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Increasing complexity of our models
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Increasing the complexity of our models

Materials, lighting, ...GeometryTransformations
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Given all these options, what is 
the best way to encode geometry 
on a computer?
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It's a jungle out there!
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Many ways to digitally encode geometry

• EXPLICIT
• point cloud
• polygon mesh
• subdivision, NURBS
• …

• IMPLICIT
• level set
• algebraic surface
• L-systems
• …

• Each choice best suited to a different task/type of geometry
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"Implicit" Representations of Geometry

• Points aren't known directly, but satisfy some relationship

• E.g., unit sphere is all points such that x2+y2+z2=1

• More generally, f(x,y,z) = 0

9



Surfaces as an Implicit Function
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Many implicit representations in graphics
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Algebraic Surfaces (Implicit)

• Surface is zero set of a polynomial in x, y, z

• Examples:
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• What about more complicated shapes?

• Very hard to come up with polynomials!



Constructive Solid Geometry (Implicit)

• Build more complicated shapes via Boolean operations

• Basic operations:
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Constructive Solid Geometry (Implicit)

Build more complicated shapes via Boolean operations 

Basic operations: 

Then chain together expressions:

UNION

INTERSECTION

DIFFERENCE
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Constructive Solid Geometry (Implicit)

Build more complicated shapes via Boolean operations 

Basic operations: 

Then chain together expressions:

UNION

INTERSECTION

DIFFERENCE

• Then chain together expressions:



Blending Distance Functions (Implicit)

• A distance function gives distance to closest point on object

• Can blend any two distance functions d1, d2:

• Similar strategy to points, though many possibilities. E.g.,

• Appearance depends on how we combine functions

• Q: How do we implement a Boolean union of d1(x), d2(x)?

• A: Just take the minimum: f(x) = min(d1(x), d2(x))
17



https://www.shadertoy.com/view/NtlSDs

Scene made of pure signed distance functions
Art with math -- really hard!
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Nowadays -- Neural Distance Fields (NDF)
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INPUT OUTPUT OF NDF

Chibane et al. NDF, NeurIPS 2020



Distance field, field normals and closest points

20

• Surface normal are the gradients of the function

• Closest points are found trivially as:

• Distance to surface is given by the distance field itself f(p)



Surface Reconstruction from Implicit 
Representation
• Implicit surfaces have some nice 

features (e.g., merging/splitting)

• But, hard to describe complex 
shapes in closed form

• Alternative: store a grid of values 
approximating function

• Surface is found where 
interpolated values equal zero
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Marching Cubes

1. Read four slices into memory. 
2. Scan two slices and create a 

cube from four neighbors on 
one slice and four neighbors 
on the next slice. 

3. …
4. …
5. …
6. …
7. ...
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Marching Cubes

1. ...

2. ...

3. Calculate an index for the 
cube by comparing the 
eight density values at the 
cube vertices with the 
surface constant. 

4. Using the index, look up the 
list of edges from a 
precalculated table. 
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Marching Cubes

1. ...
2. ...
3. ...
4. ...
5. Using the densities at each edge vertex, find the surface-edge 

intersection via linear interpolation
6. Calculate a unit normal at each cube vertex using central 

differences. Interpolate the normal to each triangle vertex 
7. Output the triangle vertices and vertex normals. 
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Marching Cubes



Challenges with Marching Cubes

• Generating one polygon for each portion of the contour

• Can only approximate the restriction of the contour

• Fails to capture the sharp detail of the surface

• Difficult to simplify the generated surface mesh

• Becoming challenging to extract surface for higher grid sizes (3D 
uniform grid induces cubic cost in resolution)
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Dual Contouring

• Can capture sharp edges along corners of surface

• Can leverage gradient information along edge intersections to reproduce a 
wide class of polyhedral shapes as well as curved or sharp edges

