
Hands-on AI based 3D Vision
Summer Semester 25

Lecture 5_0 – Surface Reconstruction

Prof. Dr.-Ing Gerard Pons-Moll

University of Tübingen / MPI-Informatics

Increasing complexity of our models

2

 CMU 15-462/662

Increasing the complexity of our models

Materials, lighting, ...GeometryTransformations

3

4

Given all these options, what is
the best way to encode geometry
on a computer?

5

It's a jungle out there!

6

7

Many ways to digitally encode geometry

• EXPLICIT
• point cloud
• polygon mesh
• subdivision, NURBS
• …

• IMPLICIT
• level set
• algebraic surface
• L-systems
• …

• Each choice best suited to a different task/type of geometry

8

"Implicit" Representations of Geometry

• Points aren't known directly, but satisfy some relationship

• E.g., unit sphere is all points such that x2+y2+z2=1

• More generally, f(x,y,z) = 0

9

Surfaces as an Implicit Function

10

Many implicit representations in graphics

11

12

13

14

Algebraic Surfaces (Implicit)

• Surface is zero set of a polynomial in x, y, z

• Examples:

15

• What about more complicated shapes?

• Very hard to come up with polynomials!

Constructive Solid Geometry (Implicit)

• Build more complicated shapes via Boolean operations

• Basic operations:

16

 CMU 15-462/662

Constructive Solid Geometry (Implicit)

Build more complicated shapes via Boolean operations

Basic operations:

Then chain together expressions:

UNION

INTERSECTION

DIFFERENCE

 CMU 15-462/662

Constructive Solid Geometry (Implicit)

Build more complicated shapes via Boolean operations

Basic operations:

Then chain together expressions:

UNION

INTERSECTION

DIFFERENCE

• Then chain together expressions:

Blending Distance Functions (Implicit)

• A distance function gives distance to closest point on object

• Can blend any two distance functions d1, d2:

• Similar strategy to points, though many possibilities. E.g.,

• Appearance depends on how we combine functions

• Q: How do we implement a Boolean union of d1(x), d2(x)?

• A: Just take the minimum: f(x) = min(d1(x), d2(x))
17

https://www.shadertoy.com/view/NtlSDs

Scene made of pure signed distance functions
Art with math -- really hard!

18

Nowadays -- Neural Distance Fields (NDF)

19

INPUT OUTPUT OF NDF

Chibane et al. NDF, NeurIPS 2020

Distance field, field normals and closest points

20

• Surface normal are the gradients of the function

• Closest points are found trivially as:

• Distance to surface is given by the distance field itself f(p)

Surface Reconstruction from Implicit
Representation
• Implicit surfaces have some nice

features (e.g., merging/splitting)

• But, hard to describe complex
shapes in closed form

• Alternative: store a grid of values
approximating function

• Surface is found where
interpolated values equal zero

26

27

Marching Cubes

1. Read four slices into memory.
2. Scan two slices and create a

cube from four neighbors on
one slice and four neighbors
on the next slice.

3. …
4. …
5. …
6. …
7. ...

28

Marching Cubes

1. ...

2. ...

3. Calculate an index for the
cube by comparing the
eight density values at the
cube vertices with the
surface constant.

4. Using the index, look up the
list of edges from a
precalculated table.

29

Marching Cubes

1. ...
2. ...
3. ...
4. ...
5. Using the densities at each edge vertex, find the surface-edge

intersection via linear interpolation
6. Calculate a unit normal at each cube vertex using central

differences. Interpolate the normal to each triangle vertex
7. Output the triangle vertices and vertex normals.

