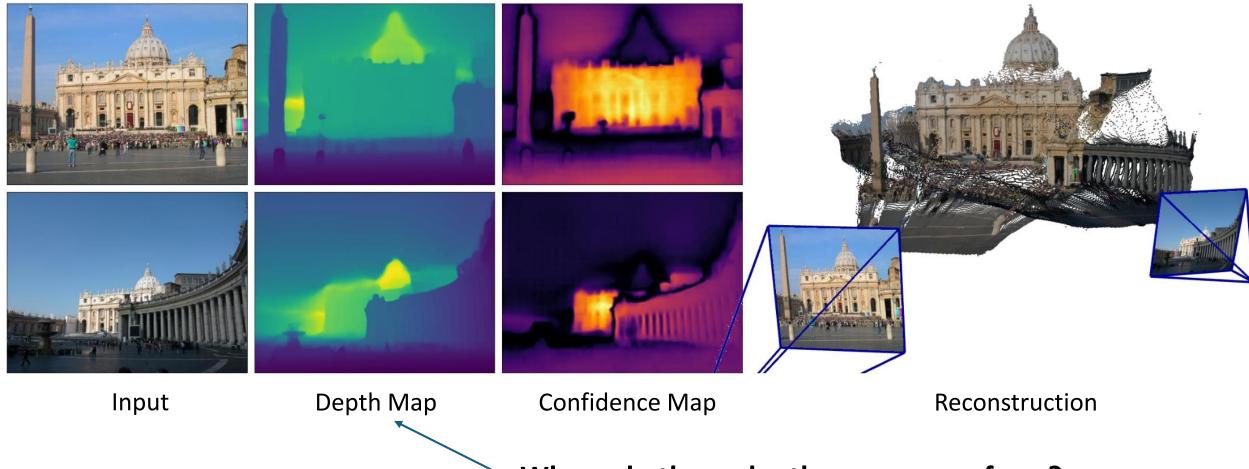
Multi-View Alignment via Optimization



Global Alignment

Multi-View Reconstruction Result

DUSt3R: Downstream Applications



Where do these depth maps come from?

Monocular Depth Estimation

- Feed same input image twice
- Depth = z coordinate of 3D point

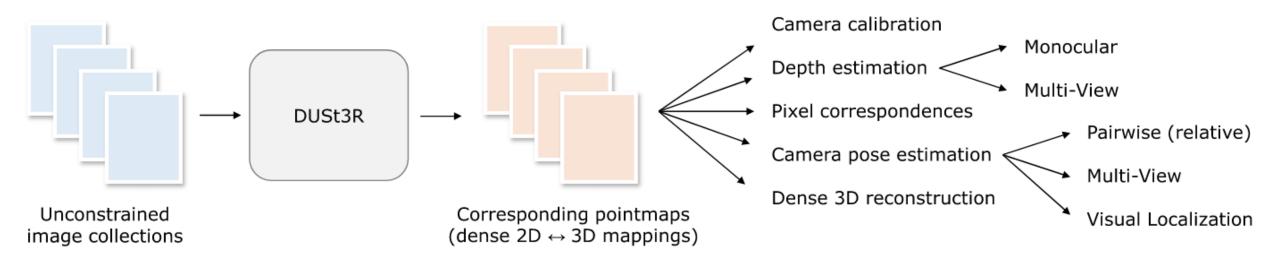
Monocular Depth Estimation

		Outdoor			Indoor						
Methods	Train	DDAD[41]		KITTI [35]		BONN [80]		NYUD-v2 [115]		TUM [119]	
		Rel↓	$\delta_{1.25}\uparrow$	Rel↓	$\delta_{1.25}\uparrow$	Rel↓	$\delta_{1.25}\uparrow$	Rel↓	$\delta_{1.25}\uparrow$	$\operatorname{Rel} \downarrow$	$\delta_{1.25}\uparrow$
DPT-BEiT[91]	D	10.70	84.63	9.45	89.27	-	-	5.40	96.54	10.45	89.68
NeWCRFs[174]	D	9.59	82.92	5.43	91.54	-	-	6.22	95.58	14.63	82.95
Monodepth2 [37]	SS	23.91	75.22	11.42	86.90	56.49	35.18	16.19	74.50	31.20	47.42
SC-SfM-Learners [6]	SS	16.92	77.28	11.83	86.61	21.11	71.40	13.79	79.57	22.29	64.30
SC-DepthV3 [121]	SS	14.20	81.27	11.79	86.39	12.58	88.92	12.34	84.80	16.28	79.67
MonoViT[182]	SS	-	-	09.92	90.01	-	-	-	-	-	
RobustMIX [92]	Т	-	-	18.25	76.95	-	-	11.77	90.45	15.65	86.59
SlowTv [117]	Т	12.63	79.34	(6.84)	(56.17)	-	-	11.59	87.23	15.02	80.86
DUSt3R 224-NoCroCo	Т	19.63	70.03	20.10	71.21	14.44	86.00	14.51	81.06	22.14	66.26
DUSt3R 224	Т	16.32	77.58	16.97	77.89	11.05	89.95	10.28	88.92	17.61	75.44
DUSt3R 512	Т	13.88	81.17	10.74	86.60	8.08	93.56	6.50	94.09	14.17	79.89

Towards 3D Foundation Models?

DUSt3R is trained for 2-view to 3D reconstruction task.

Pointmap is expressive representation which can be used for a variety of downstream tasks:



Pixel Correspondences from DUSt3R

- Image correspondence search now boils down to 3D correspondence search
- Can be solved e.g. by mutual nearest neighbor matching

$$\mathcal{M}_{1,2} = \{(i,j) \mid i = \mathrm{NN}_1^{1,2}(j) \text{ and } j = \mathrm{NN}_1^{2,1}(i)\}$$

with $\mathrm{NN}_k^{n,m}(i) = \operatorname*{arg\,min}_{j \in \{0,...,WH\}} \left\| X_j^{n,k} - X_i^{m,k} \right\|.$

Estimating Focal Length From Pointmaps

Assuming centered principal point (i' = i - W/2, and j' = j - H/2)

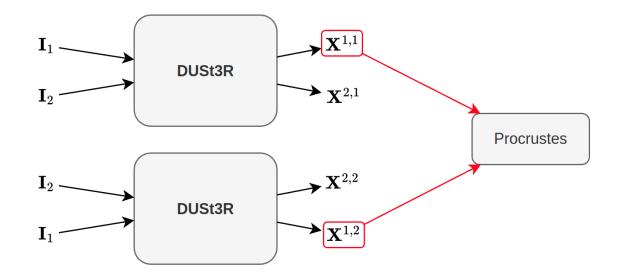
Then focal length can be estimated by minimizing confidence-aware reprojection loss

$$f_1^* = \underset{f_1}{\operatorname{arg\,min}} \sum_{i=0}^{W} \sum_{j=0}^{H} C_{i,j}^{1,1} \left\| (i',j') - f_1 \frac{(X_{i,j,0}^{1,1}, X_{i,j,1}^{1,1})}{X_{i,j,2}^{1,1}} \right\|$$

Can be solved by Weiszfeld-algorithm in a few iterations

Estimating Relative Camera Poses

- 1. Method (Procrustes):
 - Feed both ordered pairs
 - Compute optimal alignment via Procrustes
 - Derive relative camera poses



- 2. Method (PnP + RANSAC)
 - Procrustes not very robust
 - PnP possible because pointmap gives 2D-3D correspondences

MVS benchmark on DTU

Τ		Methods	GT cams	Acc. \downarrow	$\text{Comp.}{\downarrow}$	Overall↓
Handcrafted	(a)	Camp [12]	\checkmark	0.835	0.554	0.695
		Furu [33]	\checkmark	0.613	0.941	0.777
		Tola [134]	\checkmark	0.342	1.190	0.766
		Gipuma [34]	\checkmark	0.283	0.873	0.578
Learning-based	(b)	MVSNet [161]	\checkmark	0.396	0.527	0.462
		CVP-MVSNet [158]	\checkmark	0.296	0.406	0.351
		UCS-Net [18]	\checkmark	0.338	0.349	0.344
		CER-MVS [65]	\checkmark	0.359	0.305	0.332
		CIDER [157]	\checkmark	0.417	0.437	0.427
Lea		CasMVSNet [40]	\checkmark	0.325	0.385	0.355
		PatchmatchNet [139]	\checkmark	0.427	0.277	0.352
		GeoMVSNet [180]	\checkmark	0.331	0.259	0.295
		DUSt3R 512	×	2.677	0.805	1.741