• Utilizes octree in place of a 3D uniform grid for better efficiency

• Uses normals to define Quadratic Error Function for each leaf of the octree, 
inspired by original Extended Marching Cubes (EMC)

E[x] = Σi (ni * (x - pi))
2

where pi and ni correspond to the intersections and normals of the contour 
with the edges of cube
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Dual Contouring
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Signed Grid with edges 
tagged by Hermite Data 

Marching Cubes Contour Dual Contour



Challenges with Dual Contouring

• Limited expressivity due to reliance on structured grids

• Cannot faithfully extract very thin surfaces and features (otherwise 
requiring very fine grid resolution)

• Limited by the amount of surface simplification
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Dual Marching Cubes

• Align features of the implicit function with the features of the 
structured grid; enabling extraction of sharp features

• Can generate adaptive polygonalizations that are crack-free and 
topologically manifold

• Can reproduce thin features in surface without excessive subdivision 
of the octree
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Dual Marching Cubes

DMC's QEF is calculated by computing a tangent planes to the implicit 
surface representation f on a grid of points (xi, yi, zi) sampled over c.

Tangent plane's equation:  Ti(x, y, z) = ∇f(xi, yi, zi) ((x, y, z) - (xi, yi, zi))

DMC's QEF sums over all sample points yielding:

E(f(x, y, z), x, y, z) = Σi (f(x, y, z) - Ti(x, y, z))2/(1+|∇f(xi, yi, zi)|
2)

where the denominator normalizes the contribution of each tangent 
plane
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Comparison between Marching Cubes & Dual 
Contouring & Dual Marching Cubes
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Comparison between Marching Cubes & Dual 
Contouring & Dual Marching Cubes

Ground Truth 
Model

Dual Marching 
Contour

Marching 
Contour

Dual 
Contour



Challanges faced by Level Sets method

Although Level Set representation 
provides much more explicit control 
over shape (like a texture), it

• runs into problems of aliasing! (Unlike 
closed-form expressions)

• induces O(n3) storage costs for 3D 
surface extraction

• can save space by only storing a 
narrow band around the surface.
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Level Set Storage

Drawback: storage for 2D surface is now O(n3) 

Can reduce cost by storing only a narrow band around surface:



Implicit Representations - Pros & Cons

Pros:

• description can be very compact (e.g., a polynomial)

• easy to determine if a point is in our shape (just plug it in!)

• other queries may also be easy (e.g., distance to surface)

• for simple shapes, exact description/no sampling error

• easy to handle changes in topology (e.g., fluid)

Cons:

• expensive to find all points in the shape (e.g., for drawing)

• very difficult to model complex shapes
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"Explicit" Representations of Geometry

• All points are given directly

• E.g., points on sphere are

44

• More generally: 

• (Might have a bunch of these maps, e.g., one per triangle!)
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Point Clouds

• Easiest representation: list of points (x,y,z)

• Often augmented with normals

• Easily represent any kind of geometry

• Easy to draw dense cloud (>>1 point/pixel)

• Hard to interpolate under-sampled regions

• Hard to do processing / simulation/...
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Point Cloud (Explicit)

Easiest representation: list of points (x,y,z) 

Often augmented with normals 

Easily represent any kind of geometry 

Easy to draw dense cloud (>>1 point/pixel) 

Hard to interpolate undersampled regions 

Hard to do processing / simulation / …
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Point Cloud (Explicit)

Easiest representation: list of points (x,y,z) 

Often augmented with normals 

Easily represent any kind of geometry 

Easy to draw dense cloud (>>1 point/pixel) 

Hard to interpolate undersampled regions 

Hard to do processing / simulation / …



Poisson Surface Reconstruction

52Kazhdan et al. PSR,  ESGP, June 2006



Poisson Surface Reconstruction
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Given an oriented point cloud P with points 𝑝1, . . . , 𝑝n and 
corresponding (outward-facing) normal observations 𝑛1, . . . , 𝑛n, we 
consider the implicit reconstruction task of finding a function 𝑓 : Rd → R 
such that 

𝑓(𝑝𝑖) = 0 , ∇𝑓(𝑝𝑖) = 𝑛𝑖 , ∀𝑖 ∈ {1, . . . , 𝑛} .