30

Marching Cubes

Challenges with Marching Cubes

• Generating one polygon for each portion of the contour

• Can only approximate the restriction of the contour

• Fails to capture the sharp detail of the surface

• Difficult to simplify the generated surface mesh

• Becoming challenging to extract surface for higher grid sizes (3D
uniform grid induces cubic cost in resolution)

31

Dual Contouring

• Can capture sharp edges along corners of surface

• Can leverage gradient information along edge intersections to reproduce a
wide class of polyhedral shapes as well as curved or sharp edges

• Utilizes octree in place of a 3D uniform grid for better efficiency

• Uses normals to define Quadratic Error Function for each leaf of the octree,
inspired by original Extended Marching Cubes (EMC)

E[x] = Σi (ni * (x - pi))
2

where pi and ni correspond to the intersections and normals of the contour
with the edges of cube

32

Dual Contouring

33

Signed Grid with edges
tagged by Hermite Data

Marching Cubes Contour Dual Contour

Challenges with Dual Contouring

• Limited expressivity due to reliance on structured grids

• Cannot faithfully extract very thin surfaces and features (otherwise
requiring very fine grid resolution)

• Limited by the amount of surface simplification

34

Dual Marching Cubes

• Align features of the implicit function with the features of the
structured grid; enabling extraction of sharp features

• Can generate adaptive polygonalizations that are crack-free and
topologically manifold

• Can reproduce thin features in surface without excessive subdivision
of the octree

35

Dual Marching Cubes

DMC's QEF is calculated by computing a tangent planes to the implicit
surface representation f on a grid of points (xi, yi, zi) sampled over c.

Tangent plane's equation: Ti(x, y, z) = ∇f(xi, yi, zi) ((x, y, z) - (xi, yi, zi))

DMC's QEF sums over all sample points yielding:

E(f(x, y, z), x, y, z) = Σi (f(x, y, z) - Ti(x, y, z))2/(1+|∇f(xi, yi, zi)|
2)

where the denominator normalizes the contribution of each tangent
plane

36

37

Comparison between Marching Cubes & Dual
Contouring & Dual Marching Cubes

38

Comparison between Marching Cubes & Dual
Contouring & Dual Marching Cubes

Ground Truth
Model

Dual Marching
Contour

Marching
Contour

Dual
Contour

Challanges faced by Level Sets method

Although Level Set representation
provides much more explicit control
over shape (like a texture), it

• runs into problems of aliasing! (Unlike
closed-form expressions)

• induces O(n3) storage costs for 3D
surface extraction

• can save space by only storing a
narrow band around the surface.

42

 CMU 15-462/662

Level Set Storage

Drawback: storage for 2D surface is now O(n3)

Can reduce cost by storing only a narrow band around surface:

Implicit Representations - Pros & Cons

Pros:

• description can be very compact (e.g., a polynomial)

• easy to determine if a point is in our shape (just plug it in!)

• other queries may also be easy (e.g., distance to surface)

• for simple shapes, exact description/no sampling error

• easy to handle changes in topology (e.g., fluid)

Cons:

• expensive to find all points in the shape (e.g., for drawing)

• very difficult to model complex shapes

43

"Explicit" Representations of Geometry

• All points are given directly

• E.g., points on sphere are

44

• More generally:

• (Might have a bunch of these maps, e.g., one per triangle!)

45

46

47

48

49

50

Point Clouds

• Easiest representation: list of points (x,y,z)

• Often augmented with normals

• Easily represent any kind of geometry

• Easy to draw dense cloud (>>1 point/pixel)

• Hard to interpolate under-sampled regions

• Hard to do processing / simulation/...

51

 CMU 15-462/662

Point Cloud (Explicit)

Easiest representation: list of points (x,y,z)

Often augmented with normals

Easily represent any kind of geometry

Easy to draw dense cloud (>>1 point/pixel)

Hard to interpolate undersampled regions

Hard to do processing / simulation / …

 CMU 15-462/662

Point Cloud (Explicit)

Easiest representation: list of points (x,y,z)

Often augmented with normals

Easily represent any kind of geometry

Easy to draw dense cloud (>>1 point/pixel)

Hard to interpolate undersampled regions

Hard to do processing / simulation / …

Poisson Surface Reconstruction

52Kazhdan et al. PSR, ESGP, June 2006

Poisson Surface Reconstruction

53

Given an oriented point cloud P with points 𝑝1, . . . , 𝑝n and
corresponding (outward-facing) normal observations 𝑛1, . . . , 𝑛n, we
consider the implicit reconstruction task of finding a function 𝑓 : Rd → R
such that

𝑓(𝑝𝑖) = 0 , ∇𝑓(𝑝𝑖) = 𝑛𝑖 , ∀𝑖 ∈ {1, . . . , 𝑛} .

