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Reconstruction: Core of 3D
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Video Source: COLMARP, Schénberger et al. 2016
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Classical Reconstruction Pipeline

Scene Graph

Sparse Model
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COLMAP: SotA Incremental SfM Pipeline

Correspondence Search Incremental Reconstruction Reconstruction

B Initialization -| e ——————— ->
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o ,

Matching Image Registration Qutlier Filtering

Geometric Verification Triangulation Bundle Adjustment

* Requires enough images with overlaps

* Many subproblems: Point Matching, Essential Matrix Estimation, Triangulation, Pose
Estimation, ...

* No subproblem is solved perfectly

* No communication between components

e Brittle and prone to errors -> error propagation

e Slow (repeated BA)



Bottleneck: Bundle Adjustment
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Traditional with Learned Components

Recent trend: Replace certain parts of SfM pipeline with learned
modules

Correspondence Search Incremental Reconstruction Reconstruction

B Initialization -l e m——————
: |
I Matching ¢ Image Registration Outlier Filtering
Geometric Verifica. 'n  glag Triangulation Bundle Adjustment

SuperPoint

SuperGlue DISK LevelS2FM



A Spectrum of Methods

Classical STM Classical +
Learned Comp.
; COLMAP +
COLMAP SuperGlue
. Disk >
Traditional Modern
Optimization-based Learning-based

e Epipolar Geometry
* Pose Estimation

e Triangulation

* Bundle Adjustment .

Feature Extraction / Matching
Monocular Depth Prediction
Cross-View Attention



End-to-End Learnable SfM Pipelines

Input images Tracks T

Cameras P, point cloud X
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Visual Geometry Grounded Deep Structure From Motion, Wang et al. CVPR 24
DeepSFM: Structure From Motion Via Deep Bundle Adjustment, Wei et al. ECCV '20



A Spectrum of Methods

%

. i B i -to-
Classical SfM Classical : End-to-End
Learned Comp. , Learnable SfM
COLMAP + : DeefSfM
COLMAP SuperGlue
Disk f VGGSM
Traditional Modern

Optimization-based

e Epipolar Geometry
* Pose Estimation

e Triangulation

* Bundle Adjustment

Learning-based

Feature Extraction / Matching
Monocular Depth Prediction
Cross-View Attention



DUSt3R: Shifting The Paradigm

Img 1

DUSt3R takes unposed y B

images without prior
information about DUST3R |
camera calibration as Forward pass
input
. 5
Input: Image Pair Output: Point Maps

First steps towards 3D foundation models?

DUSt3R, Wang et al. CVPR 24



Point Maps

Dense, pixel-aligned 3D point cloud

X c RWXHX?)

Forms a 1-to-1 mapping between
image pixels and 3D scene points

Lij < Xi;
More structured than point cloud

Easy conversion:

Pointmap <> Depth Map




DUSt3R Task

Input:
* Two images of a scene
* Different viewpoints

Output:
* Two pointmaps
* Alighed in C1's frame

Input images




DUSt3R Architecture (without confidence)

e Siamese vision transformer encoder

 Multi-block transformer decoder that shares information between
views via cross-attention

* Separate regression heads output pointmaps in frame of cam 1
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Dust3R Decoder Blocks

m m  CrossBlock (x8)
* Self attention across all & .-»@-»E-»ff—\m D\ () n
patches of an image - R 2 S Ho
* Cross attention for information | & & = | S
hari . m PSS m = @ v, - =
sharing between images . B cmbed. g =[] 2 |: .=
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CroCo, Weinzaepfel et al. NeurlPS '22



DUSt3R Training Objective

3D Regression Loss

1
lregr(v,1) = || =X b —X'U 1

—/ TN\

View (1 or 2)

Image Pixel Normalizing Factor Predicted Point Ground Truth Point
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Dealing With Ambiguous Points

What are the ground truth positions for these points?

Even we humans are not confident.
Can we make a model with confidence scores?



