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Introduction



The Structure from Motion Problem

Given large amounts of images of a scene, we want to simultaneously
® Find out where they were taken from
® Build a (sparse) 3D model of the scene




Photo Tourism

Photo Tourism

Exploring photo collections in 3D

Noah Snavely Steven M. Seitz  Richard Szeliski
University of Washington Microsoft Research

SIGGRAPH 2006

Snavely et al. SIGGRAPH 06



Building Rome in a Day

Agarval et al. ICCV’09



SfM Problem

Given: m images of n fixed 3D points
such that

llfj — PIXJ

Task: Jointly Estimate
® camera matrices P;
® 3D points X;

This lecture:

Cameral ‘? Camera 3
K'I " R]l t'l ° K R
R A1) t?
Camera 2
KE: RZ; tZ

® | ook at case where m = 2 (epipolar geometry)

® Extend to more m (bundle adjustment, SfM)



A Note on Correspondences

Throughout, we will assume to have access to precomputed 2D-2D correspondences:

u;;

j ~ uyj correspond to point X ; being viewed from cameras i, i’

We do not assume they are correct, i.e. we allow wrong correspondences and outliers.




A Note on Correspondences

® Rich literature on feature detection algorithms
® SIFT, SURF ORB, SuperPoint, ...

® This lecture will not deal with how to detect and match features




3 Components of STM

From correspondences, infer 3D Points
(Structure)

® camera poses (motion),

® 3D points (structure)

Related but simpler:

® Triangulation

® Pose estimation (PnP) Camera Poses
Correspondences | (Motion)

Typically, first solve for motion, then infer 3D Points via triangulation.
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3 Components of STM

From correspondences, infer 3D Points
(Structure)
® camera poses (motion),

® 3D points (structure)

Related but simpler:

® Triangulation

® Pose estimation (PnP) Camera Poses

Correspondences ;
L (Motion)

Typically, first solve for motion, then infer 3D Points via triangulation.



Triangulation

Setting: A point X with unknown 3D position is
observed by 2 cameras.

Task: Find the 3D position of X

If observations are perfect, the two vieweing
rays should intersect exactly at X.

In noisy settings, we have to find the point of
minimum distance to both rays.




Linear Triangulation

® Assumption: X is projected to u ~ PX by camera matrix
® WehaveuxXxPX =0

® (Can be rewritten as

x] [PIX
y|Ix|PIX|=0.
1

1] P3X

® The cross product evaluates to

YPIX —P)X
P X-xP:X |=0

xPX - yP/X

® | astrow is linear combination of first two



Linear Triangulation

® \We get the linear equations:
T
yP; —P
X =
] x

® Asingle camera is of course not enough to triangulate a point

e et P’ be projection matrix of another camera and u’ projection of X

® \We can setup the linear system

_ T T —
yP3 =P,
P/ — xP;
rp!T 1T

yflT)3 _IP%T

_P1 — X P3 i

® Can be solved in the least squares sense using SVD.



Epipolar Geometry



Estimating Camera Poses from Correspondences

Camera Poses
Correspondences ;
* d ‘ (Motion) }




Epipolar Geometry: Setup

A scene is viewed by two cameras from slightly different angles Camera views:

vl
A




Epipolar Geometry: The Epipolar Plane

® Each 3D point forms a plane with the two camera centers ,
Camera views:

#
A

® This is called epipolar plane
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Epipolar Geometry: The Epipolar Plane

® Each 3D point forms a plane with the two camera centers ,
Camera views:

® This is called epipolar plane




Epipolar Geometry: The Epipoles

® Baseline is always part of epipolar plane ,
Camera views:

‘.
X

® Epipolar points: Intersections of baseline with image planes




Epipolar Geometry: The Epipolar Points

® Epipolar Points must not always lie within the images
® Can also lie at infinity




Epipolar Geometry: The Epipolar Lines

® Epipolar lines: Intersection of image planes with epipolar plane

Camera views:

® Projection of other camera’s viewing ray onto image plane




Epipolar Geometry: The Epipolar Lines

All epipolar lines converge in epipolar points (can be inside or outside of image)




Epipolar Geometry: The Epipolar Lines

All epipolar lines converge in epipolar points (can be inside or outside of image)




Epipolar Lines




2D Point Matching with Epipolar Lines

Given:

® ) images

® point in one image

Task:
Find point in other image e =

" ‘\ s = -~
Wl
h NG WA LN rwmer T '/ B




2D Point Matching with Epipolar Lines

® Corresponding point must lie on epipolar line!
® Thisis a1 dimensional search space

RN




Epipolar Geometry: Overview

Image Point

Epipolar Plane

3D Point

Image Point

Epipolar Points

We can derive a neat equation called epipolar constraint that encodes all of these

relationships.



