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Neural Radiance Fields: The Evolution of 
3D Reconstruction
Overview of concepts:

• NeRF (2020) - The Foundational Breakthrough

• DNerf (2021)- Dynamic Nerf

• HyperNeRF (2021) - Topological Dynamics

• NeRF-W (2021) - Unconstrained Capture

• Control-NeRF (2023) - Scene Manipulation

• Instant-NGP (2022) – Training Speed



NeRF (2020) - The Foundational 
Breakthrough

Input: 

Sparsley sampled 

images of the scene

Learn scene 

representation
Novel view synthesis 

of the scene

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, 

Ben Mildenhall and Pratul P. Srinivasan and Matthew Tancik and Jonathan T. Barron and Ravi Ramamoorthi and Ren Ng



Learning radiance field representation of scene:

Spatial Location

Viewing direction

Output Density

Output Color

Novel View Synthesis



Accumulated transmittance along ray :

Volume Rendering

Given color and density                      , we calculate the color of 
every camera ray using:

Camera ray:

Near and far 

bounds

Color (r,g,b) at r(t)

Volume density: Probability of a ray 

terminating at an infinitesimal particle at 

location r(t) 



Radiance
Radiance is (differential) energy

• per unit area, solid angle, and wavelength

Radiance

• density of photons at a point

• traveling in the same direction

• at given wavelength

Radiance along an unblocked ray is constant (energy conservation)

The “Light Field” is the radiance for every possible ray

"Neural Rendering", Andrea Tagliasacchi



Scene is a cloud of tiny colored particles

• Their color changes according to viewpoint

• If a ray traveling through the scene hits a particle at   ,

• we return its radiance/color 

Volumetric Radiance

"Neural Rendering", Andrea Tagliasacchi



Volumetric Density

Probability that ray stops in a small interval around    is

• Also called Volume[tric] Density

"Neural Rendering", Andrea Tagliasacchi



Scene Representation

Our scene representation is therefore a field (neural? maybe):

While evaluating the filed along a ray, we retrieve the color       only if       

is visible.

Transmittance is the probability of no particles hit in         range

"Neural Rendering", Andrea Tagliasacchi



Relating          to    

Hit probabilities are statistically independent along ray 

(P[A,B]=P[A]P[B])

"Neural Rendering", Andrea Tagliasacchi



Transmittance

"Neural Rendering", Andrea Tagliasacchi



Expected Ray Termination

can be seen as cumulative distribution function (CDF)

• probability that ray hits something before reaching

• is non-decreasing

• is (right) continuous

• is a probability density function (PDF) that represents 

the probability that a ray stops at

"Neural Rendering", Andrea Tagliasacchi



Volume Rendering

is the probability that a ray stops at

Expected color along a ray is a convex combination of colors

How do we solve this?

• Discretize the nested integral

"Neural Rendering", Andrea Tagliasacchi



Approximating the integral

Split the ray up into N segments with endpoints

Segment length is

• warning: non-necessarily uniform!

"Neural Rendering", Andrea Tagliasacchi



Approximating the nested integral

Assume volume density/color are constant within interval (i.e. Reimann)

"Neural Rendering", Andrea Tagliasacchi



Forward Model - NeRF

"Neural Rendering", Andrea Tagliasacchi



NeRF as Alpha Blending

"Neural Rendering", Andrea Tagliasacchi



Accumulated transmittance along ray

Volume Rendering in NeRF

Uniform N samples

Color (r,g,b) at 

Alpha(in traditional alpha composting)

Distance between adjacent samples

Given color and density                      , we calculate the color of 
every camera ray using:



Training Neural Radiance Fields

• March camera rays through the scene to generate a sampled set of 3D points

• Use those points and their corresponding 2D viewing directions as input to the 

neural network to produce an output set of colors and densities

• Use classical volume rendering techniques to accumulate those colors and 

densities into a 2D image

• Minimize error between rendered color and GT color



Neural Radiance Fields



View dependent illumination

• Effect of Θ and ϕ on the output field



Novel view synthesis using NeRF
Generated results are blurry



Why blurry results?