Confidence-Aware Model and Training

* Head not only regresses pointmap but also gives confidence score
* How do we train this without ground truth?

Pointmap
. Xl,l € RWXHXS e L
VIiT Transformer Common coordinate frame Aol 2 SES0
> encoder Decoder, Confidence of camera 1 (image I,)
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Confidence-Aware Loss

Overall Training Loss:
£Conf — E E Cvgreg?‘* U Z - O{log CU

vef{1,2) zED’U/ \ \

Confidence of pixel i in view v Regression Loss Regularization weight /
Penalty for uncertainty

To force extrapolation in uncertain areas:

C'=14expC? —

Network output

Confnet: Predict with confidence, Wan et al. ICASSP '18



DUSt3R Final Pipeline

o
e Pointmap g
. ViT Xl,l € RWXHX3
—> B d Transformer Common reference :
encoder £ose.
Patchify ] Decoder, Confidence frame of image I, Lz,
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Example: Reconstruction + Confidence Maps

DUSt3R




Heavy Viewpoint Changes

DUSt3R —>




No Overlap

DUSt3R




No Overlap

DUSt3R




Multi-View Reconstruction

 DUSt3R only takes 2 views as input, what if we have more views?

* We are interested in globally aligned pointmaps { X € RW>H XS}U v
* Requires rotating/scaling pairwise predictions into common world frame

1. Scene Graph 2 . Pairwise Reconstruction 3. Global Optimization

Xl,{l“z} Cl.{LZ}
)(2,{].2}7 C2'{1‘2}

Optimize for

X224}, 2424} * Per-edge scale 0,
X424} c4(24}

X 1{1,3} C1.{1,3}
X 31,3} 3.{1,3}

X3{34} O3.{34}

. . 3x4
I * Per-edge rigid transform . € R
3 X4'{:"4},C4'{“} I,

* Per-view global pointmap Xn

X-l.{ 4.5}’ C~1.{—1‘5}

X 5445} C5.{45) HW o )
* : 3 v :e
X" = arg mmyj y: y: C.% |Ixi — o P X, 7|
B0 ecg vee i=1

XI},{S,:’)}’ CZS.{B,:B
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Multi-View Alignment via Optimization
DUSt3R
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Multi-View Reconstruction Result




DUSt3R: Downstream Applications

Depth Map Confidence Map Reconstruction

v\Where do these depth maps come from?



Monocular Depth Estimation

* Feed same input image twice

* Depth =z coordinate of 3D point



Monocular Depth Estimation

Outdoor Indoor

Methods Train DDAD[41] KITTI [35] BONN [80] NYUD-v2 [115] TUM [119]

Rel] 012517 Rell d1251T Rell d1257T Rell d125T Rell 412571
DPT-BEiT[91] D 10.70 84.63 9.45 89.27 - - 5.40 96.54 10.45 89.68
NeWCRFs[174] D 9.59 82.92 5.43 91.54 - - 6.22 095.58 14.63 82.95
Monodepth2 [37] SS 23.91 75.22 11.42 86.90 56.49 35.18 16.19 74.50 31.20 47.42
SC-StM-Learners [6] SS 16.92 77.28 11.83 86.61 21.11 71.40 13.79 79.57 22.29 64.30
SC-DepthV3 [121] SS 14.20  81.27 11.79 86.39 12.58 88.92 12.34 84.80 16.28  79.67
MonoViT[182] $S - S 09.92  90.01 ; - i i i

RobustMIX [92] T - - 18.25 76.95 - - 11.77 90.45 15.65 86.59
SlowTv [117] T 12.63 7934 (6.84) (56.17) - - 11.59 87.23 15.02  80.86
DUSt3R 224-NoCroCo T 19.63  70.03 20.10 71.21 14.44  86.00 14.51 81.06 22.14  66.26
DUSt3R 224 T 16.32  77.58 16.97 77.89 11.05 89.95 10.28 88.92 17.61 75.44
DUSt3R 512 T 13.88  81.17 10.74 86.60 8.08 93.56 6.50 94.09 14.17  79.89




Towards 3D Foundation Models?