PSR first utilizes convolutional kernel F to interpolate 𝑛𝑖 into a vector 
field V : Rd → Rd defined in box B containing P as 

V(x) = Σ𝑖 F(x, x𝑖) 𝑛𝑖

Kazhdan et al. PSR, ESGP, June 2006



Poisson Surface Reconstruction
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𝑓 : Rd → R is then defined as a function whose gradient best matches V

𝑓 = argmin 𝑔 ∫ 𝐵 ∥V(𝑥) − ∇𝑔(𝑥) ∥2 dx 

Variational problem above is equivalent to the Poisson Equation 

Δ𝑓 = ∇ V(𝑥) 

which is solved by PSR via discretization using the Finite Element 
Method on an octree and solve using a purpose-built multigrid 
algorithm

Kazhdan et al. PSR, ESGP, June 2006



Poisson Surface Reconstruction

55

𝑓 : Rd → R is then defined as a function whose gradient best matches V

𝑓 = argmin 𝑔 ∫ 𝐵 ∥V(𝑥) − ∇𝑔(𝑥) ∥2 dx 

Variational problem above is equivalent to the Poisson Equation 

Δ𝑓 = ∇ V(𝑥) 

which is solved by PSR via discretization using the Finite Element 
Method on an octree and solve using a purpose-built multigrid 
algorithm. In Screened PSR (Kazhdan et.al, 2013) authors use 

𝑓 = argmin 𝑔∫ B ∥V(𝑥) − ∇𝑔(𝑥) ∥2 dx + α ∗ ∑︁𝑖 g(pi)
2

Kazhdan et al. PSR, ESGP, June 2006



(Screened) Poisson reconstruction

56

• Can extract the surface from oriented point clouds

• (Screened PSR) efficiently implements sparsity constraints

• Can better capture the details of the underlying surface

• (Screened PSR) implements efficient octree structure and multigrid 
algorithm to reduce the time complexity

However, these methods limit themselves to outputting the likeliest 
surface given the point cloud observations and their assumed prior. 
Whereas in reality there could be theoretically infinite number of 
possible surfaces representing same set of Points with normals



(Screened) Poisson reconstruction
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Neural Stochastic Screened Poisson Surface 
Reconstruction

Sellan and Jacobson, Neural Stochastic Screened PSR,  SIGGRAPH Asia 2023

• Take a step even further and models the posterior multivariate 
Gaussian distributions representing the likelihood of all possible 
reconstructions for the given Point Set with normals

• Proposes the parametrization of mean and covariance functions using 
neural networks, optimizing them through gradient-based methods 
for a more efficient and flexible approach 

• Enabling computation of the statistical quantities over the 
reconstruction 
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Neural Stochastic Screened Poisson Surface 
Reconstruction

Sellan and Jacobson, Neural Stochastic Screened PSR,  SIGGRAPH Asia 2023
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Neural Stochastic Screened Poisson Surface 
Reconstruction

Sellan and Jacobson, Neural Stochastic Screened PSR,  SIGGRAPH Asia 2023



61

Neural Stochastic Screened PSR

Sellan and Jacobson, Neural Stochastic Screened PSR,  SIGGRAPH Asia 2023



Polygon Mesh

• Store vertices and polygons (most often triangles or quads)

• Easier to do processing/simulation, adaptive sampling

• More complicated data structures

• Irregular neighbourhoods

62
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Polygon Mesh (Explicit)

Store vertices and polygons (most often triangles or quads) 

Easier to do processing/simulation, adaptive sampling 

More complicated data structures 

Irregular neighborhoods

(Much more about polygon meshes in upcoming lectures!)