PSR first utilizes convolutional kernel F to interpolate 𝑛𝑖 into a vector
field V : Rd → Rd defined in box B containing P as

V(x) = Σ𝑖 F(x, x𝑖) 𝑛𝑖

Kazhdan et al. PSR, ESGP, June 2006

Poisson Surface Reconstruction

54

𝑓 : Rd → R is then defined as a function whose gradient best matches V

𝑓 = argmin 𝑔 ∫ 𝐵 ∥V(𝑥) − ∇𝑔(𝑥) ∥2 dx

Variational problem above is equivalent to the Poisson Equation

Δ𝑓 = ∇ V(𝑥)

which is solved by PSR via discretization using the Finite Element
Method on an octree and solve using a purpose-built multigrid
algorithm

Kazhdan et al. PSR, ESGP, June 2006

Poisson Surface Reconstruction

55

𝑓 : Rd → R is then defined as a function whose gradient best matches V

𝑓 = argmin 𝑔 ∫ 𝐵 ∥V(𝑥) − ∇𝑔(𝑥) ∥2 dx

Variational problem above is equivalent to the Poisson Equation

Δ𝑓 = ∇ V(𝑥)

which is solved by PSR via discretization using the Finite Element
Method on an octree and solve using a purpose-built multigrid
algorithm. In Screened PSR (Kazhdan et.al, 2013) authors use

𝑓 = argmin 𝑔∫ B ∥V(𝑥) − ∇𝑔(𝑥) ∥2 dx + α ∗ ∑︁𝑖 g(pi)
2

Kazhdan et al. PSR, ESGP, June 2006

(Screened) Poisson reconstruction

56

• Can extract the surface from oriented point clouds

• (Screened PSR) efficiently implements sparsity constraints

• Can better capture the details of the underlying surface

• (Screened PSR) implements efficient octree structure and multigrid
algorithm to reduce the time complexity

However, these methods limit themselves to outputting the likeliest
surface given the point cloud observations and their assumed prior.
Whereas in reality there could be theoretically infinite number of
possible surfaces representing same set of Points with normals

(Screened) Poisson reconstruction

57

58

Neural Stochastic Screened Poisson Surface
Reconstruction

Sellan and Jacobson, Neural Stochastic Screened PSR, SIGGRAPH Asia 2023

• Take a step even further and models the posterior multivariate
Gaussian distributions representing the likelihood of all possible
reconstructions for the given Point Set with normals

• Proposes the parametrization of mean and covariance functions using
neural networks, optimizing them through gradient-based methods
for a more efficient and flexible approach

• Enabling computation of the statistical quantities over the
reconstruction

59

Neural Stochastic Screened Poisson Surface
Reconstruction

Sellan and Jacobson, Neural Stochastic Screened PSR, SIGGRAPH Asia 2023

60

Neural Stochastic Screened Poisson Surface
Reconstruction

Sellan and Jacobson, Neural Stochastic Screened PSR, SIGGRAPH Asia 2023

61

Neural Stochastic Screened PSR

Sellan and Jacobson, Neural Stochastic Screened PSR, SIGGRAPH Asia 2023

Polygon Mesh

• Store vertices and polygons (most often triangles or quads)

• Easier to do processing/simulation, adaptive sampling

• More complicated data structures

• Irregular neighbourhoods

62

 CMU 15-462/662

Polygon Mesh (Explicit)

Store vertices and polygons (most often triangles or quads)

Easier to do processing/simulation, adaptive sampling

More complicated data structures

Irregular neighborhoods

(Much more about polygon meshes in upcoming lectures!)