Formal Setup

Setting:
3D point X viewed from two cameras. We take ¢;’s
frame as world frame.

® relative pose R =R, t =t

® camera matrices

PO —_— Ko[I, 0]
P, = K,[R!, —R'{]

Projection of X onto the images planes: u; ~ P, X. (R,t)



The Epipolar Constraint

Ray directions in local camera frames:
Xy = Kaluo X; = Kl_lul
Ray directions in global frame:
X0 = X X; = Rx;
Normal of epipolar plane:

n=txX ﬁl
=tX (RXI)
= [tlxRx,




The Epipolar Constraint

Notice that x lies on the epipolar plane, so we have
xoT[t]xRxl =0
This is the epipolar constraint!

The matrix E := [t], R is called essential matrix.

What are the dimensions of E?




Epipolar Geometry: Essential Matrix

Epipolar constraint:
XgExl =0

The essential matrix E = [t],R € R3>3 captures information about the epipolar geometry of
the two cameras:

o K¢, =0= ”gE, l.e. the (calibrated) epipoles are zero-value left and right singular vectors
respectively.

° TO = KX, is the (calibrated) epipolar line corresponding to x;.
° Tl = ETXO is the (calibrated) epipolar line corresponding to x.

® K hasrank 2 and 5 degrees of freedom.



Epipolar Geometry: Fundamental Matrix

Recall that x; = Kl._lu[-. We can rewrite the epipolar constraint as

u/|K'EK ' ju; =0
—F

F is called the fundamental matrix. Similarly to the calibrated case, F captures information
about the geometry of the two cameras:

® ], = Fu, isthe epipolar line corresponding to u;.
o |, = FTuo is the epipolar line corresponding to u,.

® Fe, =0= egE, i.e. the epipoles are zero-value left and right singular vectors
respectively.

® F hasrank 2 and 7 degrees of freedom.



Epipolar Geometry: Summary

Epipolar Constraint

Each correspondence pair uj, u; must satisfy the epipolar constraint ugFul =10

If we know F or E, we can derive a lot!



Recovering Relative Pose from E

® Qur goal was to estimate relative
camera poses from 2D-2D
correspondences

® Essential matrix is product of tand R
E =[t],R

® Can we decompose E into tand R?

Correspondences ﬁ{

Camera Poses
(Motion)

|




Recovering Relative Pose from E

Decomposition of E, see Hartley, Zisserman 9.6

The essential matrix has an SVD of the form

E = Udiag(l, 1,00V’

where
-y -
U=[u, uw w3 andV' =1 U'R.
L 1
W

We can thus recover R and t (up to scale) as
® t=uz0r —uy
e R=UWV'or UW'V!



The four solutions

(a)

A B/ )(,B’ A

(c) (d)

Fig. 9.12. The four possible solutions for calibrated reconstruction from E. Between the left and
right sides there is a baseline reversal. Between the top and bottom rows camera B rotates 180° about
the baseline. Note, only in (a) is the reconstructed point in front of both cameras.



A Chicken and Egg Problem

b= :|:ll3
R=UWV?T | UW'v?T




Estimating Fundamental / Essential Matrix



Estimating F, E

So far:
® Derived formulas for essential and fundamental matrix and epipolar constraint

® Capture information about epipolar geometry of two cameras

® Can be used to find epipolar lines etc.

® Assumed known relative cameras poses

What we want:
® Relative camera poses are unknown!
® Given a set of correspondences, extract the relative camera poses and 3D points.

® For this, we can estimate fundamental / essential matrix from correspondences



Estimating Essential/Fundamental Matrix from Correspondences

A correspondence pair uy = (xg, Yo, 1), u; = (x¢, ¥y, 1) must satisfy the epipolar constraint
u,’Fu, = 0. This is equivalent to

xof11%X1 + Xof12y1 t+ Xof13
+ Yofauxi + YoSfuyi + Yof3 =0
+  faixy + S+ f33

How many correspondences do we need to estimate F?