Triangle Mesh (Explicit)

• Store vertices as triples of coordinates (x,y,z)

• Store triangles as triples of indices (i,j,k)

• E.g., tetrahedron:

• Use barycentric interpolation to define points inside triangles:
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Triangle Mesh – Normals (Explicit)

• Option1: Normals per face (Phong)

• Option2: Interpolate incident face normal at each vertex, and 
interpolate with barycentric interpolation for points inside the 
triangle
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Distance queries and closest points

• Smooth parametric surface

• Evaluation

• Normals

• Distance and closest point. Find surface point f(u,v) such that:

• Mesh
• Distance and closest point:

• Find closest triangle and then find closest point in triangle, and then finding point in triangle
• Use Kd-tree, AAB Tree, to find closest triangles 
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Subdivision

• Alternative starting point for curves/surfaces: subdivision

• Start with "control curve"

• Repeatedly split, take weighted average to get new positions

• For careful choice of averaging rule, approaches nice limit curve
• Often exact same curve as well-known spline schemes!
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Cashman & Fitzgibbon. What shapes are dolphins?

Subdivision Surfaces in Computer Vision
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Subdivision Surfaces (Explicit)

• Start with coarse polygon mesh ("control cage")
• Subdivide each element
• Update vertices via local averaging
• Many possible rules:

• Catmull-Clark (quads)
• Loop (triangles)
• …

• Common issues:
• interpolating or approximating?
• continuity at vertices?

• Easier than splines for modeling; harder to evaluate pointwise
• Widely used in practice (2019 Academy Awards!)
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Subdivision in Pixar (Pixar's "Geri's Game")
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Subdivision in Action (Pixar’s “Geri’s Game”)

see: de Rose et al, “Subdivision Surfaces in Character Animation”



Slide credits and further reading

• Keenan Crane – Computer Graphics Lecture CMU 15-462/662. 
Lecture 09:Introduction to Geometry.
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Point Cloud Denoising

71Lipman et al. LOP,  ACM (TOG), July 2007

Problems with Poisson
Surface Reconstruction:

• cannot handle noise in 
input point cloud

• uneven distribution of 
points can make gradient 
estimation unreliable



Locally Optimal Projection Operator

72Lipman et al. LOP,  ACM (TOG), July 2007

Given an unorganized set of points P = {pj} for j∈J ⊂ R3, we define a set 
of projected points X = {xi} for i∈I ⊂ R3 by a fixed point iteration to 
minimize

Σi∈I Σj∈J ||xi − pj||2∗θ(||ξk
ij||) + 

+ λi Σi!∈I\{i} η(||xi − xk
i'||)θ(||δk

ii'||)

where ξk
ij = xk

i − pj , δk
ii' = xk

i −xk
i' , θ(r) = e-r**2/(h/4)**2 and η(r)=(1/3r3) .

In practice, n = |I| is often significantly smaller than m = |J|. 



Locally Optimal Projection Operator

73Lipman et al. LOP,  ACM (TOG), July 2007

Contaminated 
Point Set

MLS Projections LOP Projections



Locally Optimal Projection Operator

74Lipman et al. LOP,  ACM (TOG), July 2007

However, LOP has the following disadvantages:

• Repulsion term η(r) decreases too drastically 

• Imposes strong attraction between point clusters

Weighted LOP improves over original LOP by

• Replacing the original repulsion term η(r) = 1/(3*r3) with η(r) = -r 
which decreases more gently and penalizes more at a large r

• Using weighted local density for each point in a Point Set that 
enables the attraction of point clusters to be relaxed and the 
repulsion force from points in dense areas to be strengthened