Coordinate based neural network fail to learn high frequency 

details for all kind of data including RGB image, 3D shape, 

density , etc

RGB 3D Shape Density Radiance 

field

(density, color) Tannick et al. NeurIPS 20



Solution

• In naive setting, the bandwidth of the Neural Tangent Kernel limits the spectrum of 

the recovered/learned function.

• Using a Fourier feature mapping transforms the neural kernel into a stationary 

kernel in our low-dimensional problem domains and increase the spectrum.

Coordinate input e.g. pixel 

location for images, 3D point for 

NeRF

Tannick et al. NeurIPS 20



Fourier Features in Coordinate MLPs

RGB 3D Shape

Density Radiance field

Tannick et al. NeurIPS 20



Positional Encoding in NeRF
With fourier features/positional encoding, NeRF learns high frequency details.

Tannick et al. NeurIPS 20



Without positional  encoding With positional  encoding

Positional Encoding in NeRF
With fourier features/positional encoding, NeRF learns high frequency details.

Mueller et al. SIGGRAPH 22



Geometry in NeRF
Scene geometry can be approximated using threshold

Tannick et al. ECCV 20



NeRF - Qualitative Comparison

Ground Truth NeR

F

LLF

F

SR

N

NV

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, 

Ben Mildenhall and Pratul P. Srinivasan and Matthew Tancik and Jonathan T. Barron and Ravi Ramamoorthi and Ren Ng



Limitations of NeRF

1. Scene specific and only static scene can be modeled.

GT image of a 

dynamic scene

Image generated 

with NeRF

32



Limitations of NeRF

2. No editing and control
• Learned scene cannot be modified.

• Scene is memorized within the network

33



Limitations of NeRF

3. Generalization
• Scene specific models.

• Large number of images are needed

34



Limitations of NeRF

4. Expensive training: 
• Training is slow(10 hours-up to few days)

• Inference is also not real time
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Limitations of NeRF

5. Surface extracted is not accurate and depends on threshold.
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Limitations of NeRF
1. Scene specific and only static scene can be modeled.

GT image of a 

dynamic scene

Image generated 

with NeRF
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What about dynamic scenes? 

Pumarola et al. CVPR‘21
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What about dynamic scenes? 

Learn radiance field given 3d point, viewing direction and time

Spatial Location

Viewing direction

Output Density

Output Color

Time

39



Can we learn this mapping directly using NeRF?

Learn radiance field given 3d point, viewing direction and time

Ground truth NeRF + time

40

Pumarola et al. CVPR‘21



Proposed solution: D-NeRF

Learn canonical shape and radiance field in the canonical shape

41

Pumarola et al. CVPR‘21



Proposed solution: D-NeRF

Ground truth D-NeRF NeRF + time
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Learn canonical shape and radiance field in the canonical shape

Pumarola et al. CVPR‘21
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Pumarola et al. CVPR‘21



D-NeRF: Visualization of learned scene representation

44

Pumarola et al. CVPR‘21
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Conclusion:Dynamic Scenes with D-NeRF

• Disentangle time dependent deformation from neural rendering network.



Conclusion:Dynamic Scenes with D-NeRF

• Disentangle time dependent deformation from neural rendering network.

• Correspondence between canonical shape and deformed shape is defined 

by
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Conclusion:Dynamic Scenes with D-NeRF

• Disentangle time dependent deformation from neural rendering network.

• Correspondence between canonical shape and deformed shape is defined 

by

• Time varying shading effects are modeled.  
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Limitations of NeRF
1. Scene specific and only static scene can be modeled.

GT image of a 

dynamic scene

Image generated 

with NeRF
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HyperNeRF (2021) - Topological 
Dynamics

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields
Keunhong Park and Utkarsh Sinha and Peter Hedman and Jonathan T. Barron and Sofien Bouaziz and Dan B 

Goldman and Ricardo Martin-Brualla and Steven M. Seitz



HyperNeRF: A Higher-Dimensional 
Representation for Topologically Varying 
Neural Radiance Fields 

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields
Keunhong Park and Utkarsh Sinha and Peter Hedman and Jonathan T. Barron and Sofien Bouaziz and Dan B 

Goldman and Ricardo Martin-Brualla and Steven M. Seitz

Key Innovations:

• Modeled non-rigid deformations in a higher-dimensional latent space, enabling 
topology changes (e.g., mouth opening/closing).