Estimating Essential/Fundamental Matrix from Correspondences

A correspondence pair uy = (xg, Yo, 1), u; = (x¢, ¥y, 1) must satisfy the epipolar constraint
u,’Fu, = 0. This is equivalent to

xof11%X1 + Xof12y1 t+ Xof13
+ Yofauxi + YoSfuyi + Yof3 =0
+  faixy + S+ f33

How many correspondences do we need to estimate F?
® For fundamental matrix 8 points suffice — 8 Point Algorithm
® F has 7 degrees of freedom
® Even 7 points suffice (but no longer linear) — 7 Point Algorithm

® [For the essential matrix even 5 points are enough — 5 Point Algorithm



The 8-Point Algorithm

Given M correspondences (e.g. M = 8, but more = better) we can rewrite the M linear
equations in the form

X1,0X1 1 X1.1Y1.1 X100 Y1.0X1.1 YioYii Yio X11 yvia | /i

Xpmo0XM1 XmMaYMmMa Xm0 YMoXma YmMoYmai Ymo Xma Yma 1ALS33l

In practice we use M > 8 correspondences to reduce the effect of noisy measurements.

How do we solve this in the least squares sense?

. 2
min ||W{||
Ifll=1 2



The 8-Point Algorithm

Given M correspondences (e.g. M = 8, but more = better) we can rewrite the M linear
equations in the form

X1,0X1 1 X1.1Y1.1 X100 Y1.0X1.1 YioYii Yio X11 yvia | /i

Xpmo0XM1 XmMaYMmMa Xm0 YMoXma YmMoYmai Ymo Xma Yma 1ALS33l

In practice we use M > 8 correspondences to reduce the effect of noisy measurements.

How do we solve this in the least squares sense?

. 2
min ||W{||
Ifll=1 2

SVD!



The 8-Point Algorithm

Compute a SVD of W:
W=0xVv!

The least squares solution is given by the
right-singular vector corresponding to the
smallest singular value!

We get estimate I from f by reshaping.

Problems?




The 8-Point Algorithm

Compute a SVD of W:
W=0UxVv!

The least squares solution is given by the
right-singular vector corresponding to the
smallest singular value!

We get estimate F from f by reshaping.

Problem: I may have rank full rank. But
essential/fundamental matrix has rank 2!




The 8-Point Algorithm

Goal: Find best rank 2 approximation of F:

min ||F - F
i I | 7

Solution:

® Compute SVD of estimate:

F=uxv’

® Keep only the two largest singular
values:

F=U o, |V!




The 8-Point Algorithm: Normalization

One row of W:

[xl,Oxl,l X11Y11 X100 YV10X1.1 YioYia YVio X110 Yia 1]

Typically x, y € [0, 2000]
® Entries differ in order of magnitudes!
® Highly un-balanced and not well conditioned
® (Creates problems during SVD

Solution: Transform image coordinates such that W becomes better conditioned



The Normalized 8-Point Algorithm

For each image i, apply a transformation T; as follows
® translate image points s.th. their centroid is at the origin

® uniformly scale image points s.th. mean squared distance of image points from origin is
~ 2PX.

New homogeneous coordinates X; = T;x;.
Epipolar constraint:

_ sTp-Tep-lz _ sTps
0— OTO FTI X1 = OFXI
where F = TaTFTl_l.
— we can use 8-Point Algorithm to estimate F, and from this recover F according to

F =T, FT,



Normalization

Coordinate system of the image
after applying T

Coordinate system of the
image before applying T



The 8-Point Algorithm: Summary

Normalize points
Construct the M X 9 matrix W
Find SVD of W = UXV!

Entries of F are the elements of the column of V corresponding to the smallest singular
value

Find SVDof F = U’ X'V'T
6. Set F = Udiag(o/|,0},0)V'"

7. Denormalize F

s W N e

o



RANSAC: Robustness to Outliers

In case of contaminated correspondences, least squares is very unstable. Outliers have very
strong effect because of squared norm.

Image 1 Image 2

RANdom SAmpling Consensus (RANSAC)



RANSAC: Line fitting example

Problem: Fit a line to these datapoints

Least squares fit



RANSAC: Idea

For a given model we can count the number of samples that “agree” with this model
Among all possible models, select the one with which the most samples agree.

Intuition:
® |f we estimate a model only from inliers, then most of the inliers will agree
® |f we estimate with outliers, only few samples agree

N

Inliers: 3 Inliers: 20



RANSAC: Algorithm

1.

Randomly choose s samples

® Typically s = min sample size that lets you fit a model
® |ine fitting: 2, Essential matrix estimation: 5

2. Fita model to those samples
3. Count the number of inliers
4.

5. Repeat

Update best solution found so far

How many iterations?

® |f we assume an outlier ratioe

® And we desire correctness probability p

N >

log(1 — p)

~ log(1 — (1 — e)?)



From Fundamental to Essential Matrix

® \We now have a robust way of computing the fundamental matrix F via the 8-Point
Algorithm.

