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3D Reconstruction




Neural Radiance Fields: The Evolution of
3D Reconstruction

Overview of concepts:

* NeRF (2020) - The Foundational Breakthrough
* DNerf (2021)- Dynamic Nerf

 HyperNeRF (2021) - Topological Dynamics

* NeRF-W (2021) - Unconstrained Capture

» Control-NeRF (2023) - Scene Manipulation

* Instant-NGP (2022) — Training Speed



NeRF (2020) - The Foundational
Breakthrough
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Input:
Sparsley sampled
Images of the scene

Learn scene Novel view synthesis
representation of the scene

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis,
Ben Mildenhall and Pratul P. Srinivasan and Matthew Tancik and Jonathan T. Barron and Ravi Ramamoorthi and Ren Ng



Novel View Synthesis

Learning radiance field representation of scene:
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Spatial Location F 9 Output Density

Viewing direction Output Color



Volume Rendering

Given color and density (fr, g, b, a) , we calculate the color of
every camera ray using:

C(r) = [,/ T(t)o(x(t))c(x(t))dt

Camera ray: r(t) — o0+ td Color (r,g,b) at r(t)

Near and far

bounds Volume density: Probabllity of a ray

terminating at an infinitesimal particle at
location r(t)

Accumulated transmittance along ray :

T(t) = exp(— [, o(r(s))ds)

tn



Radiance

Radiance is (differential) energy
* per unit area, solid angle, and wavelength

Radiance
» density of photons at a point position _ wavelengt 3 )
. traveling in the same direction X, @,4) : R*XS*XR = |

direction

 at given wavelength

Radiance along an unblocked ray is constant (energy conservation)
The “Light Field” is the radiance for every possible ray

"Neural Rendering", Andrea Tagliasacchi



Volumetric Radiance

Scene Is a cloud of tiny colored particles
* Their color changes according to viewpoint
 If a ray traveling through the scene hits a particleat , f
» we return its radiance/color  ¢(?)

Ray r(f) = 0 + td

Camera

"Neural Rendering", Andrea Tagliasacchi



Volumetric Density

Probability that ray stops in a small interval around iIs 7 o(t) dt
» Also called Volumeltric] Density

Plhit at t] = o(¢) dt

"Neural Rendering", Andrea Tagliasacchi



Scene Representation

Our scene representation Is therefore a field (neural? maybe):

®:R>> R’XxRT; d(x)=(o,c¢)

While evaluating the filed along a ray, we retrieve the color orc(?)
IS visiblr(7)

Transmittance 1(7)s the probability of no particles hit in 10, 1)ye

P[no hits before ] = T(t

"Neural Rendering", Andrea Tagliasacchi



Relating o(7) to 7(¢)

Hit probabilities are statistically independent along ray
(P[A,B]=P[A]P[B])

P[no hit before t + dt] = P[no hit before t] X P[no hit at 7]
T(t+dt) =T() - (1 —o(t)dr)

P[no hits before ] = T(t

Plhit at t] = o(?) dt

"Neural Rendering", Andrea Tagliasacchi



Transmittance

T(t+ dt) = T(t) - (1 — o(f) di)
T(t + dr) — T(1)

” = — T(t)o(1)
I'(t) = = 1(t)o(1) r
o _ — o(7) 10 = 1) .= 1(1) = exp —J o(u) du
1(1) 0
E %df =~ E a(t)dt No hits before t is equal to integral over density up until 7.

b
log T(1) |” = — [ o(t)dt

b
T(a = b) := o) _ exp (—J J(r)dt)

1(a)

"Neural Rendering", Andrea Tagliasacchi



Expected Ray Termination

| — 7(¢r) can be seen as cumulative distribution function (CDF)
 probabllity that ray hits something before reaching t
1 — 7(¥) 1s non-decreasing I

» 1(2) is (right) continuous T — £) := T(1) = exp (_J o(u) du)

li 1-T7() =0
im ( (1)) 0

t——1inf

Im (1 -7()) =1
t—+1inf

* T =T0- o0 1S a probability density function (PDF) that represents
the probabillity that a ray stops at t

"Neural Rendering", Andrea Tagliasacchi



Volume Rendering

T'(ty=T( -o(t) IS the probabllity that a ray stops at ¢

Expected color along a ray Is a convex combination of colors

C = [ T - o(t) - c(f)dt where T(f) = exp (—J o(u) du)