All in mm

Acc = distance from reconstruction to closest ground truth point (averaged)

Comp = distance from ground truth to closest reconstruction point (averaged)

Overall = average of accuracy and completeness

Takeaways:

- Learning-based methods have overtaken handcrafted methods
- DUSt3R cannot compete for multiple reasons:
 - 1. Regression vs subpixel triangulation

2. Does not leverage GT camera poses

3. Zero-shot (other methods have trained on DTU train set)

DUSt3R Summary

- Very robust even to extreme view changes
- Simpler end-to-end learnable pipeline -> less prone to error accumulation
- Requires only 2 views
- For more views global alignment (GA) optimization procedure
 - Inefficient pairwise processing of O(N^2) pairs
 - Information sharing only between two images at a time
 - GA faster than BA but still not instant (couple of seconds to minutes)
 - Memory intensive (OOM on A100 with 80GB VRAM on 48 views)
- Cannot compete in 3D reconstruction accuracies
- Competitive in many other tasks such as depth, pose estimation

3R Models

Easi3R: Estimating Disentangled Motion from DUSt3R

Without Training

Xingyu Chen¹ Yue Chen¹ Yuliang Xiu^{1,2} Andreas Geiger³ Anpei Chen^{1,3} ¹Westlake University ²Max Planck Institute for Intelligent Systems ³University of Tübingen, Tübingen Al Center

SLAM3R: Real-Time Dense Scene Reconstruction from Monocular RGB Videos

Yuzheng Liu^{1*} Siyan Dong^{2*†} Shuzhe Wang³ Yingda Yin¹ Yanchao Yang^{2†} Qingnan Fan⁴ Baoquan Chen^{1†} ¹Peking University ²The University of Hong Kong ³Aalto University ⁴VIVO

Spann3R 3D Reconstruction with Spatial Memory Hengyi Wang, Lourdes Agapito

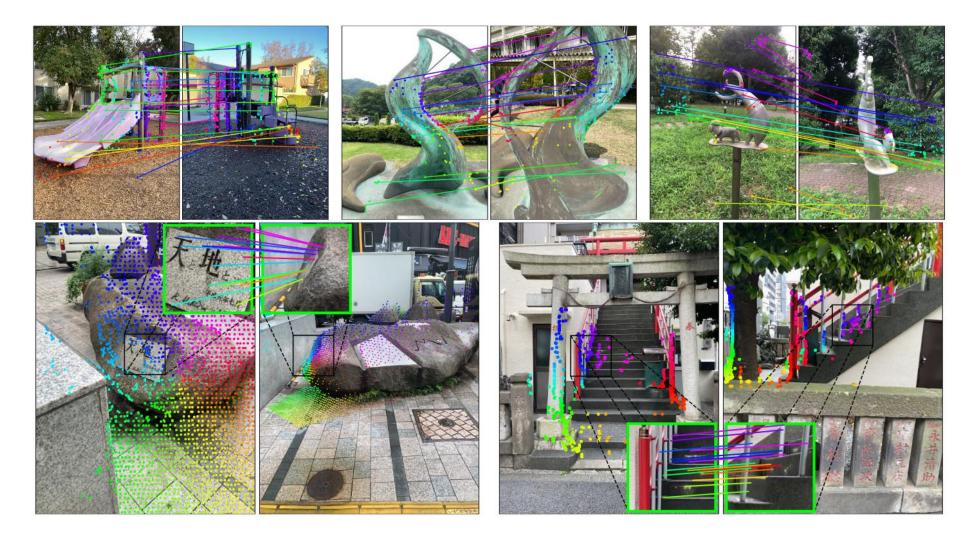
University College London 3DV 2025

MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion

<u>Junyi Zhang¹</u>	<u>Charles Herrmann^{2,+}</u>	<u>Junhwa Hur²</u>	<u>Varun Jampani³</u>	<u>Trevor Darrell¹</u>		
	<u>Forrester Cole²</u> <u>Deqing Sun^{2,*}</u> <u>Ming-Hsuan Yang^{2,4,*}</u>					
	¹ UC Berkeley ² Goog	<u>gle DeepMind</u> ³ Stab	ility AI ⁴ UC Merced			
(+: project lead, *: equal contribution)						

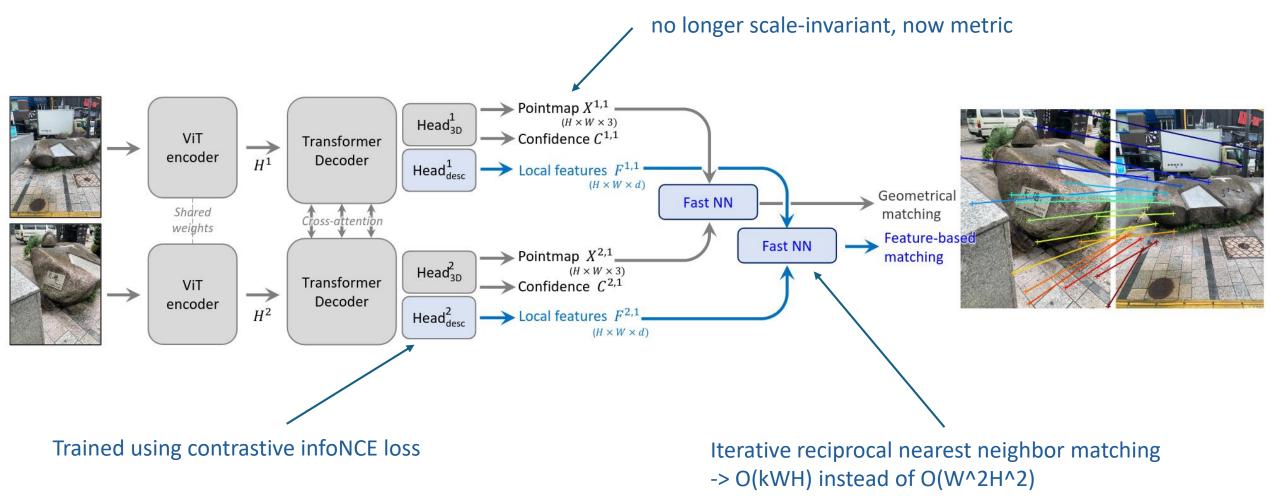
ICLR 2025 (Spotlight)

MASt3R: DUSt3R + Matching



MASt3R, Leroy et al. ECCV '24

MASt3R: Contributions



MASt3R, Leroy et al. ECCV '24

MVS Benchmark on DTU

		Methods	Acc.↓	Comp.↓	Overall↓
Handcrafted	(c)	Camp [13]	0.835	0.554	0.695
		Furu [<mark>31</mark>]	0.613	0.941	0.777
		Tola [<mark>90</mark>]	0.342	1.190	0.766
		Gipuma [<mark>32</mark>]	0.283	0.873	0.578
Learning-based	(d)	MVSNet [110]	0.396	0.527	0.462
		CVP-MVSNet [109]	0.296	0.406	0.351
		UCS-Net [17]	0.338	0.349	0.344
		CER-MVS [55]	0.359	0.305	0.332
		CIDER [107]	0.417	0.437	0.427
		PatchmatchNet [99]	0.427	0.277	0.352
		GeoMVSNet [119]	0.331	0.259	0.295
	(e)	DUSt3R [102]	2.677	0.805	1.741
		MASt3R	0.403	0.344	0.374

MVS with MASt3R:

- 1. Forward passes to obtain 2D-2D correspondences
- 2. Triangulate matches in ground truth frame using gt camera parameters

No costly global alignment necessary!

