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In this lecture, we will learn ...

* Problems of NERF
* Point-Based Rendering
* 3D Gaussian Splatting (3DGS) [Kerbl & Kopanas ‘23]

* Applications of 3DGS and addressing its limitations (i.e.,
dynamic scene, compression, surface reconstruction...)



Problems of Nerf

* NeRF suffers from slow training and rendering.

* We have to query a neural network to obtain color and density
values for each point.
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Point-Based Rendering
Surface Splatting vs Volume Splatting

1. How do we blend points in screen space?

[Zwicker1 ‘01] / [Yifan ‘19] [Zwicker2 ‘01] / [Kerbl & Kopanas ‘23]
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[ZwickerT ‘O1] Surface Splatting

[Yifan 19] Differentiable Surface Splatting for Point-Based Geometry Proccessing
[Zwicker2 ‘07] EWA Volume Splatting
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[Kerbl & Kopanas ‘23] 3D Gaussian Splatting for Real-Time Radiance Field Rendering



Surface Splatting vs Volume Splatting

1. How do we blend points in screen space?

2. Opacity for each point, allows us to make points disappear.

[Zwicker2 ‘01] / [Kerbl & Kopanas ‘23]
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[Kerbl & Kopanas ‘23] 3D Gaussian Splatting for Real-Time Radiance Field Rendering
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Surface Splatting vs Volume Splatting

1.  How do we blend points in screen space?

2. Opacity for each point, allows us to make points disappear.

Qurs

Top-Down View

——where—6;—=1;77 — {; is the distance between adjacent samples.

TIPS T T T T TTeFT—OTT TTTTTo—TeTT—T  TTrr eT—errrrre—T
results in the MLP being evaluated at continuous positiél‘ over the course of
optimization. We use these samples to estimate C'(r) with the quadrature rule

discussed in the volume rendering review by Max [26]: :

)

This function
for calculating C(r) from the set of (c;, 0;) values is trivially differentiable and
reduces to traditional alpha compositing with alpha values a; = 1 — exp(—0;9;).

where T; =

Screenshot from NeRF [Mildenhall ‘20]

40




Goal: Reconstructing 3D world from images and videos

Input images

https://3dgstutorial.github.io/






3D Gaussian Splatting (3DGS) [Kerbl & Kopanas ‘23]

* Splat-based representation
e Use 3D Gaussians instead of points or a mesh.
* |t does not include any neural network.



3D Gaussian Splatting (3DGS) [Kerbl & Kopanas ‘23]

* Splat-based representation
e Use 3D Gaussians instead of points or a mesh.
* |t does not include any neural network.
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Parametrization of 3D Gaussian

How to
parametrize 3D
Gaussian?



Parametrization of 3D Gaussian

How to
parametrize 3D
Gaussian?

3D Gaussian parametrized by:

Covariance 2

Mean) K

Opacity o

Color ¢ — RGB values or spherical
harmonics (SH) coefficients.



How to optimize a covariance matrix 2?

* Not all symmetric matrices are covariance matrices and gradient updates
can easily make them invalid.

* The covariance matrix Z of a 3D Gaussian is analogous to describing the
configuration of an ellipsoid.

* 2 has a physical meaning if its a positive-semi definite matrix. So factorize
as follows:
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can easily make them invalid.
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3x3

Covariance z — RSSTRT
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Projection of a covariance matrix Z into 2D
3x3

Covariance Z — RSSTRT

Matrix

Diagonal scaling
maitrix (3 parameters
for scale)

3x3 Rotation
matrix



Projection of a covariance matrix Z into 2D
3x3

Covariance Z — RSSTRT

Matrix

Diagonal scaling
maitrix (3 parameters
for scale)

22 variance z’ — W 3 WT T
matrix —
/ Jacobian of the affine

Gap = N(sz' 42D E’) approximation of the Viewing
’ j projective Transformation
Projected 2D Gaussian transformation

3x3 Rotation
matrix



Image Formation Model of NeRF

C = Z Tia;c;

@i = (1~ exp(~06;)) and T; = ﬂ(l—a;)
J=
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Image Formation Model of 3D Gaussian Splatting
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NeRF vs Gaussian Splatting

N
C= Z fjoic
i=1

Nerf Gaussian Splatting
a; = (1 —exp(—0id;)) o = OGQD (X)
Color of a pixel Transmittance ~ COOr of

each point



Gaussian Splatting: Why is it fast? A special case
of alpha blending
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Adaptive Control of the Gaussians

Under
Reconstruction

Optimization
Continues




Adaptive Control of the Gaussians

Under
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Optimization
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Optimization

L=(1-0)L1+ALD-ssIMm



https://3dgstutorial.github.io/
Optimization

L=(1-0)L1+ALD-ssIMm

How to go from 5 FPS to 100+ FPS?
(Using the GPU efficiently)



https://3dgstutorial.github.io/
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How to go from 5 FPS to 100+ FPS?
(Using the GPU efficiently)

* 1. Tiling
* Split the image in 16x16 Tiles — helps threads to work collaboratively.