Triangle Mesh (Explicit)

• Store vertices as triples of coordinates (x,y,z)

• Store triangles as triples of indices (i,j,k)

• E.g., tetrahedron:

• Use barycentric interpolation to define points inside triangles:

63

Triangle Mesh – Normals (Explicit)

• Option1: Normals per face (Phong)

• Option2: Interpolate incident face normal at each vertex, and
interpolate with barycentric interpolation for points inside the
triangle

64

Distance queries and closest points

• Smooth parametric surface

• Evaluation

• Normals

• Distance and closest point. Find surface point f(u,v) such that:

• Mesh
• Distance and closest point:

• Find closest triangle and then find closest point in triangle, and then finding point in triangle
• Use Kd-tree, AAB Tree, to find closest triangles

65

Subdivision

• Alternative starting point for curves/surfaces: subdivision

• Start with "control curve"

• Repeatedly split, take weighted average to get new positions

• For careful choice of averaging rule, approaches nice limit curve
• Often exact same curve as well-known spline schemes!

66

Cashman & Fitzgibbon. What shapes are dolphins?

Subdivision Surfaces in Computer Vision

67

Subdivision Surfaces (Explicit)

• Start with coarse polygon mesh ("control cage")
• Subdivide each element
• Update vertices via local averaging
• Many possible rules:

• Catmull-Clark (quads)
• Loop (triangles)
• …

• Common issues:
• interpolating or approximating?
• continuity at vertices?

• Easier than splines for modeling; harder to evaluate pointwise
• Widely used in practice (2019 Academy Awards!)

68

Subdivision in Pixar (Pixar's "Geri's Game")

69 CMU 15-462/662

Subdivision in Action (Pixar’s “Geri’s Game”)

see: de Rose et al, “Subdivision Surfaces in Character Animation”

Slide credits and further reading

• Keenan Crane – Computer Graphics Lecture CMU 15-462/662.
Lecture 09:Introduction to Geometry.

70

Point Cloud Denoising

71Lipman et al. LOP, ACM (TOG), July 2007

Problems with Poisson
Surface Reconstruction:

• cannot handle noise in
input point cloud

• uneven distribution of
points can make gradient
estimation unreliable

Locally Optimal Projection Operator

72Lipman et al. LOP, ACM (TOG), July 2007

Given an unorganized set of points P = {pj} for j∈J ⊂ R3, we define a set
of projected points X = {xi} for i∈I ⊂ R3 by a fixed point iteration to
minimize

Σi∈I Σj∈J ||xi − pj||2∗θ(||ξk
ij||) +

+ λi Σi!∈I\{i} η(||xi − xk
i'||)θ(||δk

ii'||)

where ξk
ij = xk

i − pj , δk
ii' = xk

i −xk
i' , θ(r) = e-r**2/(h/4)**2 and η(r)=(1/3r3) .

In practice, n = |I| is often significantly smaller than m = |J|.

Locally Optimal Projection Operator

73Lipman et al. LOP, ACM (TOG), July 2007

Contaminated
Point Set

MLS Projections LOP Projections

Locally Optimal Projection Operator

74Lipman et al. LOP, ACM (TOG), July 2007

However, LOP has the following disadvantages:

• Repulsion term η(r) decreases too drastically

• Imposes strong attraction between point clusters

Weighted LOP improves over original LOP by

• Replacing the original repulsion term η(r) = 1/(3*r3) with η(r) = -r
which decreases more gently and penalizes more at a large r

• Using weighted local density for each point in a Point Set that
enables the attraction of point clusters to be relaxed and the
repulsion force from points in dense areas to be strengthened