0 0

How do we solve this?
* Discretize the nested integral

"Neural Rendering", Andrea Tagliasacchi



Approximating the integral

Split the ray up into N segments with endpoints {t, by s Bya )

Segment lengthis 6§ =1+, , -1, \
* warning: non-necessarlly uniform!

plecewise constant density
—

piecewise constant transmittance

“Near Plane”

"Neural Rendering", Andrea Tagliasacchi



Approximating the nested integral

Assume volume density/color are constant within interval (I.e. Reimann)

C= J () - o(t) - () dt ~ Z J - 1(¢) - 0; - ¢, dt

O l=l ti

"Neural Rendering", Andrea Tagliasacchi



Forward Model - NeRF
irﬂ () - o, - ¢, di

n=1

N ¢t

Z J 10—1¢t)-1T(t,—> t)-0,- ¢, dt (i.i.d. process)
n=1 "1

N "

2 70 — tn)J It, > 1.0, -c,dt (constant)
n=1 Ly

N n—1
Z I (1l —-exp(—o0,0,))-¢c, where T, 6 =exp ( Z — (7/\(3/\,> (tedious)

k=]

n=1

"Neural Rendering", Andrea Tagliasacchi



NeRF as Alpha Blending

N n—1
C= YT, (1-exp(—0,5,)) ¢, where T, =exp ( D - akak)
n=1

k=1

N
C = Z I -a,-c, where
n=1
a, =1 —exp(—o,0,) ... segment opacity
n—1
T, = (1 — ) ... segment occlusion
k=1

"Neural Rendering", Andrea Tagliasacchi



Volume Rendering in NeRF

Given color and density ('r', g, b, a) , we calculate the color of
every camera ray using:

”

C(r) =311, Ti(1 — exp(—0:6;))e;

Color (r,g,b) at ¢;

Uniform N samples Distance between adjacent samples
t Nu[tn—l_%(tf_tn)atn"'_%(tf_tn)} 53 — t3_|_1 — t?,

Alpha(in traditional alpha composting)
Accumulated transmittance along ray a; = 1 — e‘xp(—ai (53))

T, = exp( — Zgj aj5j)



Training Neural Radiance Fields

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
x,,2,0, I]D[l» RGB
f (%.3,2,0,¢) > . ( U) \ - ) . /\ 2
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 March camera rays through the scene to generate a sampled set of 3D points

» Use those points and their corresponding 2D viewing directions as input to the
neural network to produce an output set of colors and densities

» Use classical volume rendering technigues to accumulate those colors and
densities into a 2D image

* Minimize error between rendered color and GT color



Neural Radiance Fields




View dependent illumination
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Novel view synthesis using NeRF

Generated results are blurry
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Why Dblurry results?

Coordinate based neural network fail to learn high frequency
details for all kind of data including RGB image, 3D shape,
density , etc

3D Shape Density Radiance

v @@@ : field

(a) Coordinate-based MLP (density, CO|OF) Tannick et al. NeurlPS 20



Solution

* |n naive setting, the bandwidth of the Neural Tangent Kernel limits the spectrum of
the recovered/learned function.

» Using a Fourier feature mapping transforms the neural kernel into a stationary
kernel in our low-dimensional problem domains and increase the spectrum.

v(p) = (sin(20ﬂ'p), 005(2071';)), e sin(ZL_lﬂ'p), cos(2L_1ﬂp) )

Coordinate input e.g. pixel
location for images, 3D point for
NeRF

Tannick et al. NeurlPS 20



Fourier Features In Coordmate MLPs

RHGB | 3D Shape
Y @@@ (x B)G—Q%l%/B (z,y, z?dl%pcggar]:é?ld (z,y,2z) — density (x,y,z) — RGB, density

(a) Coordinate-based MLP Tannick et al. NeurlPS 20



Positional Encoding In NeRF

With fourier features/positional encoding, NeRF learns high frequency detaills.

-« - ’_t.‘\‘ ) VA‘

Tannick et al. NeurlPS 20



Positional Encoding in NeRF

With fourier features/positional encoding, NeRF learns high frequency detalils.

Without positional encoding With positional encoding

Position + View dir.

‘ }

Mildenhall et al.