Takeaways:

- Triangulation outperforms regression
- MASt3R outperforms DUSt3R and is competitive with recent learning-based methods while:

1. not using camera poses for matching

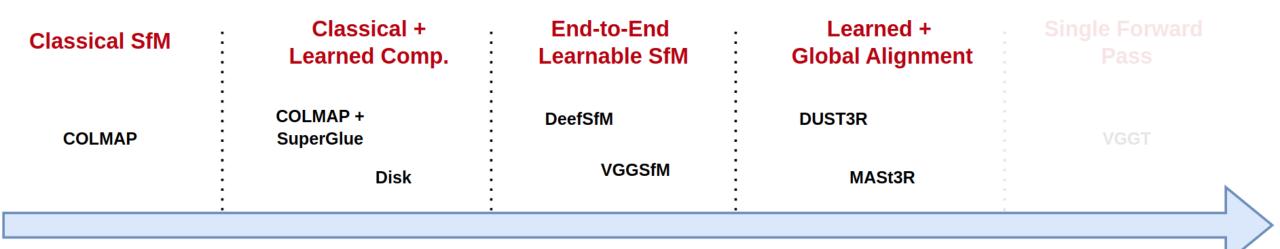
2. not having seen DTU camera setup during training

All in mm

MASt3R Summary

- Improved DUSt3R
- Regresses **metric** pointmaps
- Additional feature head for matching
- Fast reciprocal nearest neighbor matching procedure
- Retains robustness of DUSt3R and strengths of pixel matching
- Outperforms DUSt3R on many downstream tasks
- Still only pairwise images. For multiple images, global alignment of pointmaps still required -> memory intensive

A Spectrum of Methods



Traditional Optimization-based

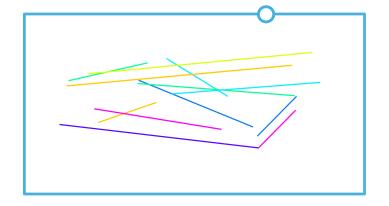
- Epipolar Geometry
- Pose Estimation
- Triangulation
- Bundle Adjustment
- •

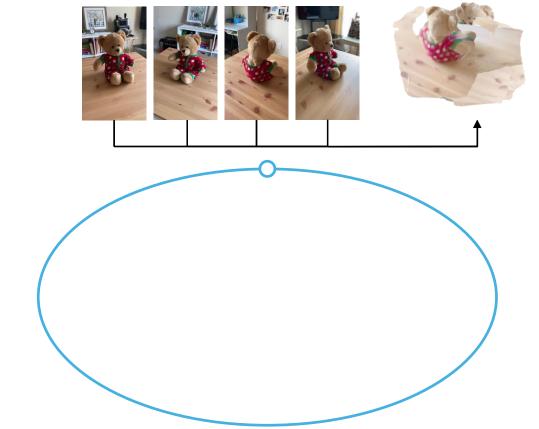
...

- Modern Learning-based
- Feature Extraction / Matching
- Monocular Depth Prediction
- Cross-View Attention
- ...

Efficiently Dealing with More Views

Multi-View Alignment via Optimization: Bottleneck for 3D COLMAP DUSt3R



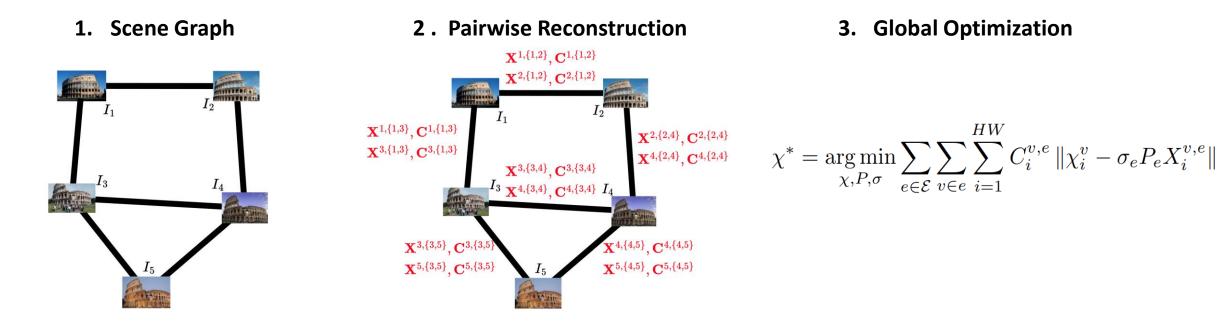


Bundle Adjustment

Global Alignment

Multi-View Efficiency Problem of DUSt3R/MASt3R

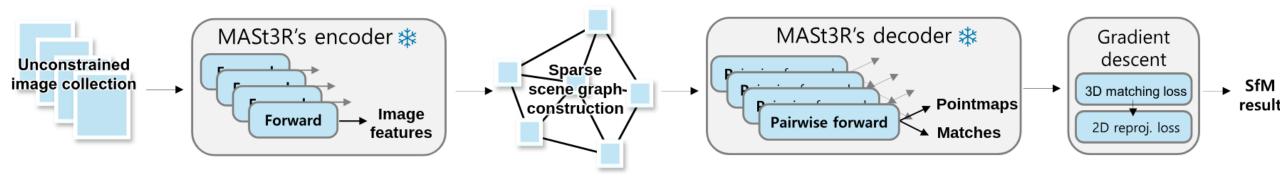
- DUSt3R and MASt3R are 2-view models
- For multi-view, O(N^2) pointmaps need to be aligned with costly global alignment procedure -> infeasible for larger N



MASt3R-SfM: Sparsification

Overview:

- Reduced number of pairwise forward passes via sparse scene graph with O(N) edges
- Coarse alignment: minimize 3D loss only for matching points
- Refinement: minimize 2D reprojection loss (BA)



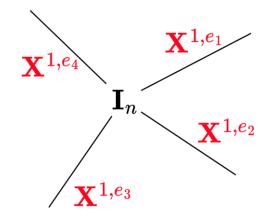
Coarse Refinement

• Canonicalize pointmaps

$$\tilde{X}_{i,j}^n = \frac{\sum_{e \in \mathcal{E}^n} C_{i,j}^{n,e} X_{i,j}^{n,e}}{\sum_{e \in \mathcal{E}^n} C_{i,j}^{n,e}}$$

- Estimate intrinsics \mathbf{K}_n via focal length
- Find optimal rigid transforms and scales

$$\min_{\sigma,\mathbf{P}} \sum_{(n,m)\in\mathcal{E}} \sum_{i\in\mathcal{M}^{n,m}} C_i \|\chi_i^n - \chi_i^m\|^{1.5} \quad \text{where} \quad \chi_i^n = \frac{1}{\sigma_n} P_n^{-1} K_n^{-1} Z_i^n \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$
Only applies to pixel correspondences



Multi-View Alignment via Optimization: Bottleneck for 3D

MASt3R-SfM still has some optimization for global alignment

In general, optimization is often the bottleneck for 3D Vision:

- Time-consuming
- Poor Compatibility with Deep Learning
 - Not inherently "plug-and-play"
 - Often non-differentiable
- Complexity
 - Scary for non-experts

Can we do without optimization, in one single forward pass?

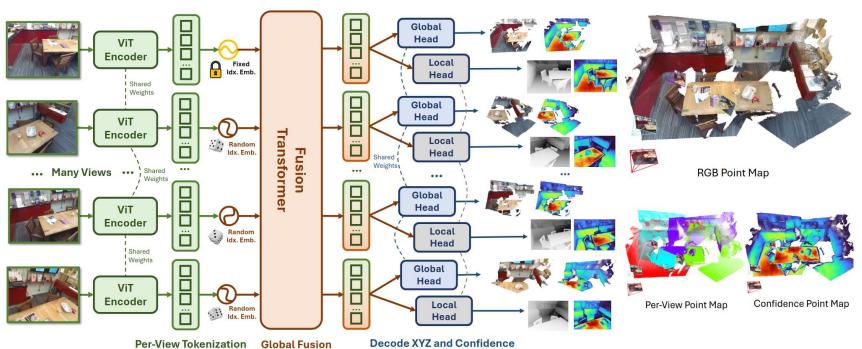
Let's Reconstruct in One Go!