• Outperformed Nerfies [Park et al. 2020] on dynamic benchmarks through 
continuous warp field modeling.



Motivation - Level Sets Methods

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields
Keunhong Park and Utkarsh Sinha and Peter Hedman and Jonathan T. Barron and Sofien Bouaziz and Dan B 

Goldman and Ricardo Martin-Brualla and Steven M. Seitz



HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields
Keunhong Park and Utkarsh Sinha and Peter Hedman and Jonathan T. Barron and Sofien Bouaziz and Dan B 

Goldman and Ricardo Martin-Brualla and Steven M. Seitz

HyperNeRF: Architecture

Given the template NeRF 𝐹, the spatial deformation field 𝑇, and the slicing surface field 𝐻, 
the observation-space radiance field can be evaluated as:



HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields
Keunhong Park and Utkarsh Sinha and Peter Hedman and Jonathan T. Barron and Sofien Bouaziz and Dan B 

Goldman and Ricardo Martin-Brualla and Steven M. Seitz

HyperNeRF: Evaluation

Nerfies

HyperN
erf



HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields
Keunhong Park and Utkarsh Sinha and Peter Hedman and Jonathan T. Barron and Sofien Bouaziz and Dan B 

Goldman and Ricardo Martin-Brualla and Steven M. Seitz

HyperNeRF: Evaluation



HyperNeRF: Summary

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields
Keunhong Park and Utkarsh Sinha and Peter Hedman and Jonathan T. Barron and Sofien Bouaziz and Dan B 

Goldman and Ricardo Martin-Brualla and Steven M. Seitz

Disadvantages:
• Dependent on camera registration, i.e, sensitive to the accuracy of camera 

pose estimation. Poor registration leads to artifacts or degraded performance
• Limited to observed data, i.e, cannot faithfully reconstruct, e.g., rapid motion or 

occluded regions
• Generalization to unseen topologies, i.e, may still struggle with extreme or 

highly complex topological variations not well-represented in training
• Computational overhead

Challenge:
HyperNeRF fails on real-world photos with varying illumination and transient 
occluders.



NeRF in the Wild: Neural Radiance Fields 
for Unconstrained Photo Collections

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
Ricardo Martin-Brualla and Noha Radwan and Mehdi S. M. Sajjadi and Jonathan T. Barron and Alexey 

Dosovitskiy and Daniel Duckworth

NeRF-W extends Neural Radiance Fields (NeRF) to handle real-world internet 
photos, which often violate NeRF’s assumptions due to:

• Photometric variations (lighting, exposure, white balance differences)
• Transient objects (people, cars, occlusions)



NeRF-W (2021) - In-the-Wild 
Robustness

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
Ricardo Martin-Brualla and Noha Radwan and Mehdi S. M. Sajjadi and Jonathan T. Barron and Alexey 

Dosovitskiy and Daniel Duckworth

• Introduced per-image appearance embeddings and transient uncertainty fields, 
handling lighting changes and occlusions.

• Achieved better performance on unconstrained PhotoTourism datasets through 
learned robustness.



NeRF-W - Architecture

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
Ricardo Martin-Brualla and Noha Radwan and Mehdi S. M. Sajjadi and Jonathan T. Barron and Alexey 

Dosovitskiy and Daniel Duckworth



NeRF-W - Components

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
Ricardo Martin-Brualla and Noha Radwan and Mehdi S. M. Sajjadi and Jonathan T. Barron and Alexey 

Dosovitskiy and Daniel Duckworth

Latent Appearance Modeling 

• Each image gets an appearance embedding vector (trained alongside the model).
• Modifies NeRF’s radiance output to depend on per-image lighting and post-

processing variations while keeping the geometry static
• Enables smooth interpolation between lighting conditions

NeRF-W replace the image-independent radiance with an image-dependent radiance,         
, which also introduces a dependency on image index i to the approximated pixel color      
:



NeRF-W - Components

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
Ricardo Martin-Brualla and Noha Radwan and Mehdi S. M. Sajjadi and Jonathan T. Barron and Alexey 