Position + View dir. !
Neural network
10 layers
Neural network 128 neurons
10 layers
128 neurons !
Density & Col
|
Density & Col

Mueller et al. SIGGRAPH 22



Geometry In NeRF

Scene geometry can be approximated using threshold

Rendered Camera Path Expected Ray Termination Depth

Tannick et al. ECCV 20



NeRF - Qualitative Comparison

N

Ground Truth NeR

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis,
Ben Mildenhall and Pratul P. Srinivasan and Matthew Tancik and Jonathan T. Barron and Ravi Ramamoorthi and Ren Ng



Limitations of NeRF

1. Scene specific and only static scene can be modeled.

N

-4

GT image of a
dynamic scene

N

Image generated
with NeRF

32



Limitations of NeRF

2. No editing and control
e Learned scene cannot be modified.
« Scene is memorized within the network



Limitations of NeRF

3. Generalization
« Scene specific models.
« Large number of images are needed
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Limitations of NeRF

4. Expensive training:
* Training is slow (10 hours-up to few days)
» |nference is also not real time



Limitations of NeRF

5. Surface exiracted is not accurate and depends on threshold.
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Limitations of NeRF

1. Scene specific and only static scene can be modeled.

GT image of a
dynamic scene

R

\

Image generated
with NeRF

37



Sparse Monocul

UK

ar RGB

j
)
|
%

What about dynamic scenes?

Optimize Dynamic Scene Render New Views at Arbitrary Time

Pumarola et al. CVPR'21

38



What about dynamic scenes?

Learn radiance field given 3d point, viewing direction and time

(aj’:y7'z797¢7t)_> _>(r7g7b70-)
Spatial Location FH —

Viewing direction

Time

Output Density

Output Color

39



Can we learn this mapping directly using NeRFe

Learn radiance field given 3d point, viewing direction and time

Ground fruth NeRF + time Pumarola et al. CVPR*21

40



Proposed solution: D-NeRF

Learn canonical shape and radiance field in the canonical shape

(X {AX, Y +AY,Z+AZ, H,ff)) —"[lnl:":l_> (R*G aBa(T)

.
yetee
™

-(v(x,y,z,t.)—»I]["]I]—»(Ax,.—ly,_\z) .

Deformed Scene Scene Canonical Space Scene Canonical Space

Pumarola et al. CVPR'21

4]



Proposed solution: D-NeRF

Learn canonical shape and radiance field in the canonical shape

Ground truth D-NeRF NeRF + fime

Pumarola et al. CVPR'21

42



Synthesis Results

D-NeRF Closest Input View

Time & View Conditioning:

Time t '.—

Azimuth ( @————————
Elevation () ee— e

Closest Input Time

Pumarola et al. CVPR'21

43



Canoical Space

(t=0)

t=0.5

t=1.0

D-NeRF: Visualization of learned scene representation

RGB Mesh Depth X+AXx Mesh  Depth X+AX

I ARYIY
KT 449
KT 0

Pumarola et al. CVPR'21

N
O.‘
-
.
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Conclusion:Dynamic Scenes with D-NeRF

» Disentangle time dependent deformation from neural rendering network.



Conclusion:Dynamic Scenes with D-NeRF

» Disentangle time dependent deformation from neural rendering network.
« Correspondence between canonical shape and deformed shape is defined

D-NeRF Canonical Mapping
(color-coded as X + AX)

47



Conclusion:Dynamic Scenes with D-NeRF

» Disentangle fime dependent deformation from neural rendering network.

« Correspondence between canonical shape and deformed shape is defined
oy

« Time varying shading effects are modeled.

t=0.5 Canonical Space =1

1\\\__’/

D-NeRF Canonical Mapping
(color-coded as X + AX)

48



Limitations of NeRF

1. Scene specific and only static scene can be modeled.

GT image of a
dynamic scene

R

\

Image generated
with NeRF

50



HyperNeRF (2021) - Topological
Dynamics

 (a) Input Video (b) Nerfies (c) HyperNeRF

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields
Keunhong Park and Utkarsh Sinha and Peter Hedman and Jonathan T. Barron and Sofien Bouaziz and Dan B
Goldman and Ricardo Martin-Brualla and Steven M. Seitz



HyperNeRF: A Higher-Dimensional
Representation for Topologically Varying
Neural Radiance Fields

Key Innovations:

* Modeled non-rigid deformations in a higher-dimensional latent space, enabling
topology changes (e.g., mouth opening/closing).

* Outperformed Nerfies [Park et al. 2020] on dynamic benchmarks through
continuous warp field modeling.