Images

Reconstruction Cameras, Depths, Points, and Correspondences

DUST3R Multi-View Extensions

- No longer two branches but fusion transformer which can handle arbitrary number of views
- All images can attend to each other
- No global alignment necessary



Fast3R, Yang et al. CVPR '25 MV-DUSt3R, Tang et al. CVPR '25

DUSt3R vs. Fast3R

Speed & Memory

Comparison of computational efficiency between Fast3R and DUSt3R on a single A100 GPU. Each view has a 512×384 resolution.

		Fast3R	DUSt3R		
# Views	Time (s)	Peak GPU Mem (GiB)	Time (s)	Peak GPU Mem (GiB)	
2	0.065	3.84	0.092	3.52	
8	0.122	6.33	8.386	24.59	
32	0.509	13.25	129.0	67.61	
48	0.84	20.8	OOM	OOM	
320	15.938	41.90	OOM	OOM	
800	89.569	55.97	OOM	OOM	
1000	137.62	63.01	OOM	OOM	
1500	308.85	78.59	OOM	OOM	

• Much faster

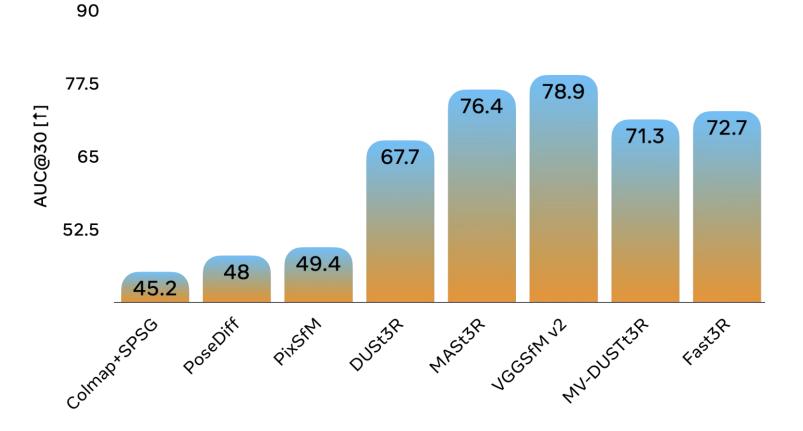
• More memory efficient

 Information sharing between all views instead of pairwise

Note: "OOM" indicates Out of Memory. For DUSt3R, at 48 views the N² pairwise reconstructions consume all VRAM during global alignment.

Fast3R vs MASt3R

Camera Estimation on RealEstate 10K



Worse than MASt3R!

VGGT: Overparameterized Reconstruction in One GO

Images

Reconstruction Cameras, Depths, Points, and Correspondences

Visual Geometry Grounded Transformer, Wang et al. CVPR '25 Best Paper Award

Settings

🟛 VGGT: Visual Geometry Grounded Transformer

🚆 GitHub Repository | 🖋 Project Page

Upload a video or a set of images to create a 3D reconstruction of a scene or object. VGGT takes these images and generates all key 3D attributes, including extrinsic and intrinsic camera parameters, point maps, depth maps, and 3D point tracks.

Getting Started:

1. Upload Your Data: Use the "Upload Video" or "Upload Images" buttons on the left to provide your input. Videos will be automatically split into individual frames (one frame per second).

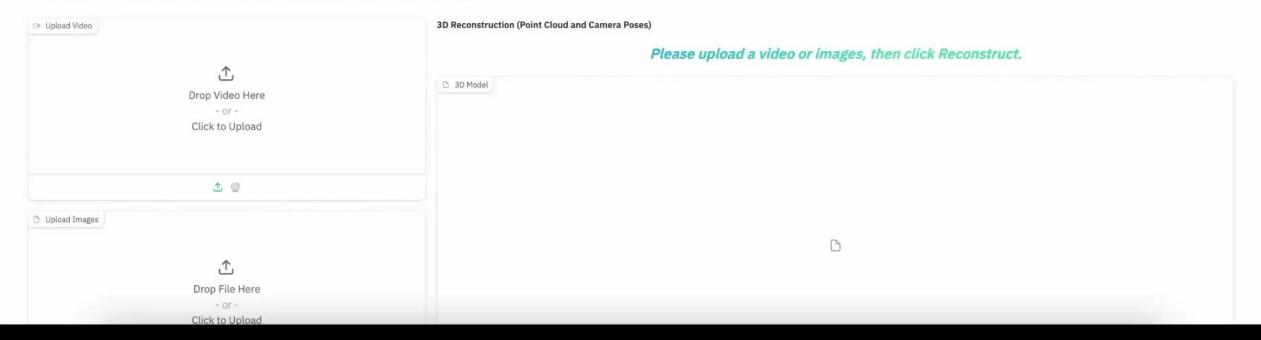
2. Preview: Your uploaded images will appear in the gallery on the left.

3. Reconstruct: Click the "Reconstruct" button to start the 3D reconstruction process.

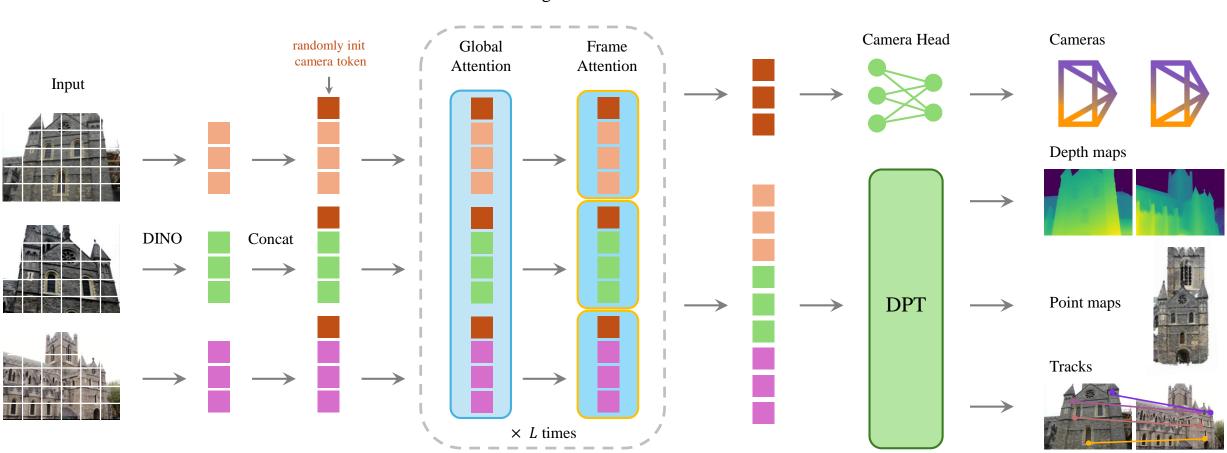
4. Visualize: The 3D reconstruction will appear in the viewer on the right. You can rotate, pan, and zoom to explore the model, and download the GLB file. Note the visualization of 3D points may be slow for a large number of input images.

5. Adjust Visualization (Optional): After reconstruction, you can fine-tune the visualization using the options below (click to expand):

Please note: Our model itself usually only needs less than 1 second to reconstruct a scene. However, visualizing 3D points may take tens of seconds due to third-party rendering, which are independent of VGGT's processing time. Please be patient or, for faster visualization, use a local machine to run our demo from our <u>GitHub repository</u>.