Weighted Locally Optimal Projection Operator

75Huang et al. WLOP,  ACM (TOG), December 2009



Weighted Locally Optimal Projection Operator

76Huang et al. WLOP,  ACM (TOG), December 2009



(Weighted) Locally Optimal Projection Operator

77Huang et al. WLOP,  ACM (TOG), December 2009

• not learning patterns from data

• mainly relied on parameters set heuristically 

• applies Local PCA for estimation of point cloud normals

• cannot recover sharp features and handle missing data



Score-Based Point Cloud Denoising

78Luo et al. Score-Based Point Cloud Denoising, ICCV, July 2021

• Learns to estimate the 
score of the noisy point 
cloud

• Iteratively updating 
each point to increase 
log-likelihood via 
gradient descent

• Can learn variety of 
noisy models



Score-Based Point Cloud Denoising

79Luo et al. Score-Based Point Cloud Denoising, ICCV, July 2021



Score-Based Point Cloud Denoising

80Luo et al. Score-Based Point Cloud Denoising, ICCV, July 2021



Score-Based Point Cloud Denoising

81Luo et al. Score-Based Point Cloud Denoising, ICCV, July 2021

Although performing 

• implements synthetic datasets generation by perturbing ground 
truth point clouds 

• thus not scalable with the real world data

• restricts evaluation to pre-determined set of noise models, including 
Gaussian noise, simulated LiDAR noise, non-isotropic Gaussian 
noise, uni-directional noise, Laplace noise, uniform noise, and 
discrete noise



Total Denoising: Unsupervised Learning of 3D 
Point Cloud Cleaning 

82Hermosilla et al. Total Denoising,  ICCV, April 2019

• Allows learning point cloud cleaning from noisy examples alone

• Enforce convergence to the unique closest out of many possible 
modes on a manifold of point clouds



Total Denoising: Unsupervised Learning of 3D 
Point Cloud Cleaning 

83Hermosilla et al. Total Denoising,  ICCV, April 2019

To enforce convergence onto a unique mode, we enforce regularization over 
denoising process by imposing prior distribution q(z|y) that captures the 
probability that a given observation y is a realization of the clean point z



Total Denoising: Unsupervised Learning of 3D 
Point Cloud Cleaning 

84Hermosilla et al. Total Denoising,  ICCV, April 2019

Using spatial and appearance proximity:

q(z|y) = p(z|S) * k(z − y) 

k(d) = (1 / σ √(2π) ) * exp{ − ||Wd||2
2 /(2∗σ2)} 

where σ is the bandwidth of k and W = diag(w) is a diagonal weight 
matrix trading spatial and appearance locality. Optimizing 

arg min Θ Ey~p(z|S)Eq~q(z|y) L(fΘ(y), q)

where L can be chosen to be a standard Chamfer distance and f is 
implemented using Monte Carlo Convolution



Total Denoising: Unsupervised Learning of 3D 
Point Cloud Cleaning 

86Hermosilla et al. Total Denoising,  ICCV, April 2019



Total Denoising: Unsupervised Learning of 3D 
Point Cloud Cleaning 

87Hermosilla et al. Total Denoising,  ICCV, April 2019



Fast Learning of Signed Distance Functions from 
Noisy Point Clouds via Noise to Noise Mapping

88Zhou et al. Noise2NoiseMapping, ICML 2023, Oral

• Doesn't require any clean point cloud or ground truth supervision

• Can infer highly accurate distance field from multiple or even a single 
noisy observation

• Further, introduce a novel schema to improve multi-view 
reconstruction by estimating SDFs as a prior



Fast Learning of Signed Distance Functions from 
Noisy Point Clouds via Noise to Noise Mapping

89Zhou et al. Noise2NoiseMapping, ICML 2023, Oral



Fast Learning of Signed Distance Functions 

90Zhou et al. Noise2NoiseMapping, ICML 2023, Oral



?

Procrustes alignment problem definition
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Rigid Alignment

How can we rigidly transform a set of points ?

• Translate it

• Rotate it  

• Today we’ll consider also

• Scale it

92



Optimisation Problem
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in general, applied to a real matrix:

warning: this is not the vertex matrix!