DUSt3R is trained for 2-view to 3D reconstruction task.

Pointmap is expressive representation which can be used for a variety of
downstream tasks:

Camera calibration

P - Monocular
Depth estimation <:
Multi-View

— DUSt3R — Pixel correspondences

Pairwise (relative)
Camera pose estimation

Multi-View

) ) _ Dense 3D reconstruction
Unconstrained Corresponding pointmaps

. . : Visual Localization
image collections (dense 2D « 3D mappings)



Pixel Correspondences from DUSt3R

* Image correspondence search now boils down to 3D correspondence
search
* Can be solved e.g. by mutual nearest neighbor matching

M2 = {(i,j) | i = NN7"*(j) and j = NN (i)}

with NN/ (i) =  argmin HX;"’“ _ Xk
j€{0.... . WH}



Estimating Focal Length From Pointmaps
Assuming centered principal point (i’ =i — W/2, and j' = j — H/2)

Then focal length can be estimated by minimizing confidence-aware
reprojection loss

1,1 1,1
(X0 X

fl — argmmLLC (?:!,,jf) - fl 1,7,07

1.1

Can be solved by Weiszfeld-algorithm in a few iterations



Estimating Relative Camera Poses

1. Method (Procrustes): I
DUSt3R
* Feed both ordered pairs I,
 Compute optimal alighment [ Procrustes J

via Procrustes I X2
) ,

* Derive relative camera poses DUSI3R
I x 1.2

2. Method (PnP + RANSAC)

* Procrustes not very robust
* PnP possible because pointmap gives 2D-3D correspondences




MVS benchmark on DTU

Acc = distance from reconstruction to closest

= Methods GT cams Acc.] Comp.| Overall] ground truth point (averaged)
o Camp [12] v 0835 0554  0.695
© " 0613 00 ) Comp = distance from ground truth to closest
S (a) Furu [33] v 61 941 0.777 reconstruction point (averaged)
S Tola [134] v 0.342 1.190 0.766
+ Gipuma [34] v 0283 0873 0578 Overall = average of accuracy and
completeness
MVSNet [161] v 0.396 0.527 0462
B b) CVP-MVSNet [ 158] v 0.296 0.406 0.351
_é& UCS-Net [ 18] v 0.338 0.349  0.344 Takeaways:
o0 CER-MVS [65] v 0.359 0305 0.332 e Learning-based methods have
c CIDER [157] v 0.417 0.437 0.427 overtaken handcrafted methods
< CasMVSNet [40] v 0.325 0.385  0.355 * DUSt3R cannot compete for multiple
PatchmatchNet [139] v/ 0427 0277  0.352 reasons: o _
GeoMVSNet [180] / 0331  0.259 0.295 1. Regression vs subpixel triangulation
2. Does not leverage GT camera poses
DUSt3R 512 X

2.677  0.805 1.741 3. Zero-shot (other methods have
trained on DTU train set)

All in mm



DUSt3R Summary

* Very robust even to extreme view changes
* Simpler end-to-end learnable pipeline -> less prone to error accumulation

* Requires only 2 views

* For more views global alignment (GA) optimization procedure
* Inefficient pairwise processing of O(N”2) pairs
* Information sharing only between two images at a time
* GA faster than BA but still not instant (couple of seconds to minutes)
e Memory intensive (OOM on A100 with 80GB VRAM on 48 views)

* Cannot compete in 3D reconstruction accuracies
* Competitive in many other tasks such as depth, pose estimation



3R Models

’h Easi3R: Estimating Disentangled Motion from DUSt3R
Without Training

1T vyyeC 1

Xingyu Chen ue Chen' Yuliang Xid 12 Andreas Geiger® Anpei Chen'3

"Westlake Universny 2Max Planck Institute for Intelligent Systems 3Um‘{rersity of Tubingen, Tabingen Al Center