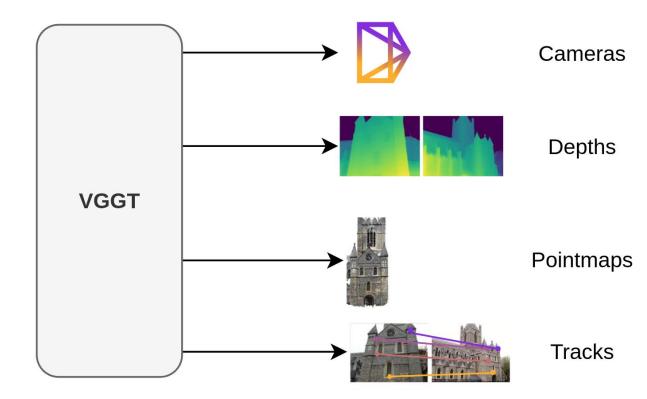
VGG Transformer



Alternating-Attention

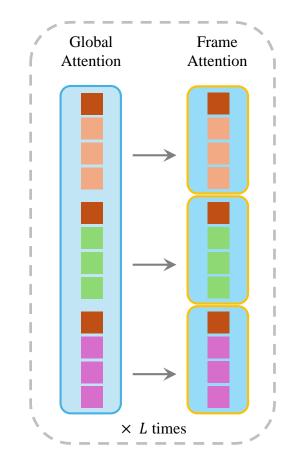
Why Overparameterized Output?

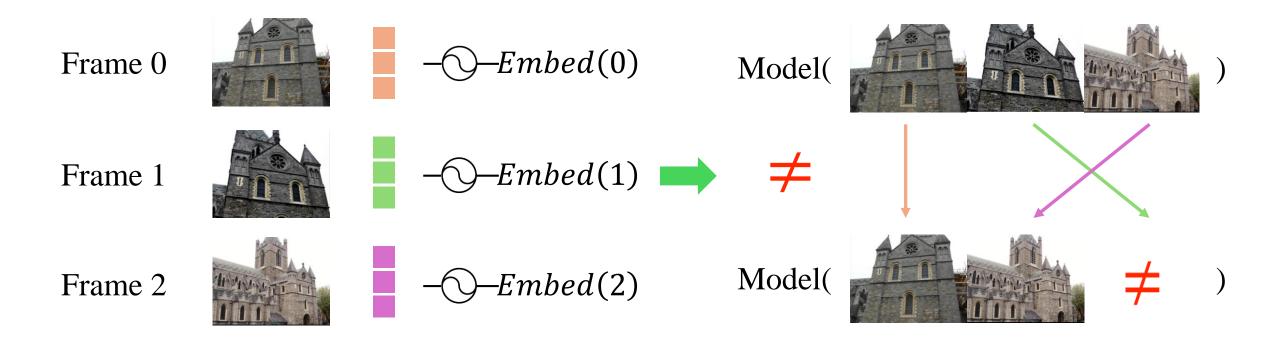
- DUST3R: Extract depthmap, cameras, and matches from pointmap
- VGGT: Predict all of them "independently"
- Overparameterized predictions brings substantial performance gains during training
- During inference, combining estimates often outperforms direct branch



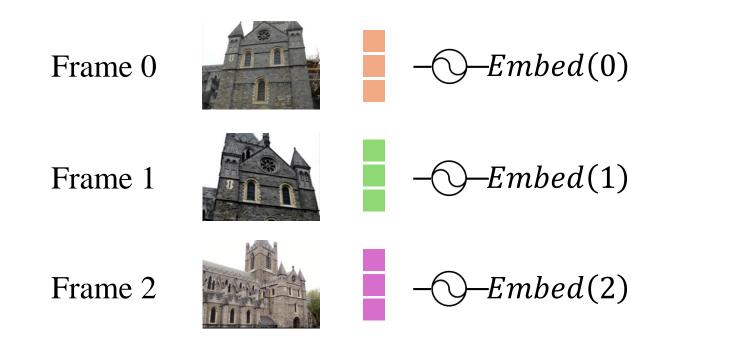
- Global Attention
 - Ensures scene-level coherence

- Frame-wise Attention
 - Eliminates frame index embedding
 - For permutation equivariance
 - For flexible input length





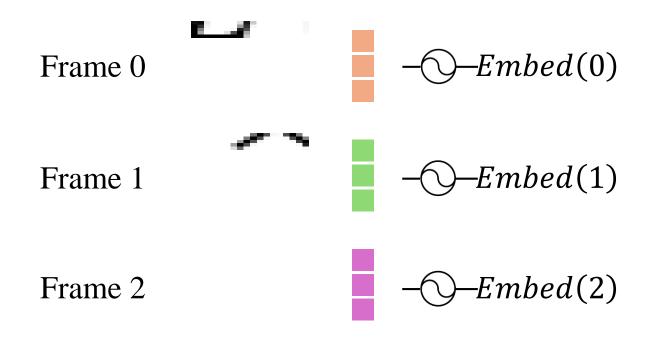
Not permutation equivariant

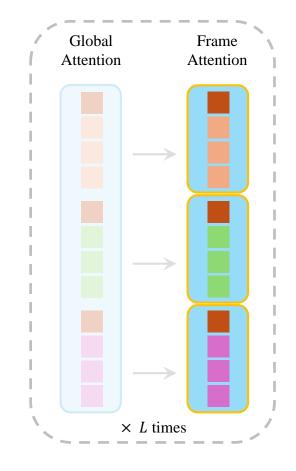


Frame 842

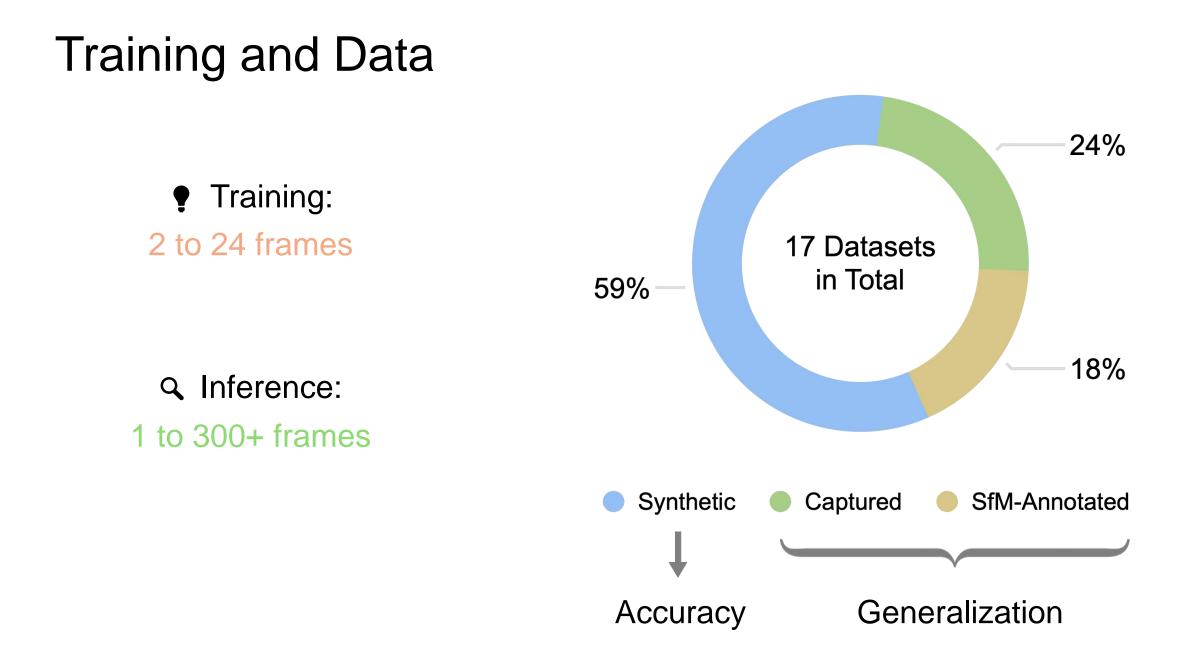
:

But model never sees *Embed*(842) during training





Replaces frame index embedding by Frame-wise Attention



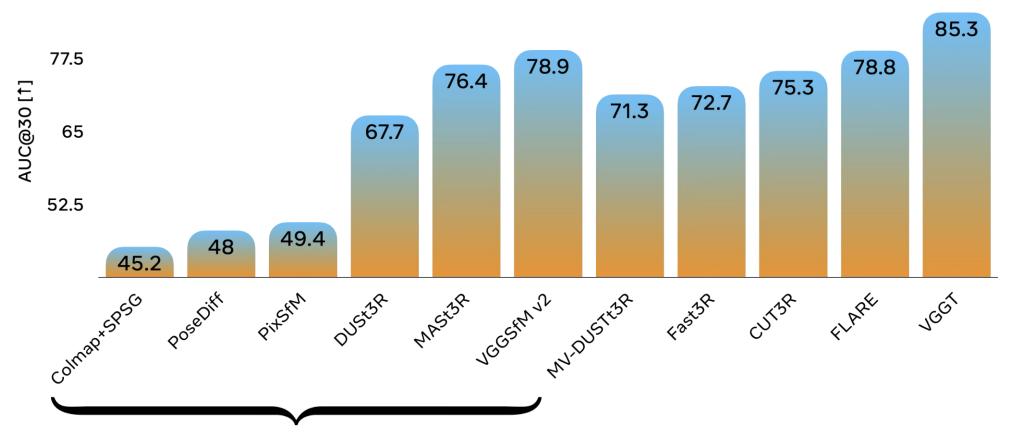
Qualitative

32 Views

VGGT Is Accurate

90

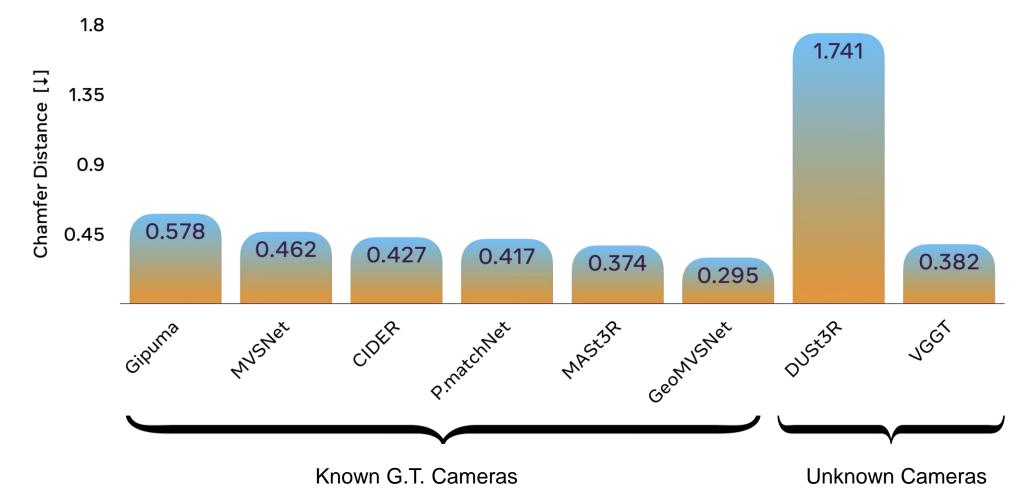
Camera Estimation on RealEstate 10K



with Optimization

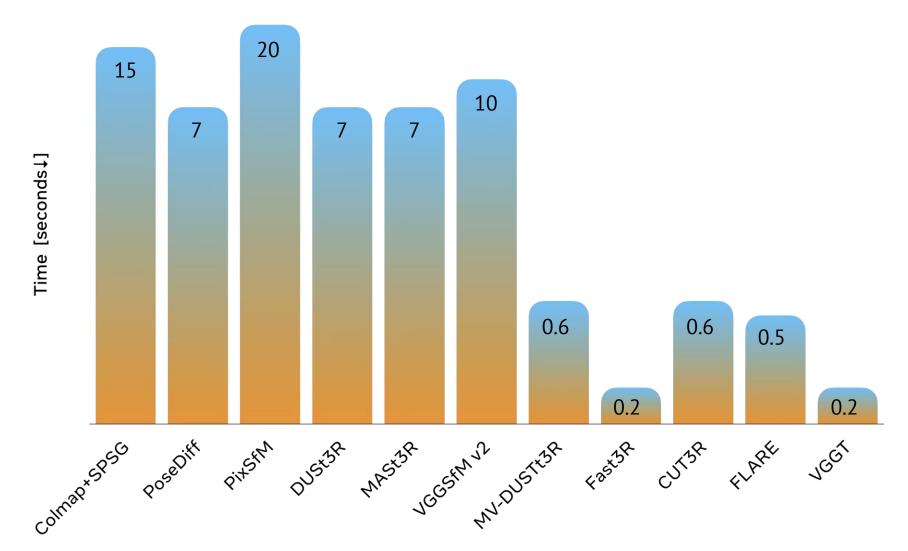
VGGT Is Accurate

Multi-view Depth Estimation on DTU

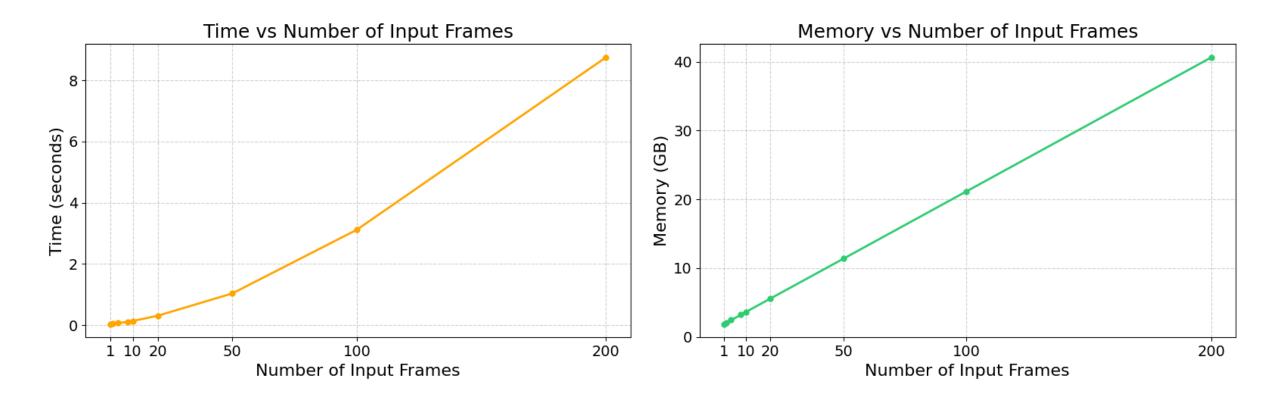


VGGT Is Fast

Camera Estimation on RealEstate 10K

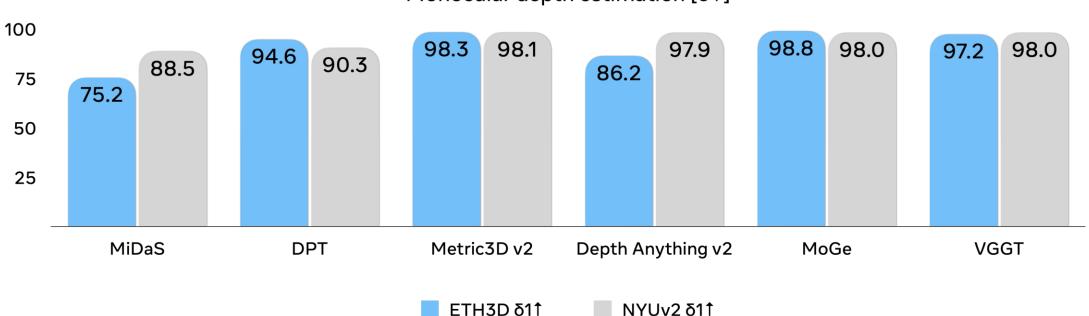


Runtime and Memory



- Memory usage scales roughly linearly with input frames
- The time usage is around $O(N^{1.5})$