Weighted Locally Optimal Projection Operator

75Huang et al. WLOP, ACM (TOG), December 2009

Weighted Locally Optimal Projection Operator

76Huang et al. WLOP, ACM (TOG), December 2009

(Weighted) Locally Optimal Projection Operator

77Huang et al. WLOP, ACM (TOG), December 2009

• not learning patterns from data

• mainly relied on parameters set heuristically

• applies Local PCA for estimation of point cloud normals

• cannot recover sharp features and handle missing data

Score-Based Point Cloud Denoising

78Luo et al. Score-Based Point Cloud Denoising, ICCV, July 2021

• Learns to estimate the
score of the noisy point
cloud

• Iteratively updating
each point to increase
log-likelihood via
gradient descent

• Can learn variety of
noisy models

Score-Based Point Cloud Denoising

79Luo et al. Score-Based Point Cloud Denoising, ICCV, July 2021

Score-Based Point Cloud Denoising

80Luo et al. Score-Based Point Cloud Denoising, ICCV, July 2021

Score-Based Point Cloud Denoising

81Luo et al. Score-Based Point Cloud Denoising, ICCV, July 2021

Although performing

• implements synthetic datasets generation by perturbing ground
truth point clouds

• thus not scalable with the real world data

• restricts evaluation to pre-determined set of noise models, including
Gaussian noise, simulated LiDAR noise, non-isotropic Gaussian
noise, uni-directional noise, Laplace noise, uniform noise, and
discrete noise

Total Denoising: Unsupervised Learning of 3D
Point Cloud Cleaning

82Hermosilla et al. Total Denoising, ICCV, April 2019

• Allows learning point cloud cleaning from noisy examples alone

• Enforce convergence to the unique closest out of many possible
modes on a manifold of point clouds

Total Denoising: Unsupervised Learning of 3D
Point Cloud Cleaning

83Hermosilla et al. Total Denoising, ICCV, April 2019

To enforce convergence onto a unique mode, we enforce regularization over
denoising process by imposing prior distribution q(z|y) that captures the
probability that a given observation y is a realization of the clean point z

Total Denoising: Unsupervised Learning of 3D
Point Cloud Cleaning

84Hermosilla et al. Total Denoising, ICCV, April 2019

Using spatial and appearance proximity:

q(z|y) = p(z|S) * k(z − y)

k(d) = (1 / σ √(2π)) * exp{ − ||Wd||2
2 /(2∗σ2)}

where σ is the bandwidth of k and W = diag(w) is a diagonal weight
matrix trading spatial and appearance locality. Optimizing

arg min Θ Ey~p(z|S)Eq~q(z|y) L(fΘ(y), q)

where L can be chosen to be a standard Chamfer distance and f is
implemented using Monte Carlo Convolution

Total Denoising: Unsupervised Learning of 3D
Point Cloud Cleaning

86Hermosilla et al. Total Denoising, ICCV, April 2019

Total Denoising: Unsupervised Learning of 3D
Point Cloud Cleaning

87Hermosilla et al. Total Denoising, ICCV, April 2019

Fast Learning of Signed Distance Functions from
Noisy Point Clouds via Noise to Noise Mapping

88Zhou et al. Noise2NoiseMapping, ICML 2023, Oral

• Doesn't require any clean point cloud or ground truth supervision

• Can infer highly accurate distance field from multiple or even a single
noisy observation

• Further, introduce a novel schema to improve multi-view
reconstruction by estimating SDFs as a prior

Fast Learning of Signed Distance Functions from
Noisy Point Clouds via Noise to Noise Mapping

89Zhou et al. Noise2NoiseMapping, ICML 2023, Oral

Fast Learning of Signed Distance Functions

90Zhou et al. Noise2NoiseMapping, ICML 2023, Oral

?

Procrustes alignment problem definition

91

Rigid Alignment

How can we rigidly transform a set of points ?

• Translate it

• Rotate it

• Today we’ll consider also

• Scale it

92

Optimisation Problem

93

in general, applied to a real matrix:

warning: this is not the vertex matrix!