SLAMB3R: Real-Time Dense Scene Reconstruction from Monocular RGB Videos

Yuzheng Liu'* Siyan Dong?** Shuzhe Wang®  Yingda Yin'
Yanchao Yang?' Qingnan Fan® Baoquan Chen'’
Peking University ~ 2The University of Hong Kong  *Aalto University *VIVO

»\ Spann3R
3D Reconstruction with Spatial Memory

University College London
3DV 2025

-

DUST:=R . 2 Fast3R

Advanced Image-to-3D Al

MAST=R

Advanced Image-to-3D Al

MonST3R: A Simple Approach for Estimating
Geometry in the Presence of Motion

Junyi Zhang?! Charles Herrmann?* Junhwa Hur? Varun Jampani3 Trevor Darrell’

Forrester Cole? Deqing Sun*- Ming-Hsuan Yang*~
1UC Berkeley  2Google DeepMind 3 Stability AI  #UC Merced
(+: project lead, *: equal contribution)

ICLR 2025 (Spotlight)




ing

DUSt3R + Match

MASt3R

MASt3R, Leroy et al. ECCV 24



MASt3R: Contributions

no longer scale-invariant, now metric

. ) —> Pointmap Xt
e C 3) ; ;
—> Confidence C1* =
—>» |ocal features F! & -
(HXW xd)
l Fast NN l > Geome_trical o
matching = 3
Feature-based ]
Fast NN — \
—3 Pointmap X“J - matching
(H . (2 3) 'i 4 | |
ViT Transformer —> Confidence C%! :

encoder Decoder 5 .
Heady,, |=— Local features F*
(HxW xd)

ViT Transformer
%
encoder | 3 Decoder

Sha:red

; Cross-attention
We/ghts

Trained using contrastive infoNCE loss Iterative reciprocal nearest neighbor matching
-> O(kWH) instead of O(W”"2H”2)
MASt3R, Leroy et al. ECCV 24



MVS Benchmark on DTU

Methods Acc.|] Comp.| Overall] MVS with MASt3R:
:?_,J Camp [13] 0.835 0.554 0.695 1. Forward passes to obtain 2D-2D
“'g @ Fuuisl] 0.613 0941  0.777 C‘{rreSpI"”dencesh _ )
o Tola [90] 0.342 1.190 0.766 2. fTrlangu a.te m;atc esin groundttrut
< Gipuma [32] 0.983 0.873 0.578 rame using gt camera parameters
MVSNet [110] 0.396 0.527 0.462 No costly global alignment necessary!
- CVP-MVSNet [109] 0.296 0.406 0.351
Q
_§ UCS-Net [17] 0.338 0.349 0.344 Takeaways:
i (A CER-MVS [55] 0.359 0.305 0.332 * Triangulation outperforms regression
= CIDER [107] 0.417  0.437 0.427 « MASt3R outperforms DUSt3R and is
§ PatchmatchNet [99] 0.427 0.277 0.352 competitive with recent learning-based
- GeoMVSNet [119] 0.331 0.259 0.295 methods while:
1. not using camera poses for matchin
DUSt3R [102] 2.677 0.805  1.741 JoIng P e
(e) 2. not having seen DTU camera setup
MASt3R 0.403 0.344 0.374

during training

All in mm



MASt3R Summary

* Improved DUSt3R

* Regresses metric pointmaps

* Additional feature head for matching

* Fast reciprocal nearest neighbor matching procedure

e Retains robustness of DUSt3R and strengths of pixel matching
e Qutperforms DUSt3R on many downstream tasks

e Still only pairwise images. For multiple images, global alignment of
pointmaps still required -> memory intensive



A Spectrum of Methods

%

] ' + . -to- +
Classical SfM Classical : End-to-End Learngd
Learned Comp. , Learnable SfM Global Alighment
COLMAP + ; DeefSfM DUST3R
COLMAP SuperGlue
Disk 5 VGGSiM MASt3R
Traditional Modern