® \We assume that we are able to recover intrinsic camera matrices K, K; (often come as
part of metadata)

® Thus, we can recover the essential matrix from
_ w-Trw-1
F =K, EK;
® \We know that an ideal essential matrix has two identical singular values, i.e. up to scale
E = Udiag(1, 1,00V

® Project estimated E such that singular values are 1.

Hartley, Zisserman, Section 9.6



Bundle Adjustment and StTM



From two views to N views

So far: Use epipolar geometry to go from 2D Paints
correspondences on two images to (Structure)

® relative cameras poses (8-Point
Algorithm)

® 3D points (Triangulation)

Extensions to more views possible
. . estimate K/ C
(trifocal, quadrifocal tensor). SR arE‘lMe[r;ll g:)ses

Instead, STM pipelines often incrementally integrate images into a model, and update model
with new observation.
Integral ingredient: Bundle Adjustment




Bundle Adjustment

Minimizes total reprojection errors:

. 2

® w;;indicates whether point j is visible in
camera i

® u,,is the 2D image observation of point
jincamerai

® 7n(P;, X;)is the projection of point j
onto image plane i




Bundle Adjustment

Why can’t we just solve SfM using Bundle Adjustment?

® Typically, this minimization problem is solved using Gaul3-Newton or

Levenberg—Marquardt. For large systems, efficient open surce tools exist (e.g. Google
Ceres).

® SfM implementations can take advantage of sparse structure, but still time consuming
® Exact methods: cubic runtime, approximate methods linear runtime
® Sensitive to initialization

Therefore, Bundle Adjustment is only used as a refinement step in StM pipelines.



3D Reconstruction Pipeline

Unstructured Images

Scene Graph

Sparse Model

DenseModeI



Data Association

1. Feature Extraction — 2. Feature Matching — 3. Geometric Verification
|

N/ /7 v.;‘- ’ @ -
Ly L ST

| hasEE :
el Robust Two-View

Geometry Estimation




Scene Graph

Unstructured Images Inlier/outlier correspondences R, 1}




Structure from Motion Paradigms

e 3 paradigms

* Incremental

* Global ===

 Hierarchical %ﬁyggl



Incremental SfM




Incremental SfM

Correspondence Search

-

Matching

Geometric Verification

Incremental Reconstruction

= Initialization =
1

I Image Registration Il Qutlier Filtering II

Triangulation Bundle Adjustment

Reconstruction

Initialization:

® Pick a pair of images with lots of inliers

® Estimate extrinsic parameters R, t using
robust 5-Point or 8-Point algorithm

® Triangulate to initialize 3D points of

corresponde Nces

® Refine using Bundle Adjustment

P=KI[lI|0]"

\

P'=K [R| ']



Incremental SfM

Correspondence Search

Matching

Geometric Verification

Incremental Reconstruction

--b[ = Initialization =
1

I Image Registration Il Qutlier Filtering II

Triangulation Bundle Adjustment

Reconstruction

Initialization:

Pick a pair of images with lots of inliers

Estimate extrinsic parameters R, t using
robust 5-Point or 8-Point algorithm

Triangulate to initialize 3D points of
correspondences

Refine using Bundle Adjustment

P’=K'[R" | t']



Incremental SfM

Correspondence Search Incremental Reconstruction Reconstruction

--b[ = Initialization =
1

I Image Registration Il Qutlier Filtering II

Geometric Verification Triangulation Bundle Adjustment

Matching

Initialization:
® Pick a pair of images with lots of inliers
® Estimate extrinsic parameters R, t using @
robust 5-Point or 8-Point algorithm
® Triangulate to initialize 3D points of M gk
correspondences P=Kklllol P=K R | ]

® Refine using Bundle Adjustment



Incremental SfM

Images

=

Correspondence Search

Matching

Geometric Verification

Incremental Reconstruction

= Initialization =
1

Image Registration Qutlier Filtering

Triangulation Bundle Adjustment

Reconstruction

While there are remaining images:

® Find image with many feature matches

P=K[l]|0]

P =?

=K' [R| t']



Incremental SfM

=

Correspondence Search

Matching

Geometric Verification

Incremental Reconstruction

= Initialization =
1

I Image Registration Il Qutlier Filtering II

Triangulation Bundle Adjustment

Reconstruction

While there are remaining images:

® Find image with many feature matches

® Find 2D-3D correspondences

P=K[l]|0]

=K' [R| t']



Incremental SfM

Correspondence Search

-

Matching

Geometric Verification

Incremental Reconstruction

= Initialization =
1

I Image Registration Il Qutlier Filtering II

Bundle Adjustment

Triangulation

Reconstruction

While there are remaining images:

® Find image with many feature matches

® Find 2D-3D correspondences

® Estimate camera pose to obtain camera

registration

P=K[l]|0]