Dosovitskiy and Daniel Duckworth

Latent Appearance Modeling 

• Each image gets an appearance embedding vector (trained alongside the model).
• Modifies NeRF’s radiance output to depend on per-image lighting and post-

processing variations while keeping the geometry static
• Enables smooth interpolation between lighting conditions

NeRF-W replace the image-independent radiance with an image-dependent radiance,         
, which also introduces a dependency on image index i to the approximated pixel color      
:



NeRF-W (2021) - In-the-Wild Robustness

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
Ricardo Martin-Brualla and Noha Radwan and Mehdi S. M. Sajjadi and Jonathan T. Barron and Alexey 

Dosovitskiy and Daniel Duckworth



NeRF-W - Components

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
Ricardo Martin-Brualla and Noha Radwan and Mehdi S. M. Sajjadi and Jonathan T. Barron and Alexey 

Dosovitskiy and Daniel Duckworth

Modelling Transient Objects & Uncertainty 

• Adds a secondary "transient" MLP head to model moving and occluding objects.
• Renders both static and transient components (density + color) but discards 

transient parts at test time.
• Predicts per-ray uncertainty (β) to downweight unreliable pixels 

The expected color of r(t) then becomes the alpha composite of both the static 

component                        and the transient component     



NeRF-W - Components

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
Ricardo Martin-Brualla and Noha Radwan and Mehdi S. M. Sajjadi and Jonathan T. Barron and Alexey 

Dosovitskiy and Daniel Duckworth

Modelling Transient Objects & Uncertainty 

• Adds a secondary "transient" MLP head to model moving and occluding objects.
• Renders both static and transient components (density + color) but discards 

transient parts at test time.
• Predicts per-ray uncertainty (β) to downweight unreliable pixels 

The expected color of r(t) then becomes the alpha composite of both the static 

component                        and the transient component     



NeRF-W - Summary

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
Ricardo Martin-Brualla and Noha Radwan and Mehdi S. M. Sajjadi and Jonathan T. Barron and Alexey 

Dosovitskiy and Daniel Duckworth



NeRF-W - Disadvantages

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
Ricardo Martin-Brualla and Noha Radwan and Mehdi S. M. Sajjadi and Jonathan T. Barron and Alexey 

Dosovitskiy and Daniel Duckworth

Sparse View Problems

• Degraded quality in rarely observed scene areas (e.g., ground surfaces)

• Poor reconstruction for oblique viewing angles

Camera Calibration Sensitivity

• Blurry artifacts from incorrect camera pose estimations

• Inherits NeRF's dependency on accurate calibration

Inherited NeRF Weaknesses

• Struggles with specular/reflective surfaces

• High computational cost during training

• Limited generalization to unseen viewpoints

Transient Object Handling

• May leave residual artifacts when removing occlusions

• Uncertainty estimation can mask static scene errors



Limitations of NeRF

2. No editing and control
• Learned scene cannot be modified.

• Scene is memorized within the network

68



Control-NeRF (2023) - Scene 
Manipulation
Hybrid 3D Representation:

• Decouples scene-specific 3D feature volumes from a shared neural rendering 
network, enabling both high-quality novel view synthesis and scene editing.

Scene-Agnostic Rendering:
• A single rendering network generalizes across scenes, allowing new scenes to be 

optimized without retraining the full model.
Post-Hoc Scene Manipulation:

• Enables intuitive 3D edits (object insertion, deformation, and scene mixing) by 
modifying feature volumes without retraining.

Control-NeRF: Editable Feature Volumes for Scene Rendering and Manipulation 

Verica Lazova and Vladimir Guzov and Kyle Olszewski and Sergey Tulyakov and Gerard Pons-Moll



Control-NeRF
• Prior Work: Scene is memorized within the neural network, which makes 

compositing of scenes and editing hard.
• Key Idea: Decouple scene representation from neural rendering network.

Learned 

volumetric scene 

representation

Rendering 

network

Control-NeRF: Editable Feature Volumes for Scene Rendering and Manipulation 

Verica Lazova and Vladimir Guzov and Kyle Olszewski and Sergey Tulyakov and Gerard Pons-Moll



1. Scene representation:

• Given a set of input images                           from       training scenes

• Where              is set of training scenes and

• Scene representation network learns a volumetric feature

• where                 is the spatial resolution of grid which feature vector of length   

.