Zero-shot Monocular Depth Estimation



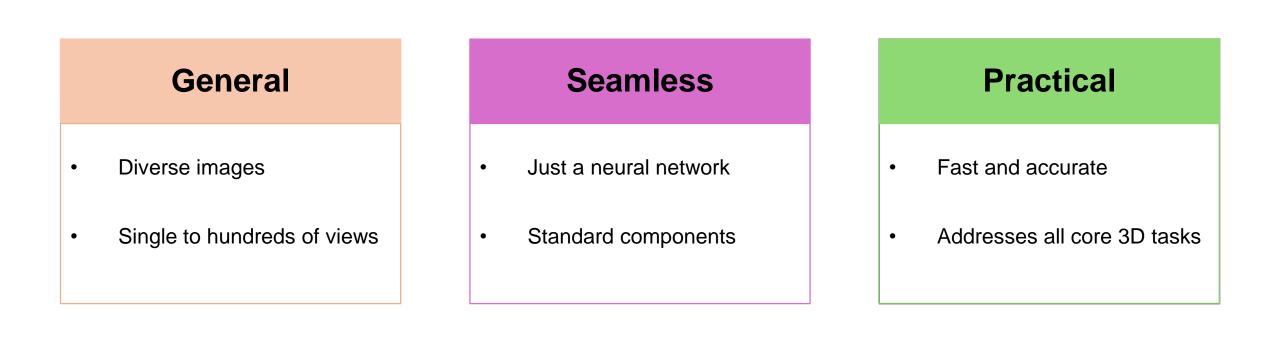
Monocular depth estimation $[\delta^{\uparrow}]$

As good as SoTA experts – but VGGT was never trained for monocular

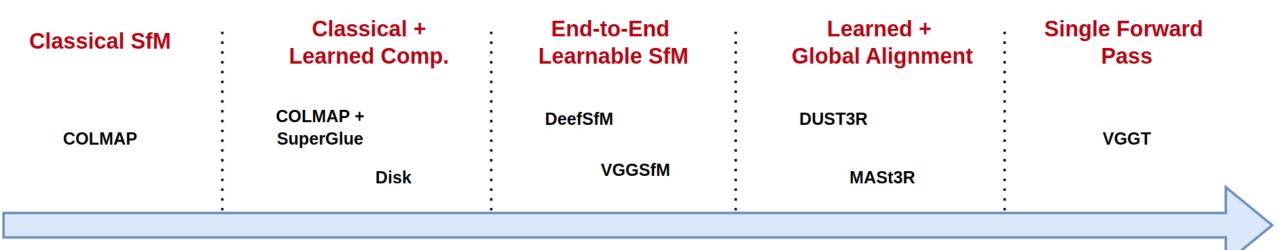
Zero-shot Monocular Depth Estimation

Single View

VGGT Is General, Seamless and Practical



A Spectrum of Methods



Traditional Optimization-based

- Epipolar Geometry
- Pose Estimation
- Triangulation
- Bundle Adjustment

- Modern Learning-based
- Feature Extraction / Matching
- Monocular Depth Prediction
- Cross-View Attention
- ...

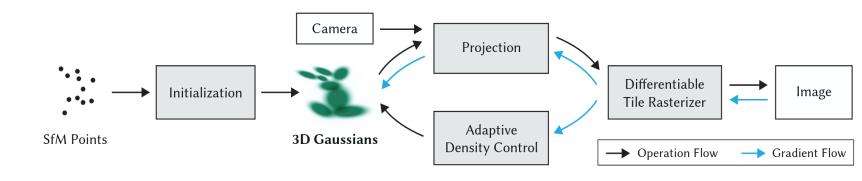
• ...

Novel View Synthesis from Sparse Images

Sora – Santorini – 3Views

Original 3DGS:

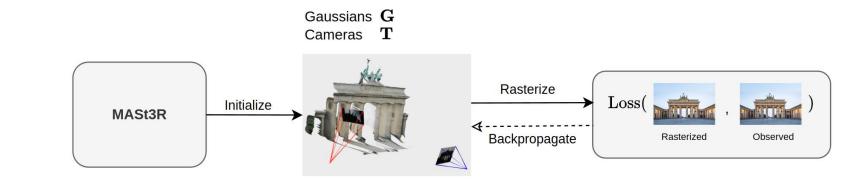
- Assumes known camera parameters
- Requires lots of views
- Sparse initialization from SfM
- Adaptive density control necessary for dense reconstruction



3D Gaussian Splatting for Real-Time Radiance Field Rendering, Kerbl et al. '23

InstantSplat:

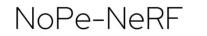
- Unknown cameras
- Few views
- Dense initialization
- Joint pose and Gaussian optimization instead of adaptive density control



Comparison to Other Pose-Free Models

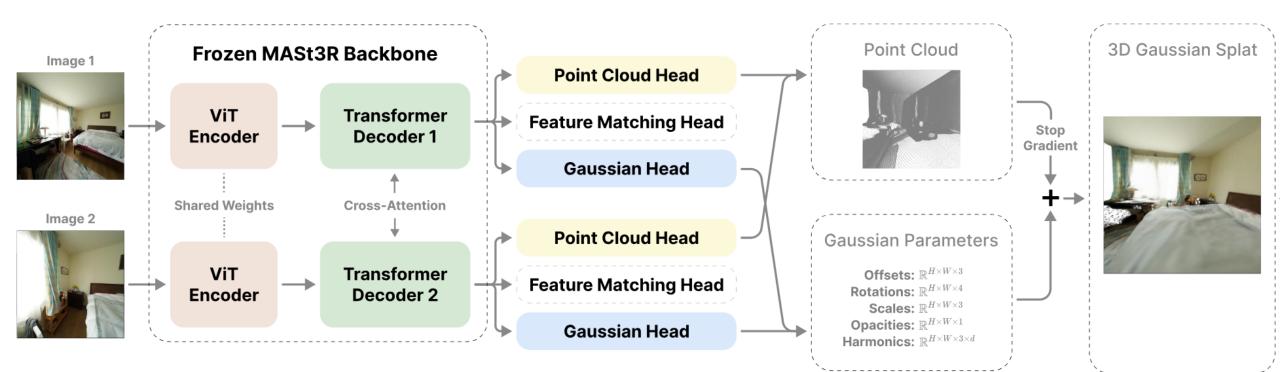
Minute Second

- NeRF without camera poses
- 50+ images



Ours (Dense Surface Point Initialization)

Optimization-free method: Additional head predicting Gaussian parameters



Uncalibrated, Input Image Pair

Inference

3D Gaussian Splat

.

Novel Renderings

Summary

- Traditional 3D reconstruction pipelines are overtaken by learningbased methods
- DUSt3R shifted paradigm towards direct pointmap regression from unposed images
- Very robust and versatile. Outperforms task-specific methods in classical 3D tasks
- Sparked a wave of 3R-methods for all kinds of applications
- VGGT: optimization-free feed-forward network outperforming state of the art

Further Resources and Slide Credit

We have not covered t3R models for videos / dynamic scenes:

- Spann3R
- MONSt3R
- DAS3R
- CUT3R
- Easi3R

https://github.com/ruili3/awesome-dust3r for a list of DUSt3R-related works

Some slides were copied / adapted from the following sources:

- Vincent Leroy, "From CroCo to MASt3R: A Paradigm Change in 3D Vision"
- Jianyuan Wang, "VGGT" CVPR presentation

Feat2GS

Probing Visual Foundation Models with **Gaussian Splatting**



Yue Chen¹

Xingyu Chen¹

Anpei Chen^{1,3}

Gerard Pons-Moll^{3,4}

Yuliang Xiu^{1,2}

¹Westlake University ²Max Planck Institute for Intelligent Systems ³University of Tübingen, Tübingen AI Center ⁴Max Planck Institute for Informatics

How well do they understand the **3D** world?