Quick recap of SVD
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Optimal rotation obtained by computing SVD 
on the point cross-covariance

Procrustes alignment steps
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Matrices of points

Translation is the centroid difference

Scale is a quotient of eigenvalue sums

* See also clarification slide 1 at the end of slide deck



Proof
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Minimize the L2 distance between
transformed source points and target points

Procrustes derivation: translation
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We remove the elements that do not  depend on the translation and solve for t.

Compute the centroid of the point clouds

So given s and R, we can compute the translation t

Procrustes derivation: translation
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Subtract the centroid from the points to obtain a simpler expression for E

Procrustes derivation: Rotation

99

Optimal rotation does not depend on scale



Procrustes derivation: Rotation

100

Inner product should be maximum!

Rotation does not change norm!

Subtract the centroid from the points to obtain a simpler expression for E

Optimal rotation does not depend on scale



Procrustes derivation: Rotation
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Optimal rotation does not depend on scale

Inner product should be maximum!

Rotation does not change norm!

Cross-covariance matrix

SVD decomposition

Subtract the centroid from the points to obtain a simpler expression for E



Procrustes derivation: Rotation

102

What kind of matrix is ? 

What kind of matrix is     ?

Orthogonal

Diagonal



Procrustes derivation: Rotation
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What kind of matrix is ? 

What kind of matrix is     ?

Orthogonal

Diagonal

Hence the quantity above is maximised when equals the identity, hence:

SVD of cross-covariance of pointsclouds



Procrustes derivation: scale

Optimize scale given the rotation

104

We used:
1) Trace invariance with shifts
2)
3) Trace equals sum of 

eigenvals for square 
matrices



Slide credits and further reading
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Hands-On AI Based 3D Vision
Winter 24/25

Lecture 5_2 – Procrustes Alignment

Prof. Dr.-Ing. Gerard Pons-Moll

University of Tübingen / MPI-Informatics



Goal: learn a model of pose and shape
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Scan a Lot of People
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In lots of poses
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To learn a model we need correspondence
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Non-rigid Articulated Registration

111

How?



?

Today: Rigid Alignment (Procrustes)
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Surface representation: Mesh

113



Surface representation: Mesh
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Surface representation: Mesh

How can we rigidly transform a set of points ?

• Translate it

• Rotate it  

• Today we’ll consider also

• Scale it

115



Rigid transformation + scale
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Rigid transformation + scale
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Rigid transformation + scale
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Rigid transformation + scale

119



?

Procrustes alignment problem definition
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Procrustes alignment problem definition
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?

Procrustes alignment problem definition
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Why Procrustes?

123

The name Procrustes (Greek: Προκρούστης) refers to a bandit from Greek mythology who 
made his victims fit his bed either by stretching their limbs or cutting them off.

Prcrustes means “he who stretches”

https://en.wikipedia.org/wiki/Procrustes
https://en.wikipedia.org/wiki/Greek_language


Optimisation Problem
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T

𝐴 = 𝑈𝛴𝑉𝑇

Quick recap of SVD
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in general, applied to a real matrix:

warning: this is not the vertex matrix!

Quick recap of SVD
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Optimal rotation obtained by computing SVD 
on the point cross-covariance

Procrustes alignment steps

127

Matrices of points

Translation is the centroid difference

Scale is a quotient of eigenvalue sums

* See also clarification slide 1 at the end of slide deck



Proof
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Minimize the L2 distance between
transformed source points and target points

Procrustes derivation: translation
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We remove the elements that do not  depend on the translation and solve for t.

Compute the centroid of the point clouds

So given s and R, we can compute the translation t

Procrustes derivation: translation
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Subtract the centroid from the points to obtain a simpler expression for E

Procrustes derivation: Rotation

131

Optimal rotation does not depend on scale



Procrustes derivation: Rotation
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Inner product should be maximum!

Rotation does not change norm!

Subtract the centroid from the points to obtain a simpler expression for E

Optimal rotation does not depend on scale



Procrustes derivation: Rotation

133

Optimal rotation does not depend on scale

Inner product should be maximum!