Control-NeRF

Learned volumetric 

feature for scene s 

is the spatial 

resolution

is length of feature vector



Control-NeRF

2. Neural rendering network with feature volumes

:Volumetric feature at query point p

Lazova et al. WACV‘23



Control-NeRF

Training and Inference

Lazova et al. WACV‘23



Control-NeRF: Training

1. Multi-resolution Volume training
￭ Hierarchical training process is used to compute the volumes in a coarse-to-fine 

manner.
￭ Train low resolution(16^3) volume till convergence.
￭ Upsample the learnt feature volume and train till convergence

⚬ Improved training time.
⚬ High-quality image synthesis and manipulation. 

Lazova et al. WACV‘23



Control-NeRF: Training

1. Multi Scene training
￭ Efficient training strategy: Sample one training scene and train for N 

iterations, before saving the volume grid

Lazova et al. WACV‘23



Control-NeRF: Training

1. Generalization to Novel Scenes
￭ Fix neural rendering network and learn feature volume for novel scene.
￭ Given sufficient training scenes, the learnt radiance function can be 

applied to optimize for novel scenes more efficiently.

Lazova et al. WACV‘23



Control NeRF: Scene editing and manipulation

⚬ Scene editing and composting with Control-NeRF:

Lazova et al. WACV‘23



⚬ Scene editing and composting with Control-NeRF:

Lazova et al. WACV‘23

Control NeRF: Scene editing and manipulation
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Control-NeRF (2023) - Scene 
Manipulation
Control NeRF for scene manipulation and rendering

Control-NeRF: Editable Feature Volumes for Scene Rendering and Manipulation 

Verica Lazova and Vladimir Guzov and Kyle Olszewski and Sergey Tulyakov and Gerard Pons-Moll



Limitations of NeRF

4. Expensive training: 
• Training is slow(10 hours-up to few days)

• Inference is also not real time

81



Instant Neural Graphics Primitives with a 
Hash Encoding (2022)

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Mueller and Alex Evans and Christoph Schied and Alexander Keller

• Train in minutes (instead of days).
• Encode high‐frequency details more compactly.
• Render interactively (tens of frames per second



3 Pillars of Instant Neural Graphics 
Primitives 

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Mueller and Alex Evans and Christoph Schied and Alexander Keller



Making Neural Graphics Primitives 
Instant 

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Mueller and Alex Evans and Christoph Schied and Alexander Keller

• Implements a dedicated rendering and training 
algorithm

• Skips all empty space until the object surface is hit 
• Utilizes 10- 100x fewer steps than naive dense 

stepping
• A small number of steps leads to a smaller number of 

network queries



Making Neural Graphics Primitives 
Instant 

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Mueller and Alex Evans and Christoph Schied and Alexander Keller



Making Neural Graphics Primitives 
Instant 

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Mueller and Alex Evans and Christoph Schied and Alexander Keller

• Builds on the prior work to make input encoding 
trainable, along with the weight of the network

• Builds a more general input encoding scheme using a 
multi-resolution hash grid

• Enables Neural Graphics Primitives to capture multi-
resolution details while achieving speed-ups over 
dense grid structure



Making Neural Graphics Primitives 
Instant 

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Mueller and Alex Evans and Christoph Schied and Alexander Keller



Making Neural Graphics Primitives 
Instant 

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Mueller and Alex Evans and Christoph Schied and Alexander Keller

Hashing: instead of allocating R^3 vectors, 
you allocate a much smaller table of size T 
and use a spatial hash function to map 
each grid cell coordinate to one of those T 
“buckets.”
Each bucket stores a learned feature 
vector



Making Neural Graphics Primitives 
Instant 

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Mueller and Alex Evans and Christoph Schied and Alexander Keller



Instant Neural Graphics Primitives with a 
Hash Encoding (2022)

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Mueller and Alex Evans and Christoph Schied and Alexander Keller



Instant Neural Graphics Primitives with a 
Hash Encoding - Disadvantages

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Mueller and Alex Evans and Christoph Schied and Alexander Keller

Encoding Trade-offs: 
• Concatenating multiresolution features enhances parallelism but increases memory 

and computational costs, while reducing the risk of losing detail.
Hash Function Limitations: 

• Simple hashing is fast but lacks coherence, while advanced methods (e.g., PCG32) 
add overhead without clear quality improvements.