Optimization-based

e Epipolar Geometry
* Pose Estimation

e Triangulation

* Bundle Adjustment

Learning-based

Feature Extraction / Matching
Monocular Depth Prediction
Cross-View Attention



Efficiently Dealing with More Views



Multi-View Alignment via Optimization: Bottleneck for 3D
COLMAP DUSt3R

= N & X “\a B DY B X P
YL 4 ; B . i ‘ :“ vy, . - = i ! ‘ ¢
‘ ’L l"' i P F y . ‘ . l,il ) i o ;
A L ¥ & < _7_", kR @ g 2 A & f".'_" - B « -8 e
- & - ) 4
" S . N\ ) 3 -, # X N N ‘

Bundle Adjustment Global Alignment



Multi-View Efficiency Problem of DUSt3R/MASt3R

e DUSt3R and MASt3R are 2-view models

* For multi-view, O(N”2) pointmaps need to be aligned with costly
global alignment procedure -> infeasible for larger N

1. Scene Graph

2 . Pairwise Reconstruction
Xl‘{l‘2}, Cl.{l.?}
)(2,{].2}7 C‘Z.{l,'l}

Xl,{l.B} Cl‘{1'3}
X:{,{].Ii} CIS,{I.B}

X224} C2.(24}

4{2,4} (4,{24}
X334} C3.{34} X ,C

= I3 X4{34} Cc4i34} Iy

XB,{S,:’)}’ CZS.{B.:B
X535} 5,435}

X 4{45} 4145}
X5{45} C5.{45}

3. Global Optimization

HW
Y = arg minyj y: y: CPIxy — 0P X,
x,P

0 o€ vEe i=1



MASt3R-SfM: Sparsification

Overview:

* Reduced number of pairwise forward passes via sparse scene graph
with O(N) edges

e Coarse alignment: minimize 3D loss only for matching points
* Refinement: minimize 2D reprojection loss (BA)

" MASt3R’s encoder S ) // 4 MASt3R's decoder ) (" Gradient )
Unconstrained P " sparke \ N W v descent
image collection . > > scene graph- . . o, [ 3D matching IossJ , SfM
Image \constrdction ‘ Pointmaps - result
o e | TRy e

——— N

MatChes [ 2D reproj. loss J
Na

-

MASt3R-SfM, Duisterhof et al. arXiv '24



Coarse Refinement

Xl e1
Xl €4
e Canonicalize pointmaps

Zeegn C X wez
<11 :]
Xl:] = Xl €3
Zee&‘” Ci,j
e Estimate intrinsics K« via focal length

* Find optimal rigid transforms and scales

Only applies to pixel correspondences




Multi-View Alignment via Optimization: Bottleneck for 3D

MASt3R-SfM still has some optimization for global alignment

In general, optimization is often the bottleneck for 3D Vision:
* Time-consuming

* Poor Compatibility with Deep Learning
* Not inherently "plug-and-play"
« Often non-differentiable

« Complexity
« Scary for non-experts



Let’'s Reconstruct in One Go!

Reconstruction

Images :
Cameras, Depths, Points, and Correspondences

FUTURE
HESIDENT

Neural

Network




DUST3R Multi-View Extensions

* No longer two branches but fusion transformer which can handle arbitrary

number of views
* All images can attend to each other

* No global alignment necessary

— [ O Global
. |0 Head
Encoder D g D
Fixed Local
! O @ fex. Emb. O Head
I Share
:\SNeaigi::s
a E topat
ViT O _.®_' Head
Encoder O = —1 O -
.".':: Random Q ocal
D “* Idx. Emb. = g D Shared ! Head
ManyV|ews \ Sh ed eoe gh w S Welgh(s\
R il o 5 \
| S O “Gtobal ) |
D @ 2 - D Head /
D !
D H Random Local
D &/ 1dx. Emb. D Head
\
O O Global ) '
D D Head ¥
—,‘ Z ’—} e /
D s Random D Local
't Idx. Emb.
[]] 9 dcem L § O Head

r—' @g;’g o

fﬁ"‘ﬁ -

Fast3R, Yang et al. CVPR '25
MV-DUSt3R, Tang et al. CVPR '25

Per-View Tokenization Global Fusion

Per-View Point Map Confidence Point Map

Decode XYZ and Confidence



DUSt3R vs. Fast3R

Speed & Memory

Comparison of computational efficiency between Fast3R and DUSt3R on a single A100 GPU. Each

# Views
2
8
32
48
320
800
1000
1500

view has a 512x384 resolution.