Rotation does not change norm!

Cross-covariance matrix

SVD decomposition

Subtract the centroid from the points to obtain a simpler expression for E



Procrustes derivation: Rotation

134

What kind of matrix is ? 

What kind of matrix is     ?

Orthogonal

Diagonal



Procrustes derivation: Rotation
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What kind of matrix is ? 

What kind of matrix is     ?

Orthogonal

Diagonal

Hence the quantity above is maximised when equals the identity, hence:

SVD of cross-covariance of pointsclouds



Procrustes derivation: scale

Optimize scale given the rotation

136

We used:
1) Trace invariance with shifts
2)
3) Trace equals sum of 

eigenvals for square 
matrices



Virtual Humans – Winter 24/25

Lecture 4_1 – ICP: Iterative Closest Points

Prof. Dr.-Ing. Gerard Pons-Moll

University of Tübingen / MPI-Informatics



Non-rigid Articulated Registration
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What is missing?

Given correspondences, we can find the optimal rigid alignment with 
Procrustes.

PROBLEMS: 

• How do we find the correspondences between shapes ? 

• How do we align shapes non-rigidly ? 
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ICP and alignment based on optimisation

• Optimising alignment and correspondences using Iterative Closest 
Point (ICP).

• Alignment through continuous optimisation.

140



How do we find correspondences?
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How do we find correspondences?
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How do we find correspondences?

143



compact notation: f contains translation, rotation and isotropic scale

?

How do we find correspondences?

144

Closest point to target shape point 

The optimisation is over:
• the transform 
• the correspondences 



How do we find correspondences?

The idea was to minimise the sum of distances between the one set of 
points and the other set, transformed

145

compact notation: f contains translation, rotation and isotropic scale

?



Ideas

The idea was to minimise the sum of distances between the one set of 
points and the other set, transformed

What if we estimate the correspondences?

146

compact notation: f contains translation, rotation and isotropic scale



Solution: Iteratively find correspondences

The idea was to minimise the sum of distances between the one set of 
points and the other set, transformed

What if we estimate the correspondences?

147

iteration

Given current best transformation,
which are the closest correspondences?

Given current best correspondences,
which is the best transformation?

original unsorted points

compact notation: f contains translation, rotation and isotropic scale



Alternate between finding correspondences
and finding the optimal transformation
The idea was to minimise the sum of distances between the one set of 
points and the other set, transformed

What if we estimate the correspondences?

148

Given current best transformation,
which are the closest correspondences?

Given current best correspondences,
which is the best transformation?

compact notation: f contains translation, rotation and isotropic scale

iteration

original unsorted points



Make up reasonable correspondences
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Neutral initialization.
Initializing t to align centroids 
should work better!

Make up reasonable correspondences
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Make up reasonable correspondences
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Solve for the best transformation

152

solve with procrustes



Apply it …

153



and iterate!
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and iterate!
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and iterate!
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and iterate!
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and iterate!
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Iterative Closest Point (ICP)

1. Initialize
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Iterative Closest Point (ICP)

1. Initialize

2. Compute correspondences according to current best transform

160



Iterative Closest Point (ICP)

1. Initialize

2. Compute correspondences according to current best transform

3. Compute optimal transformation (            )with Procrustes

161



Iterative Closest Point (ICP)

1. Initialize

2. Compute correspondences according to current best transform

3. Compute optimal transformation (            )with Procrustes

4. Terminate if converged (error below a threshold), otherwise iterate
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Iterative Closest Point (ICP)

1. Initialize

2. Compute correspondences according to current best transform

3. Compute optimal transformation (            )with Procrustes

4. Terminate if converged (error below a threshold), otherwise iterate

5. Converges to local minima
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Is ICP the best we can do?

Iteration j:

• compute closest points

• compute optimal transformation with Procrustes

• apply transformation

• terminate if converged, otherwise iterate
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Closest points