Microstructure Artifacts: 
• Hash collisions cause grainy noise in outputs (e.g., SDFs), requiring filtering or 

smoothness priors for mitigation.
Future Optimization Needs: 

• Differentiable hashing or evolutionary methods could improve hash functions, while 
sparse volumetric data (e.g., clouds) remains an open challenge.



Neural Radiance Fields: The Evolution of 
3D Reconstruction
What did we cover today?

• NeRF (2020) - The Foundational Breakthrough

• UniSurf (2021)- Unifying NeRFs with implicit surfaces

• HyperNeRF (2021) - Topological Dynamics

• NeRF-W (2021) - Unconstrained Capture

• Instant-NGP (2022) - Real-Time Revolution

• Control-NeRF (2023) - Scene Manipulation



Extra slides



Upcoming ...



UniSurf (2021)- Unifying NeRFs with 
neural implicit surfaces
Surface extracted with Neural Radience Fields is not accurate and depends on the 

threshold.



Neural Radiance Fields: The Evolution of 
3D Reconstruction
Overview of concepts:

• NeRF (2020) - The Foundational Breakthrough

• DNerf (2021)- Dynamic Nerf

• HyperNeRF (2021) - Topological Dynamics

• NeRF-W (2021) - Unconstrained Capture

• Control-NeRF (2023) - Scene Manipulation

• Instant-NGP (2022) – Training Speed



Surface Rendering v/s Volume Rendering
Surface Rendering

(Implicit Surfaces)

High quality geometry

Clear surface definition

Mask supervision required

Texture mapping is blurry



Volume Rendering

(Radiance fields)

Surface is approximated

Without mask supervision

High quality novel views and sharp 

textures/colors

Surface Rendering

(Implicit Surfaces)

High quality geometry

Clear surface definition

Mask supervision required

Texture mapping is blurry

Surface Rendering v/s Volume Rendering



Best of both worlds
Surface Rendering

(Implicit Surfaces)

High quality geometry

Clear surface definition

Mask supervision required

Texture mapping is blurry

Volume Rendering

(Radiance fields)

Surface is approximated

Without mask supervision

High quality novel views and sharp 

textures/colors



Unifying Implicit Surfaces and Radiance Fields

Oechsle et al. ICCV‘21



NeRF Volume rendering:

NeRF Volume rendering with density

Oechsle et al. ICCV‘21

Unifying Implicit Surfaces and Radiance Fields



NeRF Volume rendering with density

Unifying Implicit Surfaces and Radiance Fields

Oechsle et al. ICCV‘21



NeRF Volume rendering with density

Key Idea: For solid objects,                                         ,          corresponds to an 

occupancy field          at i ᵗʰ sample.

Oechsle et al. ICCV‘21

Unifying Implicit Surfaces and Radiance Fields



NeRF Volume rendering with density

Key Idea: For solid objects,                                         ,          corresponds to an 

occupancy field          at i ᵗʰ sample.

Given occupancy of surface, we can now render the same scene with surface rendering.

Oechsle et al. ICCV‘21

Unifying Implicit Surfaces and Radiance Fields



Key Idea:

• Volume rendering in early stage:

⚬ Optimization without mask

• Surface rendering in later stage:

⚬ Level-set surfaces

Oechsle et al. ICCV‘21

Unifying Implicit Surfaces and Radiance Fields



Oechsle et al. ICCV‘21

Unifying Implicit Surfaces and Radiance Fields



Oechsle et al. ICCV‘21

Unifying Implicit Surfaces and Radiance Fields



Oechsle et al. ICCV‘21

Unifying Implicit Surfaces and Radiance Fields



Volume Rendering                                                            Surface 

Rendering

decreases

Unifying Implicit Surfaces and Radiance Fields

Oechsle et al. ICCV‘21



Unifying Implicit Surfaces and Radiance Fields

Oechsle et al. ICCV‘21



Oechsle et al. ICCV‘21

Unifying Implicit Surfaces and Radiance Fields