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields
Keunhong Park and Utkarsh Sinha and Peter Hedman and Jonathan T. Barron and Sofien Bouaziz and Dan B
Goldman and Ricardo Martin-Brualla and Steven M. Seitz



Motivation - Level Sets Methods

ONOXORXEXNO

Shape 1 Shape 2 Shape 3 Shape 4
(a) Input Shapes

(b) Axis-aligned Slicing Plane (AP) (c) Deformable Slicing Surface (DS)

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields
Keunhong Park and Utkarsh Sinha and Peter Hedman and Jonathan T. Barron and Sofien Bouaziz and Dan B
Goldman and Ricardo Martin-Brualla and Steven M. Seitz



HyperNeRF: Architecture

latent e
deformation (0 j i 4 Y i latent appearance code
code 0 1 el 00 O (S (93 gﬁ;) view direction

/ >
—> (> WU > G B color

» density o

template NeRF

observation space canonical (canonical hyper-space)

ambient slicing surface hyper-space

Given the template NeRF F, the spatial deformation field T, and the slicing surface field H,
the observation-space radiance field can be evaluated as:

ZB’ — T(a:,wi),'w — H(IL‘,(JJE‘),

(¢,0) = F(z',w,d, ;)

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields
Keunhong Park and Utkarsh Sinha and Peter Hedman and Jonathan T. Barron and Sofien Bouaziz and Dan B
Goldman and Ricardo Martin-Brualla and Steven M. Seitz



HyperNeRF: Evaluation

Nerfies

Ground Truth Train View  Train View  Novel View  Novel View
Color Color Depth Color Depth

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields
Keunhong Park and Utkarsh Sinha and Peter Hedman and Jonathan T. Barron and Sofien Bouaziz and Dan B
Goldman and Ricardo Martin-Brualla and Steven M. Seitz



HyperNeRF: Evaluation

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields
Keunhong Park and Utkarsh Sinha and Peter Hedman and Jonathan T. Barron and Sofien Bouaziz and Dan B
Goldman and Ricardo Martin-Brualla and Steven M. Seitz



HyperNeRF: Summary

Disadvantages:
* Dependent on camera registration, I.e, sensitive to the accuracy of camera

pose estimation. Poor registration leads to artifacts or degraded performance

* Limited to observed data, I.e, cannot faithfully reconstruct, e.g., rapid motion or
occluded regions

* Generalization to unseen topologies, I.e, may still struggle with extreme or
highly complex topological variations not well-represented In training

« Computational overhead

Challenge:
HyperNeRF fails on real-world photos with varying illumination and transient

occluders.

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields
Keunhong Park and Utkarsh Sinha and Peter Hedman and Jonathan T. Barron and Sofien Bouaziz and Dan B
Goldman and Ricardo Martin-Brualla and Steven M. Seitz



NeRF in the Wild: Neural Radiance Flelds
for Unconstrained Photo Collections

NeRF-W extends Neural Radiance Fields (NeRF) to handle real-world internet
photos, which often violate NeRF’s assumptions due to:

* Photometric variations (lighting, exposure, white balance differences)
* Transient objects (people, cars, occlusions)

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
Ricardo Martin-Brualla and Noha Radwan and Mehdi S. M. Sajjadi and Jonathan T. Barron and Alexey
Dosovitskiy and Daniel Duckworth



NeRF-W (2021) - In-the-Wild

R%R(‘iacsegge%i%a%e appearance embeddings and transient uncertainty fields,
handling lighting changes and occlusions.
» Achieved better performance on unconstrained PhotoTourism datasets through
learned robustness.

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
Ricardo Martin-Brualla and Noha Radwan and Mehdi S. M. Sajjadi and Jonathan T. Barron and Alexey
Dosovitskiy and Daniel Duckworth



NeRF-\W - Architecture
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appearance >
embedding
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viewing p N
direction RGB
* | color | &
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position density
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uncertainty
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transient > — RGB |
embedding color 2
»
0] 1)
density =
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NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
Ricardo Martin-Brualla and Noha Radwan and Mehdi S. M. Sajjadi and Jonathan T. Barron and Alexey
Dosovitskiy and Daniel Duckworth



NeRF-W - Components

Latent Appearance Modeling

 Each image gets an appearance embedding vector (trained alongside the model).

* Modifies NeRF’'s radiance output to depend on per-image lighting and post-
processing variations while keeping the geometry static

* Enables smooth interpolation between lighting conditions

NeRF-W replace the image-independent radiance with an image-dependent radiance,
, Which alse;{mjroduces a dependency on image index i to the approximated pixel color

K
Ci(r) = R(r,ci,0 E T(tr)a(o(tr)dr)ci(ty) where T(t) = exp ( E o(ty) 5kf)
k=1
NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections

Ricardo Martin-Brualla and Noha Radwan and Mehdi S. M. Sajjadi and Jonathan T. Barron and Alexey
Dosovitskiy and Daniel Duckworth



NeRF-W - Components

Latent Appearance Modeling

 Each image gets an appearance embedding vector (trained alongside the model).