• Brute force is O(n2)

• For every source point find a neighbor point on the source shape
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Closest points

• Tree based methods (e.g. kdtree) have avg. complexity log(n)

• Random point sampling also reduces the running time 166



ICP: Tips to avoid local minima

• Always find correspondences from target to source!
Proper data term

• Outliers —> Robust cost functions

• Use additional information (e.g. normals)

• Compute transformation based on greedy subsets of points: RANSAC
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A much better objective: Point-to-surface 
distance
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Closest points: avoid local minima

169

Point-to-point distance



Closest points: avoid local minima
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Point-to-surface distance



Is ICP the best we can do?

Iteration j:

• compute closest points

• compute optimal transformation with Procrustes

• apply transformation

• terminate if converged, otherwise iterate
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Best transformation?

• Procrustes gives us the optimal rigid transformation and scale given 
correspondences

• What if the deformation model is not rigid ? 

• Can we generalise ICP to non-rigid deformation ?
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Iterative Closest Point (ICP)

Iteration j:

• compute closest pointsWhich direction to move? 

• compute optimal transformation with Procrustes

• apply transformation

• terminate if converged, otherwise iterate
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Iteration j:

• compute closest points Which direction to move? 

• compute optimal transformation with Procrustes 

• apply transformation

• terminate if converged, otherwise iterate

Iterative Closest Point (ICP)
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Compute a transform that reduces the error



Gradient-based ICP

Iteration j:

• compute closest points Which direction to move? 

• compute optimal transformation with Procrustes 

• apply transformation

• terminate if converged, otherwise iterate

Compute descent step by linearising the energy
Jacobian of distance-based energy



Gradient-based ICP

• If f is a rigid transformation we can solve this minimisation using 
Procrustes

• If f is a general non-linear function ?

• Gradient descent:

• For least squares, is there a better optimisation method ?
yes: Gauss-Newton based methods. 
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Gradient-based ICP

1. Energy: 

2. Consider the correspondences fixed in each iteration j+1

3. Compute gradient of the energy around current estimation

4. Apply step (gradient descent, dogleg, LM, BFGS…)

5. terminate if converged, otherwise iterate (go to step 2)

177

(for example )                      



Gradient-based ICP
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Why is convergence on the left less smooth? 
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Point to point objective Point to surface objective



Gradient-based ICP

• Energy: 

• Consider the correspondences fixed in each iteration j+1

• Compute gradient of the energy around current estimation

• Apply step (gradient descent, dogleg, LM, BFGS…)

• terminate if converged, otherwise iterate
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Gradient-based ICP

• Gradient: derivative of the sum of squared
distances with respect to transformation f 
parameters
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Gradient-based ICP

• Gradient: derivative of the sum of squared
distances with respect to transformation f 
parameters

• Each derivative is easy
• Who wants to writes it down?
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Gradient-based ICP

• Gradient: derivative of the sum of squared
distances with respect to transformation f 
parameters

• Each derivative is easy
• Who wants to writes it down?

• Chain rule and automatic differentiation!
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Automatic differentiation

184

write as if it was numpy code

results in expression tree
with jacobians available at 
each step



Gradient-based ICP

• Energy: 

• Consider the correspondences fixed in each iteration j+1

• Compute gradient of the energy around current estimation

• Apply step (gradient descent, dogleg, LM, BFGS…)

• terminate if converged, otherwise iterate
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Why Gradient-based ICP?

• Formulation is much more generic: the energy can incorporate other 
terms, more parameters, etc

• A lot of available software for solving this least squares problem (cvx, 
ceres, …)

• However, the resulting energy is non-convex for general deformation 
models. Optimisation can get trapped in local minima.
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Take-home message

• Procrustes is optimal for rigid alignment problems with known
correspondences. For other problems: 

• We can compute correspondences and solve for the best
transformation iteratively with Iterative Closest Point (ICP)
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