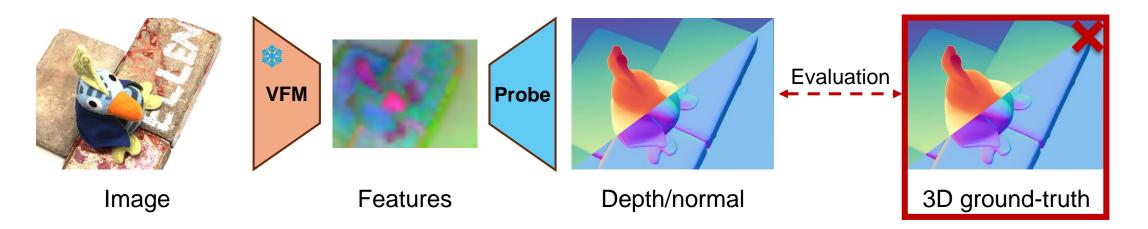
DINO SD MASt3R DUSt3R RADIO MiDaS MAE DINOv2 SAM CLIP

Visual Foundation Models

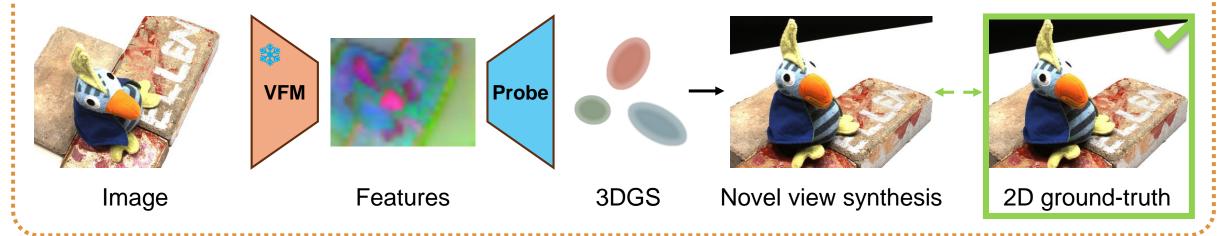
VFM	Arch.	Channel	Supervision	Dataset
DUSt3R [94]	ViT-L/16	1024	Point Regression	3D DUSt3R-Mix
MASt3R [49]	ViT-L/16	1024	Point Regression	3D MASt3R-Mix
MiDaS [70]	ViT-L/16	1024	Depth Regression	3D MiDaS-Mix
DINOv2 [64]	ViT-B/14	768	Self Distillation	2D LVD-142M
DINO [9]	ViT-B/16	768	Self Distillation	2D ImageNet-1k
SAM [44]	ViT-B/16	768	Segmentation	2D SA-1B
CLIP [69]	ViT-B/16	512	Contrastive VLM	2D WIT-400M
RADIO [72]	ViT-H/16	1280	Multi-teacher Distillation	2D DataComp-1B
MAE [33]	ViT-B/16	768	Image Reconstruction	2D ImageNet-1k
SD [75]	UNet	1280	Denoising VLM	2D LAION

We need 3D probing.

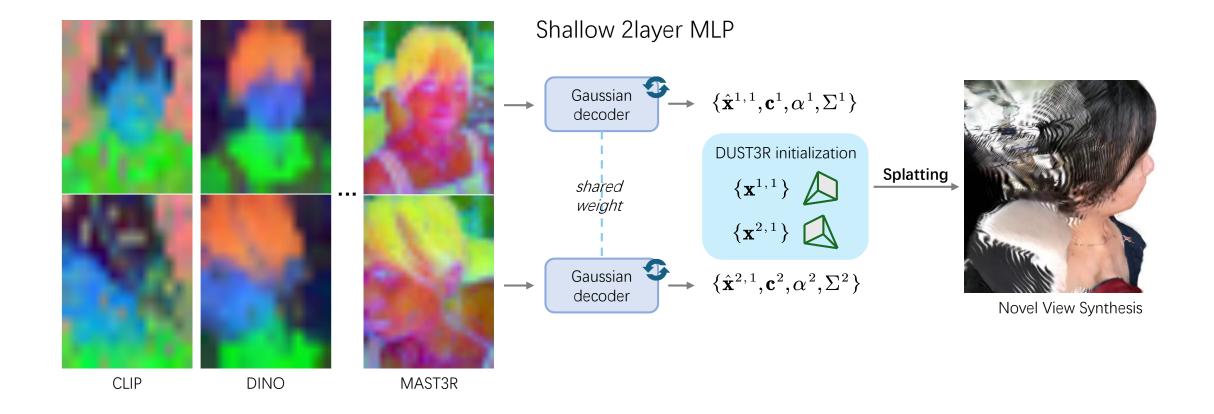
Previous 3D Probing



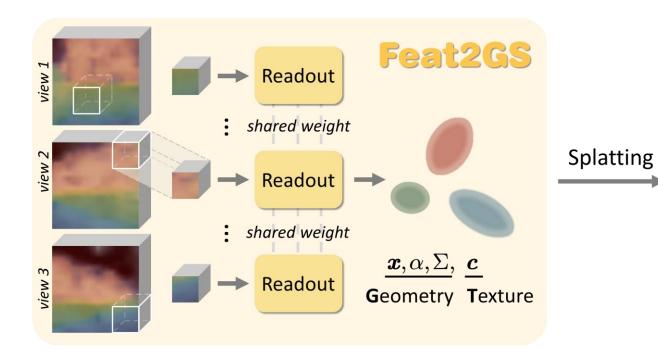
New Benchmark



Feat2GS as Probe



Probing Geometry and Texture separately

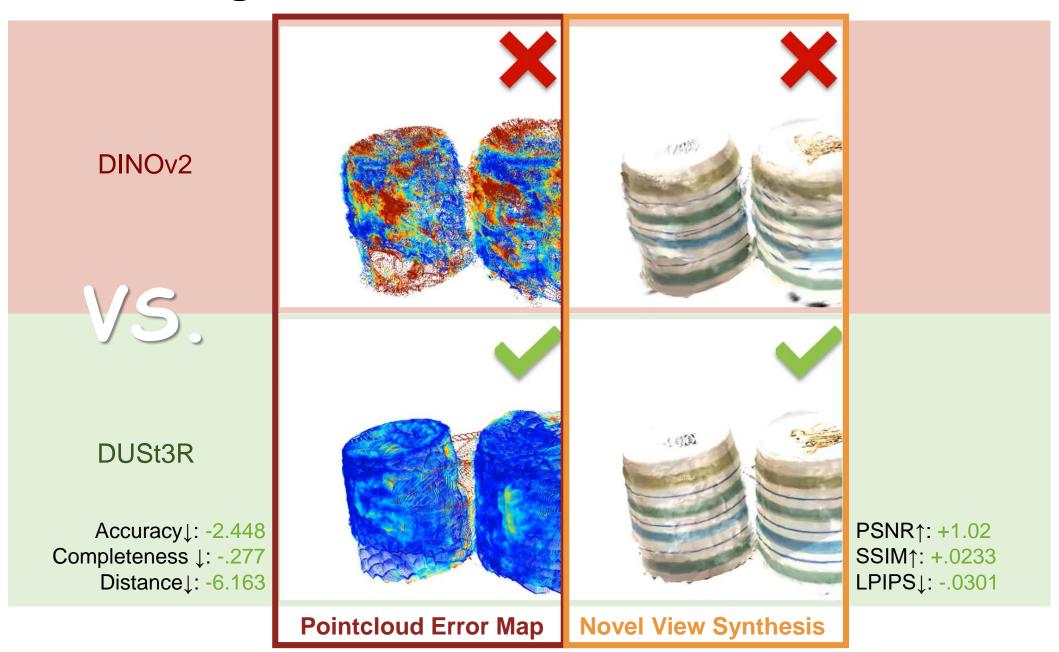


Probing Schemesc

Probing		-Geometry	-Texture	-All
Feature	Readout	$oldsymbol{x}, lpha, \Sigma$	С	$\boldsymbol{x}, \alpha, \Sigma, \boldsymbol{c}$
Free-Optimize 📀		С	$oldsymbol{x}, lpha, \Sigma$	/

Novel View Synthesis

Our Findings: 3D Metrics and 2D Metrics are well-aligned.



Geometry Probing

Texture Probing

RADIO

DUSt3R

DINO

MAE

SAM

CLIP

Training views

Findings:

Foundation models capture geometry well, but struggle with texture.

Application

Input images

Novel View Synthesis / Normal Results