* Modifies NeRF’'s radiance output to depend on per-image lighting and post-
processing variations while keeping the geometry static

* Enables smooth interpolation between lighting conditions

NeRF-W replace the image-independent radiance with an image-dependent radiance,
, Which alse;{mjroduces a dependency on image index i to the approximated pixel color

K
Ci(r) = R(r,ci,0) = > T(t)a(o(tr)r)ci(ts) where ci(t) = MLPy, (2(t), va(d), )
k=1
NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections

Ricardo Martin-Brualla and Noha Radwan and Mehdi S. M. Sajjadi and Jonathan T. Barron and Alexey
Dosovitskiy and Daniel Duckworth



NeRF-W (2021) - In-the-Wild Robustness

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
Ricardo Martin-Brualla and Noha Radwan and Mehdi S. M. Sajjadi and Jonathan T. Barron and Alexey
Dosovitskiy and Daniel Duckworth



NeRF-W - Components

Modelling Transient Objects & Uncertainty

* Adds a secondary "transient” MLP head to model moving and occluding objects.

* Renders both static and transient components (density + color) but discards
transient parts at test time.

* Predicts per-ray uncertainty () to downweight unreliable pixels

The expected color of r(t) then becomes the alpha composite of both the static

component and the transient component (7) (7)
o(t), c;(t) o; ' (t),c; ' (¢)
K
é@(?") = ZTz(tk) [O:f (J(ik)ék)ci(tk) + (O'ET) (tk)(sk)CET) (tk)}
k=1

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
Ricardo Martin-Brualla and Noha Radwan and Mehdi S. M. Sajjadi and Jonathan T. Barron and Alexey
Dosovitskiy and Daniel Duckworth



NeRF-W - Components

Modelling Transient Objects & Uncertainty

* Adds a secondary "transient” MLP head to model moving and occluding objects.

* Renders both static and transient components (density + color) but discards
transient parts at test time.

* Predicts per-ray uncertainty () to downweight unreliable pixels

The expected color of r(t) then becomes the alpha composite of both the static

component and the transient component - -
o(t), ci(t) o\ (1), (2)
k—1
where T;(ty) = exp ( Z [a(tkf) + gz(’r) (tkf)} 5kf)
k=1

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
Ricardo Martin-Brualla and Noha Radwan and Mehdi S. M. Sajjadi and Jonathan T. Barron and Alexey
Dosovitskiy and Daniel Duckworth



NeRF-W - Summary

(a) Photos (b) Renderings

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
Ricardo Martin-Brualla and Noha Radwan and Mehdi S. M. Sajjadi and Jonathan T. Barron and Alexey
Dosovitskiy and Daniel Duckworth



NeRF-W - Disadvantages

Sparse View Problems
* Degraded quality in rarely observed scene areas (e.g., ground surfaces)
* Poor reconstruction for obligue viewing angles
Camera Calibration Sensitivity
 Blurry artifacts from incorrect camera pose estimations
* Inherits NeRF's dependency on accurate calibration
Inherited NeRF Weaknesses
» Struggles with specular/reflective surfaces
* High computational cost during training
* Limited generalization to unseen viewpoints
Transient Object Handling
* May leave residual artifacts when removing occlusions
* Uncertainty estimation can mask static scene errors

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
Ricardo Martin-Brualla and Noha Radwan and Mehdi S. M. Sajjadi and Jonathan T. Barron and Alexey
Dosovitskiy and Daniel Duckworth



Limitations of NeRF

2. No editing and control
e Learned scene cannot be modified.
« Scene is memorized within the network



Control-NeRF (2023) - Scene
Manipulation

Hybrid 3D Representation:
* Decouples scene-specific 3D feature volumes from a shared neural rendering
network, enabling both high-quality novel view synthesis and scene editing.
Scene-Agnostic Rendering:
* A single rendering network generalizes across scenes, allowing new scenes to be
optimized without retraining the full model.
Post-Hoc Scene Manipulation:
* Enables intuitive 3D edits (object insertion, deformation, and scene mixing) by
modifying feature volumes without retraining.