Quick recap of SVD

94

Optimal rotation obtained by computing SVD
on the point cross-covariance

Procrustes alignment steps

95

Matrices of points

Translation is the centroid difference

Scale is a quotient of eigenvalue sums

* See also clarification slide 1 at the end of slide deck

Proof

96

Minimize the L2 distance between
transformed source points and target points

Procrustes derivation: translation

97

We remove the elements that do not depend on the translation and solve for t.

Compute the centroid of the point clouds

So given s and R, we can compute the translation t

Procrustes derivation: translation

98

Subtract the centroid from the points to obtain a simpler expression for E

Procrustes derivation: Rotation

99

Optimal rotation does not depend on scale

Procrustes derivation: Rotation

100

Inner product should be maximum!

Rotation does not change norm!

Subtract the centroid from the points to obtain a simpler expression for E

Optimal rotation does not depend on scale

Procrustes derivation: Rotation

101

Optimal rotation does not depend on scale

Inner product should be maximum!

Rotation does not change norm!

Cross-covariance matrix

SVD decomposition

Subtract the centroid from the points to obtain a simpler expression for E

Procrustes derivation: Rotation

102

What kind of matrix is ?

What kind of matrix is ?

Orthogonal

Diagonal

Procrustes derivation: Rotation

103

What kind of matrix is ?

What kind of matrix is ?

Orthogonal

Diagonal

Hence the quantity above is maximised when equals the identity, hence:

SVD of cross-covariance of pointsclouds

Procrustes derivation: scale

Optimize scale given the rotation

104

We used:
1) Trace invariance with shifts
2)
3) Trace equals sum of

eigenvals for square
matrices

Slide credits and further reading

105

Hands-On AI Based 3D Vision
Winter 24/25

Lecture 5_2 – Procrustes Alignment

Prof. Dr.-Ing. Gerard Pons-Moll

University of Tübingen / MPI-Informatics

Goal: learn a model of pose and shape

107

Scan a Lot of People

108

In lots of poses

109

To learn a model we need correspondence

110

Non-rigid Articulated Registration

111

How?

?

Today: Rigid Alignment (Procrustes)

112

Surface representation: Mesh

113

Surface representation: Mesh

114

Surface representation: Mesh

How can we rigidly transform a set of points ?

• Translate it

• Rotate it

• Today we’ll consider also

• Scale it

115

Rigid transformation + scale

116

Rigid transformation + scale

117

Rigid transformation + scale

118

Rigid transformation + scale

119

?

Procrustes alignment problem definition

120

Procrustes alignment problem definition

121

?

Procrustes alignment problem definition

122

Why Procrustes?

123

The name Procrustes (Greek: Προκρούστης) refers to a bandit from Greek mythology who
made his victims fit his bed either by stretching their limbs or cutting them off.

Prcrustes means “he who stretches”

https://en.wikipedia.org/wiki/Procrustes
https://en.wikipedia.org/wiki/Greek_language

Optimisation Problem

124

T

𝐴 = 𝑈𝛴𝑉𝑇

Quick recap of SVD

125

in general, applied to a real matrix:

warning: this is not the vertex matrix!

Quick recap of SVD

126

Optimal rotation obtained by computing SVD
on the point cross-covariance

Procrustes alignment steps

127

Matrices of points

Translation is the centroid difference

Scale is a quotient of eigenvalue sums

* See also clarification slide 1 at the end of slide deck

Proof

128

Minimize the L2 distance between
transformed source points and target points

Procrustes derivation: translation

129

We remove the elements that do not depend on the translation and solve for t.

Compute the centroid of the point clouds

So given s and R, we can compute the translation t

Procrustes derivation: translation

130

Subtract the centroid from the points to obtain a simpler expression for E

Procrustes derivation: Rotation

131

Optimal rotation does not depend on scale

Procrustes derivation: Rotation

132

Inner product should be maximum!

Rotation does not change norm!