Fast3R DUSt3R
Time (s) Peak GPU Mem (GiB) Time (s) Peak GPU Mem (GIiB)
0.065 3.84 0.092 3.52
0.122 6.33 8.386 24.59
0.509 13.25 129.0 67.61
0.84 20.8 OOM OOM
15.938 41.90 OOM OOM
89.569 55.97 OOM OOM
137.62 63.01 OOM OOM
308.85 78.59 OOM OOM

Mote: "O0M" indicates Out of Memory. For DUSt3R, at 48 views the N? pairwise reconstructions consume all VRAM during global

alignment.

Much faster

More memory efficient

Information sharing

between all views

instead of pairwise



AUC@30[1]

Fast3R vs MASt3R

Camera Estimation on RealEstate 10K

90

77.5

65

52.5

Worse than
MASt3R!



VGGT: Overparameterized Reconstruction in One GO

Reconstruction
Cameras, Depths, Points, and Correspondences

HESICAT

Visual Geometry Grounded Transformer, Wang et al. CVPR '25 Best Paper Award



~ Spaces vggt ¥ like Running on ZERO = Logs App Files Community 8 Settings $in )

m VGGT: Visual Geometry Grounded Transformer
| & Project
Upload a video or a set of images to create a 3D reconstruction of a scene or object. VGGT takes these images and generates all key 3D attributes, including extrinsic and intrinsic camera parameters, point maps, depth maps, and 3D point tracks.
Getting Started:
1. Upload Your Data: Use the "Upload Video" or "Upload Images" buttons on the left to provide your input. Videos will be automatically split into individual frames (one frame per second).
2. Preview: Your uploaded images will appear in the gallery on the left.
3. Reconstruct: Click the "Reconstruct” button to start the 3D reconstruction process.
4. Visualize: The 3D reconstruction will appear in the viewer on the right. You can rotate, pan, and zoom to explore the model, and download the GLB file. Note the visualization of 3D points may be slow for a large number of input images.

5. Adjust Visualization (Optional): After reconstruction, you can fine-tune the visualization using the options below (click to expand):

del U E 1 3 I ) ' ; c } € 1 al € n n Gl f essin €

3D Reconstruction (Point Cloud and Camera Poses)




VGG Transformer

Alternating-Attention

randomly init Global Frame Camera Head Cameras
camera token Attention Attention ]
v M —) e — S
[ O m =
—_—> —_— —_ Depth maps
—_—>
] ] ]
—_—> > DPT —_—> Point maps
] ] ]
. . . . Tracks
— B — H — B O
m B B a .
x L times




Why Overparameterized Output?

 DUST3R: Extract depthmap,
cameras, and matches from
pointmap

 VGGT: Predict all of them
"independently”

* Overparameterized predictions
brings substantial performance
gains during training

* During inference, combining
estimates often outperforms
direct branch

VGGT

> I B Cameras

)H‘ Depths

Pointmaps

Tracks




Why Alternating-Attention?

* Global Attention
 Ensures scene-level coherence

 Frame-wise Attention

« Eliminates frame index embedding
» For permutation equivariance
* For flexible input length

Global Frame
Attention Attention

X L times



Why Alternating-Attention?

Frame O ‘ —QO—Embed (0) Model(

Frame 1 n —O—Embed(1) m) £

Frame 2 l —O)—Embed(2) Model(

Not permutation equivariant



Why Alternating-Attention?

Frame 0 ‘ —O)—Embed(0)
Frame 1 h —O)—FEmbed(1)

l —O)—Embed(2)

Frame 2

Frame 842 But model never sees Embed(842) during training



Why Alternating-Attention?