Control-NeRF: Editable Feature Volumes for Scene Rendering and Manipulation
Verica Lazova and Vladimir Guzov and Kyle Olszewski and Sergey Tulyakov and Gerard Pons-Moll



Control-NeRF

 Prior Work: Scene Is memorized within the neural network, which makes

compositing of scenes and editing hard.

« Key ldea: Decouple scene representation from neural rendering network.

(z,y, 2) —

Control-NeRF: Editable Feature Volumes for Scene Rendering and Manipulation

| earned
volumetric scene

_representation

(6, )

y

network

Verica Lazova and Vladimir Guzov and Kyle Olszewski and Sergey Tulyakov and Gerard Pons-Moll



Control-NeRF

1. Scene representation:

» Given a set of inputimages Z = {I }f\il from M training scenes

Volumetric scene

representations » Where s € § is set of training scenes and M = |S|

« Scene representation network learns a volumetric feature

 where WxHXD s the spatial resolution of grid which feature vector of length
F

WHDF
Vts - R Hrdapdo IS the spatial

| earned volumetric
feature for scene s

7 resolution
IS length of feature vector




Control-NeRF

2. Neural rendering network with feature volumes

Feature Volumes and
Multiresolution Training

Volumetric scene
representations

B

Vs(p) :Volumetric feature at query point p

Lazova et al. WACV‘23



Control-NeRF

Training and Inference

Feature Volumes and Training

Multiresolution Training Gradient flow Gradient flow

Volumetric scene
representations

ﬁ’l’l’ll,lj

2

Gradient flow

E., Ii,

Lazova et al. WACV‘23




Control-NeRF: Training

1. Multi-resolution Volume training
m  Hierarchical training process is used to compute the volumes in a coarse-to-fine
manner.
= Train low resolution(16”3) volume till convergence.
m Upsample the learnt feature volume and train till convergence

o |mproved training time.
o High-quality image synthesis and manipulation.

Lazova et al. WACV‘23



Control-NeRF: Training

1. Multli Scene training
= Efficient training strategy: Sample one training scene and train for N
iterations, before saving the volume grid

Lazova et al. WACV‘23



Control-NeRF: Training

1. Generalization to Novel Scenes
m  Fix neural rendering network and learn feature volume for novel scene.
m  Glven sufficient training scenes, the learnt radiance function can be
applied to optimize for novel scenes more efficiently.

Lazova et al. WACV‘23



Control NeRF: Scene editing and manipulation

o Scene editing and composting with Control-NeRF:

Lazova et al. WACV‘23



Control NeRF: Scene editing and manipulation

o Scene editing and composting with Control-NeRF:

Scene Editing

View 1 Lazova et al. WACV'23

Original Scene Removing objects Multiplying objects



Goal: Scene Editing

13



Control-NeRF (2023) - Scene
Manipulation

Control NeRF for scene manipulation and rendering

T-rex inserted inside the garden scene Second T-rex added to the scene

lllll

a) Original scenes b) Inserting objects from one scene into another c¢) Copying and moving objects within the scene

Control-NeRF: Editable Feature Volumes for Scene Rendering and Manipulation
Verica Lazova and Vladimir Guzov and Kyle Olszewski and Sergey Tulyakov and Gerard Pons-Moll



Limitations of NeRF

4. Expensive training:
* Training is slow (10 hours-up to few days)
» |nference is also not real time



Instant Neural Graphics Primitives with a
Hash Encoding (2022)

* Train in minutes (instead of days).
Encode high-frequency details more compactly.
Render interactively (tens of frames per second

Elapsed training time: 5 seconds

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Mueller and Alex Evans and Christoph Schied and Alexander Keller



3 Pillars of Instant Neural Graphics
PR[M!I(‘M@Sgorithm Small neural network “Good” input encoding

v

Input encoding

}

&

Neural network

v

Task-specific Fully fused implementation Multiresolution hash encoding
GPU implementation

10-100x fewer steps than 5-10x faster than TensorFlow Better speed-vs-quality
naive tensor-based approach tradeoff than prior work

Task agnostic

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Mueller and Alex Evans and Christoph Schied and Alexander Keller



Making Neural Graphics Primitives
I r%&Lagm'tining algorithm

Implements a dedicated rendering and training

algorithm
Skips all empty space until the object surface is hit

Utilizes 10- 100x fewer steps than naive dense

el

stepping

A small number of steps leads to a smaller number of
Task-specific network queries