Subtract the centroid from the points to obtain a simpler expression for E

Optimal rotation does not depend on scale

Procrustes derivation: Rotation

133

Optimal rotation does not depend on scale

Inner product should be maximum!

Rotation does not change norm!

Cross-covariance matrix

SVD decomposition

Subtract the centroid from the points to obtain a simpler expression for E

Procrustes derivation: Rotation

134

What kind of matrix is ?

What kind of matrix is ?

Orthogonal

Diagonal

Procrustes derivation: Rotation

135

What kind of matrix is ?

What kind of matrix is ?

Orthogonal

Diagonal

Hence the quantity above is maximised when equals the identity, hence:

SVD of cross-covariance of pointsclouds

Procrustes derivation: scale

Optimize scale given the rotation

136

We used:
1) Trace invariance with shifts
2)
3) Trace equals sum of

eigenvals for square
matrices

Virtual Humans – Winter 24/25

Lecture 4_1 – ICP: Iterative Closest Points

Prof. Dr.-Ing. Gerard Pons-Moll

University of Tübingen / MPI-Informatics

Non-rigid Articulated Registration

138

What is missing?

Given correspondences, we can find the optimal rigid alignment with
Procrustes.

PROBLEMS:

• How do we find the correspondences between shapes ?

• How do we align shapes non-rigidly ?

139

ICP and alignment based on optimisation

• Optimising alignment and correspondences using Iterative Closest
Point (ICP).

• Alignment through continuous optimisation.

140

How do we find correspondences?

141

How do we find correspondences?

142

How do we find correspondences?

143

compact notation: f contains translation, rotation and isotropic scale

?

How do we find correspondences?

144

Closest point to target shape point

The optimisation is over:
• the transform
• the correspondences

How do we find correspondences?

The idea was to minimise the sum of distances between the one set of
points and the other set, transformed

145

compact notation: f contains translation, rotation and isotropic scale

?

Ideas

The idea was to minimise the sum of distances between the one set of
points and the other set, transformed

What if we estimate the correspondences?

146

compact notation: f contains translation, rotation and isotropic scale

Solution: Iteratively find correspondences

The idea was to minimise the sum of distances between the one set of
points and the other set, transformed

What if we estimate the correspondences?

147

iteration

Given current best transformation,
which are the closest correspondences?

Given current best correspondences,
which is the best transformation?

original unsorted points

compact notation: f contains translation, rotation and isotropic scale

Alternate between finding correspondences
and finding the optimal transformation
The idea was to minimise the sum of distances between the one set of
points and the other set, transformed

What if we estimate the correspondences?

148

Given current best transformation,
which are the closest correspondences?

Given current best correspondences,
which is the best transformation?

compact notation: f contains translation, rotation and isotropic scale

iteration

original unsorted points

Make up reasonable correspondences

149

Neutral initialization.
Initializing t to align centroids
should work better!

Make up reasonable correspondences

150

Make up reasonable correspondences

151

Solve for the best transformation

152

solve with procrustes

Apply it …

153

and iterate!

154

and iterate!

155

and iterate!

156

and iterate!

157

and iterate!

158

Iterative Closest Point (ICP)

1. Initialize

159

Iterative Closest Point (ICP)

1. Initialize

2. Compute correspondences according to current best transform

160

Iterative Closest Point (ICP)

1. Initialize

2. Compute correspondences according to current best transform

3. Compute optimal transformation ()with Procrustes

161

Iterative Closest Point (ICP)

1. Initialize

2. Compute correspondences according to current best transform

3. Compute optimal transformation ()with Procrustes

4. Terminate if converged (error below a threshold), otherwise iterate

162

Iterative Closest Point (ICP)

1. Initialize

2. Compute correspondences according to current best transform

3. Compute optimal transformation ()with Procrustes

4. Terminate if converged (error below a threshold), otherwise iterate

5. Converges to local minima

163

Is ICP the best we can do?