L 2

Frame 0 —O)—Embed(0)
S g

Frame 1 —O)—FEmbed(1)

Frame 2 —O)—Embed(2)

Replaces frame index embedding by Frame-wise Attention

Global Frame
Attention Attention

X L times



Training and Data

® Training:

Q Inference:

24%
17 Datasets
599, in Total
18%
Synthetic Captured SfM-Annotated

l \— —

Accuracy Generalization



Qualitative

32 Views




VGGT Is Accurate

Camera Estimation on RealEstate 10K

90

77.5

65

AUC@30[T1]

52,5

with Optimization



VGGT Is Accurate

Multi-view Depth Estimation on DTU
1.8

1.35

0.45

Chamfer Distance [!]
o
©

Known G.T. Cameras Unknown Cameras



VGGT Is Fast

Time [seconds!]

Camera Estimation on RealEstate 10K




Time (seconds)

N
L
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Runtime and Memory

Time vs Number of Input Frames
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« Memory usage scales roughly linearly with input frames

» The time usage is around O(N1>)

200




Zero-shot Monocular Depth Estimation

100

75

50

25

Monocular depth estimation [3T]

98.3 98.1 97.9 98.8 98.0 97.2 98.0
88.5 946 903 86.2
75.2
MiDaS DPT Metric3D v2 Depth Anything v2 MoGe VGGT
ETH3D 511 NYUv2 511

As good as SoTA experts — but VGGT was never trained for monocular



Zero-shot Monocular Depth Estimation

Single View




VGGT Is General, Seamless and Practical

General

. Diverse images . Just a neural network . Fast and accurate

. Single to hundreds of views . Standard components . Addresses all core 3D tasks




A Spectrum of Methods

: Classical + : End-to-End Learned + Single Forward
Classical STM : ) :
Learned Comp. , Learnable SfM Global Alighment Pass
COLMAP + . DeefSfM DUST3R
COLMAP SuperGlue VGGT
Disk VGGSIM MASt3R >
Traditional Modern

Optimization-based

e Epipolar Geometry
* Pose Estimation

e Triangulation

* Bundle Adjustment

Learning-based

Feature Extraction / Matching
Monocular Depth Prediction
Cross-View Attention



Novel View Synthesis from
Sparse Images
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Original 3DGS:

e Assumes known camera parameters Camera | ——»

. . Projection \
* Requires lots of views .. > / '\

Te e e Differentiable | —
T . o —> —_— |
* Sparse initialization from SfM Initialization 1 / Tile Rasterizer | —— | o
. . . . \ Adaptive
* Adaptive density control necessary SfM Points 3D Gaussians Density Control s Overation Flow > Cradient 1
peration rlow radien ow

for dense reconstruction

3D Gaussian Splatting for Real-Time Radiance Field Rendering, Kerbl et al. '23

InstantSplat: Gaussans G

Cameras

e Unknown cameras

Rasterize f Loss( : | , )
D 1 B

* Few views MASE3R Initialize

Rasterized Observed

* Dense initialization

* Joint pose and Gaussian optimization
instead of adaptive density control

InstantSplat: Unbounded Sparse-view Pose-free Gaussian Splatting in 40 Seconds, Fan et al. '24



Comparison to Other Pose-Free Models

Minute Second

NeRF without camera
poses

50+ images

—

NoPe-NeRF Ours (Dense Surface Point Initialization)



Splatt3R

Optimization-free method: Additional head predicting Gaussian

Point Cloud Head . Gaussian Parameters

param eters
mage 1 Frozen MASt3R Backbone ' Point Cloud ' 3D Gaussian Splat
' Point Cloud Head ! : .
| ViT __,  Transformer Feature Matching Head | | sml f
| Encoder Decoder 1 | ! Grediont |
N Gaussian Head l
i Shared Weights Cross-Attention +_’:
Image 2 ! : 'L gOT T . R