* 2. Single global sort
* GPU sorts millions of primitives fast.



Menu Views Capture

¥ Metrics

89.37 (11.19 ms)




» Camera Point view

» 3D Gaussians

Capture

Menu Views

¥ Metrics

37 ms)

VSync On



Ground Truth i InstantNGP Plenoxels




In this lecture, we will learn ...

* 3D Gaussian Splatting (3DGS) [Kerbl & Kopanas ‘23]
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* Applications of 3DGS and addressing its limitations (i.e.,
dynamic scene, compression, surface reconstruction...)



Limitations and its follow-up works

* 3DGS has a high storage cost.
* Compression
* 3DGS is a novel view synthesis method (mostly static scenes).
* Extending into dynamic scenes - Dynamic 3DGS
* Unlike meshes, 3DGS does not provide a clean/compact surface.

 Surface Reconstruction (How to obtain surface from gaussian
primitives?)



Limitations and its follow-up works

* 3DGS has a high storage cost.
* Compression



https://3dgstutorial.github.io/

Storage cost of a 3DGS Scene

* 59 x 4 bytes to represent a single Gaussian

 Millions of them!
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3DGS Compression — Follow-up works

 Compact3D: Smaller and Faster Gaussian Splatting with Vector
Quantization

 EAGLES: Efficient Accelerated 3D Gaussians with Lightweight Encodings
(ECCV 2024)

* LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction
and 200+ FPS (NeurlPS 2024)

e Compact 3D Gaussian Representation for Radiance Field (CVPR 2024)

 Compressed 3D Gaussian Splatting for Accelerated Novel View Synthesis
(CVPR 2024)

* Reducing the Memory Footprint of 3D Gaussian Splatting (13D ’24)



3DGS Compression — Follow-up works

* EAGLES: Efficient Accelerated 3D Gaussians with Lightweight Encodings
(ECCV 2024)



https://efficientgaussian.github.io/

EAGLES: Efficient Accelerated 3D Gaussians with
Lightweight Encodings (ECCV 2024)
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* Key components:
* Quantized embeddings
* Coarse-to-fine training
* Influence pruning



Compression results
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Limitations and its follow-up works

* 3DGS has a high storage cost.
* Compression



Limitations and its follow-up works

* 3DGS has a high storage cost.
* Compression

* 3DGS is a novel view synthesis method (mostly static scenes).
* Extending into dynamic scenes - Dynamic 3DGS



https://dynamic3dgaussians.github.io/

Dynamic 3D Gaussians: Tracking by Persistent Dynamic
View Synthesis (3DV 2024) .

* Fixed / Consistent over
time:
* 3D Size
e Color
* Opacity

* Changing over time (per
timestep):
* 3D Center
* 3D Rotation




Tracking 3D Gaussians over time
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* Compression
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* Unlike meshes, 3DGS does not provide a clean/compact surface.

 Surface Reconstruction (How to obtain surface from gaussian
primitives?)



Mesh Extraction

* The naive way of extracting meshes from gaussian splatting is usually done by
running TSDF or Marchign Cubes

* Problem!
* Reconstructed surfaces are not smooth. Hence extracted meshes are very noisy.



SuGaR: Surface-Aligned Gaussian Splatting for Efficient
3D Mesh Reconstruction and High-Quality Mesh
Rendering (CVPR 2024)




Density constraint: alighing gaussians with the
true surface

e Gaussians should have limited overlap and be well-spread on the surface.

N

e Gaussians should be fully opaque or transparent (otherwise iso surfaces are
meaningless)

e Gaussians should be as flat as possible. (One of the three scaling factors

should be close to zero.)



In this lecture, we covered ...

* 3D Gaussian Splatting (3DGS) [Kerbl & Kopanas ‘23]

* Applications of 3DGS and addressing its limitations (i.e.,
dynamic scene, compression, surface reconstruction...)