Iteration j:

• compute closest points

• compute optimal transformation with Procrustes

• apply transformation

• terminate if converged, otherwise iterate

164

Closest points

• Brute force is O(n2)

• For every source point find a neighbor point on the source shape

165

Closest points

• Tree based methods (e.g. kdtree) have avg. complexity log(n)

• Random point sampling also reduces the running time 166

ICP: Tips to avoid local minima

• Always find correspondences from target to source!
Proper data term

• Outliers —> Robust cost functions

• Use additional information (e.g. normals)

• Compute transformation based on greedy subsets of points: RANSAC

167

A much better objective: Point-to-surface
distance

168

Closest points: avoid local minima

169

Point-to-point distance

Closest points: avoid local minima

170

Point-to-surface distance

Is ICP the best we can do?

Iteration j:

• compute closest points

• compute optimal transformation with Procrustes

• apply transformation

• terminate if converged, otherwise iterate

171

Best transformation?

• Procrustes gives us the optimal rigid transformation and scale given
correspondences

• What if the deformation model is not rigid ?

• Can we generalise ICP to non-rigid deformation ?

172

Iterative Closest Point (ICP)

Iteration j:

• compute closest pointsWhich direction to move?

• compute optimal transformation with Procrustes

• apply transformation

• terminate if converged, otherwise iterate

173

Iteration j:

• compute closest points Which direction to move?

• compute optimal transformation with Procrustes

• apply transformation

• terminate if converged, otherwise iterate

Iterative Closest Point (ICP)

174

Compute a transform that reduces the error

Gradient-based ICP

Iteration j:

• compute closest points Which direction to move?

• compute optimal transformation with Procrustes

• apply transformation

• terminate if converged, otherwise iterate

Compute descent step by linearising the energy
Jacobian of distance-based energy

Gradient-based ICP

• If f is a rigid transformation we can solve this minimisation using
Procrustes

• If f is a general non-linear function ?

• Gradient descent:

• For least squares, is there a better optimisation method ?
yes: Gauss-Newton based methods.

176

Gradient-based ICP

1. Energy:

2. Consider the correspondences fixed in each iteration j+1

3. Compute gradient of the energy around current estimation

4. Apply step (gradient descent, dogleg, LM, BFGS…)

5. terminate if converged, otherwise iterate (go to step 2)

177

(for example)

Gradient-based ICP

178

Why is convergence on the left less smooth?

179

Point to point objective Point to surface objective

Gradient-based ICP

• Energy:

• Consider the correspondences fixed in each iteration j+1

• Compute gradient of the energy around current estimation

• Apply step (gradient descent, dogleg, LM, BFGS…)

• terminate if converged, otherwise iterate

180

Gradient-based ICP

• Gradient: derivative of the sum of squared
distances with respect to transformation f
parameters

181

Gradient-based ICP

• Gradient: derivative of the sum of squared
distances with respect to transformation f
parameters

• Each derivative is easy
• Who wants to writes it down?

182

Gradient-based ICP

• Gradient: derivative of the sum of squared
distances with respect to transformation f
parameters

• Each derivative is easy
• Who wants to writes it down?

• Chain rule and automatic differentiation!

183

Automatic differentiation

184

write as if it was numpy code

results in expression tree
with jacobians available at
each step

Gradient-based ICP

• Energy:

• Consider the correspondences fixed in each iteration j+1

• Compute gradient of the energy around current estimation

• Apply step (gradient descent, dogleg, LM, BFGS…)

• terminate if converged, otherwise iterate

185

Why Gradient-based ICP?

• Formulation is much more generic: the energy can incorporate other
terms, more parameters, etc

• A lot of available software for solving this least squares problem (cvx,
ceres, …)

• However, the resulting energy is non-convex for general deformation
models. Optimisation can get trapped in local minima.

186

Take-home message

• Procrustes is optimal for rigid alignment problems with known
correspondences. For other problems:

• We can compute correspondences and solve for the best
transformation iteratively with Iterative Closest Point (ICP)

187

Slide credits

• Javier Romero