GPU implementation

10-100x fewer steps than
naive tensor-based approach

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Mueller and Alex Evans and Christoph Schied and Alexander Keller



Making Neural Graphics Primitives
I rl%ﬁttagrt’rtining algorithm Small neural network “Good” input encoding

v

Input encoding

}

o

Neural network

v

Task-specific Fully fused implementation Multiresolution hash encoding
GPU implementation

10-100x fewer steps than 5-10x faster than TensorFlow Better speed-vs-quality
naive tensor-based approach tradeoff than prior work

Task agnostic

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Mueller and Alex Evans and Christoph Schied and Alexander Keller



Making Neural Graphics Primitives

“Good” input encoding

v

Input encoding

* Builds on the prior work to make input encoding |
trainable, along with the weight of the network
* Builds a more general input encoding scheme using a T See—

multi-resolution hash grid

* Enables Neural Graphics Primitives to capture multi-
resolution details while achieving speed-ups over
dense grid structure Multiresolution hash encoding

v

Better speed-vs-quality
tradeoff than prior work

Task agnostic

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Mueller and Alex Evans and Christoph Schied and Alexander Keller



Making Neural Graphics Primitives
Instant

Why multi-resolution?
Automatic level of detail

A

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Mueller and Alex Evans and Christoph Schied and Alexander Keller



Making Neural Graphics Primitives
Instant

"
0
% Hashing: instead of allocating R*3 vectors,
T 3 you allocate a much smaller table of size T
2 0 2 and use a spatial hash function to map
; y L7 each grid cell coordinate to one of those T
5 0 “buckets.”
3 6 % Each bucket stores a learned feature
4 vector
X — ‘
1 7y !

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Mueller and Alex Evans and Christoph Schied and Alexander Keller



Making Neural Graphics Primitives
Instant

F
- =
1
2 —
3 —
r 451 Why linear interpolation
2 . 6 — O\ Continuity
- y 17 _r: : y Differentiability
O . . . 2
o i — 1 _~» Higher order interpolation?
3 6 0 O
3
4
5
X == 6 g
1 7 i _

Extra parameters

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Mueller and Alex Evans and Christoph Schied and Alexander Keller



Instant Neural Graphics Primitives with a
Hash Encoding (2022)

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Mueller and Alex Evans and Christoph Schied and Alexander Keller



Instant Neural Graphics Primitives with a
Hash Encoding - Disadvantages

Encoding Trade-offs:
» Concatenating multiresolution features enhances parallelism but increases memory
and computational costs, while reducing the risk of losing detall.
Hash Function Limitations:
« Simple hashing is fast but lacks coherence, while advanced methods (e.g., PCG32)
add overhead without clear quality improvements.
Microstructure Artifacts.
» Hash collisions cause grainy noise in outputs (e.g., SDFs), requiring filtering or
smoothness priors for mitigation.
Future Optimization Needs:
 Differentiable hashing or evolutionary methods could improve hash functions, while
sparse volumetric data (e.g., clouds) remains an open challenge.

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Mueller and Alex Evans and Christoph Schied and Alexander Keller



Neural Radiance Fields: The Evolution of
3D Reconstruction

What did we cover today?

* NeRF (2020) - The Foundational Breakthrough

* UniSurf (2021)- Unifying NeRFs with implicit surfaces
 HyperNeRF (2021) - Topological Dynamics

* NeRF-W (2021) - Unconstrained Capture

* Instant-NGP (2022) - Real-Time Revolution

» Control-NeRF (2023) - Scene Manipulation



Extra slides



Upcoming ...

3D Gaussian Splatting
for Real-Time Radiance Field Rendering

SIGGRAPH 2023

(ACM Transactions on Graphics)

*12 Thomas Leimkiihler® George Drettakis'2

Bernhard Kerbl™ 1:2 Georgios Kopanas
" Denotes equal contribution

Nnria 2Université Cote d'Azur 3MPI Informatik

[ UNIVERSITE :7¢. TEREDEN
1 AT20A— > COTEDAZUR "t:2 3



UniSurf (2021)- Unifying NeRFs with
neural implicit surfaces

Surface extracted with Neural Radience Fields is not accurate and depends on the
threshold.
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Neural Radiance Fields: The Evolution of
3D Reconstruction

Overview of concepts:

* NeRF (2020) - The Foundational Breakthrough
* DNerf (2021)- Dynamic Nerf

 HyperNeRF (2021) - Topological Dynamics

* NeRF-W (2021) - Unconstrained Capture

» Control-NeRF (2023) - Scene Manipulation

* Instant-NGP (2022) — Training Speed



Surface Rendering v/s Volume Rendering

Surface Rendering
(Implicit Surfaces)