[

[

Offsets: RH W3 |
Rotations: R4 |
Scales:
Opacities: B! |
Harmonics: R7<Wxdxd ,

ViT | Transformer

| Encoder Decoder 2 Feature Matching Head

o Hx W3
I

Gaussian Head



Uncalibrated,

Input Image Pair Inference 3D Gaussian Splat Novel Renderings



Summary

* Traditional 3D reconstruction pipelines are overtaken by learning-
based methods

 DUSt3R shifted paradigm towards direct pointmap regression from
unposed images

* Very robust and versatile. Outperforms task-specific methods in
classical 3D tasks

* Sparked a wave of 3R-methods for all kinds of applications

* VGGT: optimization-free feed-forward network outperforming state of
the art



Further Resources and Slide Credit

We have not covered t3R models for videos / dynamic scenes:
* Spann3R

* MONSt3R

* DAS3R

* CUT3R

* Easi3R

https://github.com/ruili3/awesome-dust3r for a list of DUSt3R-related works

Some slides were copied / adapted from the following sources:
* Vincent Leroy, "From CroCo to MASt3R: A Paradigm Change in 3D Vision"
* Jianyuan Wang, "VGGT" CVPR presentation


https://github.com/ruili3/awesome-dust3r

Feat2GS

Probing Visual Foundation Models with
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How well do they understand the 3D

world?

MiDaS
DINOv2 SAM

Visual Foundation Models

VFM Arch. Channel Supervision Dataset

DUSt3R [94] ViT-L/16 1024 Point Regression 3D DUSt3R-Mix
MASt3R [49] ViT-L/16 1024 Point Regression 3D MASt3R-Mix
MiDaS [70]  ViT-L/16 1024 Depth Regression 3D MiDaS-Mix
DINOv2 [64] ViT-B/14 768 Self Distillation 2D LVD-142M
DINO [9] ViT-B/16 768 Self Distillation 2D ImageNet-1k
SAM [44] VIT-B/16 768 Segmentation 2D SA-1B

CLIP [69] ViT-B/16 512 Contrastive VLM 2D WIT-400M
RADIO [72] ViT-H/16 1280  Multi-teacher Distillation 2D DataComp-1B
MAE [33] ViT-B/16 768 Image Reconstruction 2D ImageNet-1k
SD [75] UNet 1280 Denoising VLM 2D LAION

We need 3D probing.



Previous 3D Probing

1 L

Features Depth/normal 3D ground-truth

Evaluation
= == mm == =

PG

Features




Feat2GS as Probe

Shallow 2layer MLP

Gaussian A1,1 1 1 v1
> —_— ’
[ decoder ? {X €, 2 }
DUSTS3R initialization
Splattin
shared {x"1) @ =partma,
weight
{x>'} &

Gaussian 221 2 2 2
—_— —_— X7 ,CT, E
[ decoder | { T }

\\\

Novel View Synthesis

CLIP

DINO MAST3R



Probing Geometry and Texture separately

view 1

: shared weight
! ' Splatting

-—P Readout = =» .
shared weight ‘

0,2, €
--’ Readout\ Geometry Texture

view 2

view 3

Probing Schemesc 8 2t e WI'-":':
Probing -Geometry -Texture -All -
Feature- Readout l T, 0,2 c T, C o
Free-Optimize < c x,o, /

Novel View Synthesis



Our Findings: 3D Metrics and 2D Metrics are well-aligned.

DINOv2

ViS»

DUSt3R

Accuracy|: -2.448 |
Completeness |: -.277 e
Distance|: -6.163 Ear T

PSNR1: +1.02
SSIM?: +.0233
LPIPS|: -.0301

Pointcloud Error Map | Novel View Synthesis



Geometry Probin
yProbing o o'«

RADIO MASt3R



Texture

Readout I

Texture Probing

DUSt3R

Findings:

Foundation models
capture geometry well,
but struggle with texture.

IUVRGB Training views




Application

Input images

Novel View Synthesis / Normal Results