=K' [R| t']

P” = Kl’! [RJ’J’ | t}l]



Incremental SfM

Correspondence Search

-

Matching

Geometric Verification

Incremental Reconstruction

= Initialization =
1

I Image Registration Il Qutlier Filtering II

Bundle Adjustment

Triangulation

Reconstruction

While there are remaining images:

® Find image with many feature matches

® Find 2D-3D correspondences

® Estimate camera pose to obtain camera

registration

® Triangulate new points

® Refine using bundle adjustment

® Filter outliers

P=K[l]|0]

P=K[R | t]

Pll = Kl’ [R!J | t”]



Incremental SfM: Challenges

Initial pair must be chosen carefully
® bad choice — unrecoverable local minimum
® cameras should be far apart for robust
initialization
® dense feature regions: more robust because
redundancies, but BA slower

Next Best View Problem

® almost identical view — high uncertainty in
triangulation

® very different view — low overlap and high
camera uncertainty

® single bad choice may impact whole
reconstruction

Figure: Bad init (top) vs good init (bottom)



Global STM




Global STM

Don’t add views incrementally. Solve for global poses in one pass. DoE---0o
!

Given relative rotation and translation estimates, can we recover the global rotations and
translations of cameras?

R,?

{R.r t}45

R?

RS?

This is known as rotation and translation averaging



Rotation Averaging

Goal: Estimate global rotations to minimize relative rotation error.
min [R;; ~ R;R; |
R
where
e R= [ﬁl, e ﬁN] are the global camera rotations we optimize for
® R;;is the relative rotation estimate between camerasi and j

R,?




Rotation Averaging

Alternative Representation of Rotations:
® Rotation matrix R € SO(3)
® Axis angle @ = 6n € R3



Rotation Averaging

A single relationship Rfj = RJ-R?.F has the first-order approximation

Rewrite as linear equations
[ I - 1 ] [(ol e @
Three linear equations for each edge in the view graph. Stack these on top of each other:
A(oglob = @)

Can be solved in the least squares sense via SVD (pseudo-inverse AT = VZ+UT).



Rotation Averaging

® Problem: ®;; = @; — ®; is only a first-order approximation.
® But we can do this repeatedly (a bit like gradient descent)

Algorithm 1 Lie-Algebraic Relative Rotation Averaging

Input: {R;;1,---,Rijr} (|€] relative rotations)
Output: Rgio0a: = {R1,: -, R} (]V| absolute rotations)
Initialisation: R gi0pq; tO an initial guess
while || Aw,.;|| > ¢ do
. AR;; = R;”'R;R,;
3. Solve AAwgloba,l — Awml
4.Vk € [1, N], R, = Rkea:p(Awk)
end while

Chatterjee et al. “Efficient and Robust Large-Scale Rotation Averaging”, ICCV'13



Rotation Averaging

Given relative rotation and translation estimates, can we recover the global rotations and
translations of cameras?

After estimating global rotations, filter out outliers:

T
IR, —RRT| > ¢



Translation Averaging

Similarly, estimate and filter global translations:




GLOMAP: A Global StM Pipeline

Input Images

Correspondence Search

Feature Extraction
Matching
Two-view Estimation
View Graph Calibration

Relative Pose Decomposition

Global Estimation

Rotation Averaging

Global Positioning

Bundle Adjustment

Structure Refinement

Output Reconét’-ruction

Fan et al. "GLOMAP

: Global Structure-from-Motion Revisited”, ECCV’'24




Hierarchical SfM

1. Hierarchically cluster the scene graph

2. Reconstruct each cluster independently Lo-l—,—l-oJ_'l

3. Merge clusters using similarity transformations




Comparison

Method Efficiency | Robustness | Accuracy
Incremental | - ++ +
Global + + +
Hierarchical | ++ - -
Incremental StM Global STM
® OpenSfM ® OpenMVG
e COLMAP ® Theia
® eftc. ®* GLOMAP

Teaser: Learning-based methods are taking over!



Challenges



WTFs

® \Watermarks, Timestamps, Frames (WTFs)

® Detect translation at image border
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Ambiguities

® |sthe output of STM uniquely determined, given a set ob correspondences?



Ambiguities

® |sthe output of STM uniquely determined, given a set ob correspondences?
® No! SfM is inherently scale ambiguous

® |f we scale the entire scene by factor a, and scale camera matrices by factor a~ ! the
projections of the scene points remain the same:

u (a_lP)(aX)

- 200m?




Repetitive Structures




Dynamic Scenes

https://stockcake.com/i/city-life-blur 1010336 976993



lllumination / Weather change
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