High quality geometry
Clear surface definition

== Mask supervision required
== [EXtUre mapping is blurry

Input image Input mask IDR



Surface Rendering v/s Volume Rendering

Surface Rendering Volume Rendering
(Implicit Surfaces) (Radiance fields)

-- High quality geometry

1 Clear surface definition == SuUrface Is approximated
== Mask supervision required Without mask supervision
== [EXtUre mapping is blurry + High quality novel views and sharp

textures/colors

Input image Input mask IDR



Best of both worlds

Surface Rendering Volume Rendering
(Implicit Surfaces) (Radiance fields)

High quality geometry
+ Clear surface definition SuHfaceisapproxmated

Without mask supervision

+ High quality novel views and sharp
textures/colors

Input image Input mask IDR



Unifying Implicit Surfaces and Radiance Flelds

Surface Rendering Volume Rendering

oplxy) =T

/l_t

Our Unified Rendering

0—0—0—0—0-D

%) =&

Oechsle et al. ICCV'21



Unifying Implicit Surfaces and Radiance Flelds

NeRF Volume rendering:

~

C(r) =311, Ti(1 — exp(—0:6;))c;
NeRF Volume rendering with density

é(r) — Z 1 C(zl_[Z (]. — ij)C@'
a; =1 —exp(—0;6;))

Oechsle et al. ICCV'21



Unifying Implicit Surfaces and Radiance Fields

NeRF Volume rendering with density

Cr) = X0 el (1 - aj)e;

Oechsle et al. ICCV'21



Unifying Implicit Surfaces and Radiance Flelds

NeRF Volume rendering with density
C(r) = ¥, aiTli_, (1 - ay)e,

Key Idea: For solid objectgy; = 1 — exp(—0;6;)) corresponds to an
occupancy fieldoz- at | hsample.

Co(r) = Xily oilli_; (1 — 0))e;

Oechsle et al. ICCV'21



Unifying Implicit Surfaces and Radiance Flelds

NeRF Volume rendering with density
N
Clr) =321 Il (1 — a)c;

Key Idea: For solid objectgy; = 1 — exp(—0;6;)) corresponds to an
occupancy fieldoz- at | hsample.

Co(r) = 335, ol (1 — 0))c;

Given occupancy of surface, we can now render the same scene with surface rendering.

Oechsle et al. ICCV'21



Unifying Implicit Surfaces and Radiance Flelds

Key ldea:

* Volume rendering in early stage:
o Optimization without mask

» Surface rendering Iin later stage:
o Level-set surfaces

Oechsle et al. ICCV'21



Unifying Implicit Surfaces and Radiance Flelds

Rendering Procedure

» Find surface along a ray: uniform sampling + iterative secant method

Oechsle et al. ICCV'21



Unifying Implicit Surfaces and Radiance Flelds

Rendering Procedure

» Find surface along a ray: uniform sampling + iterative secant method
0glXs) = T
o }x“ ® ® o—I{ |
| r | ©

» Define interval at the surface

Oechsle et al. ICCV'21



Unifying Implicit Surfaces and Radiance Flelds

Rendering Procedure

» Find surface along a ray: uniform sampling + iterative secant method
0gl{Xs) =T
o }x“ ® ® o—I{ |
| E | ©

» Define interval at the surface

- c
AATK R

=
Ay k

» Volume rendering with occupancies

' ; {xi}
—ﬁ“: : . L

Oechsle et al. ICCV'21




Unifying Implicit Surfaces and Radiance Flelds

Rendering Procedure

Transition from Volume rendering to Surface rendering

» Exponential decay of interval A, wrt. iterations &

Volume Rendering , >
Rendering Ak

decreases

Nz

Surface

Oechsle et al. ICCV'21



Unifying Implicit Surfaces and Radiance Flelds

Rendering Procedure

Transition from Volume rendering to Surface rendering

» Exponential decay of interval A, wrt. iterations &

| ! ™N
! | i
— A Tk
i 0
Theorem
VVolume and surface rendering become equivalent when reducing the interval and increasing the
number of samples.
ilino Cr)= i)
N — 00

v

Oechsle et al. ICCV'21




Unifying Implicit Surfaces and Radiance Flelds

Comparison on the DTU MVS dataset

Oechsle et al. ICCV'21



