Hands on AI based 3D Vision Summer Semester 25

Lecture 2_2 – Rotations

Prof. Dr.-Ing. Gerard Pons-Moll University of Tübingen / MPI-Informatics

Parameterization of Rotations

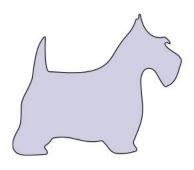
- Rotation Matrices
- Euler Angles
- Quaternions
- Twists and Exponential Maps

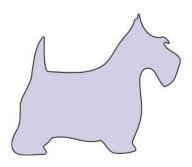
Informally, what is a rotation?

It is useful to characterize a transformation by its invariances.

 A rotation is a linear transformation which preserves angles and distances, and does not mirror the object

Commutativity of Rotations – 2D



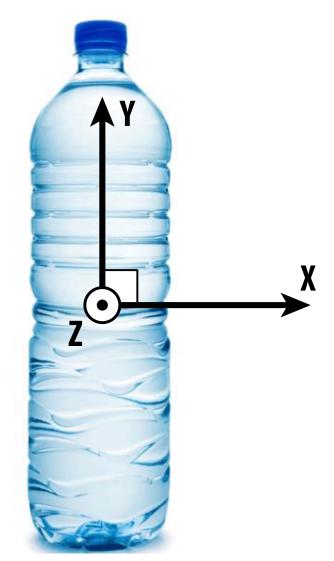


Commutativity of Rotations – 3D

Try it at home – grab a bottle!

- Rotate 90° around Y, then Z, then X
- Rotate 90° around Z, then Y, then X
- Was there any difference?

CONCLUSION: bad things can happen if we're not careful about the order in which we apply rotations!



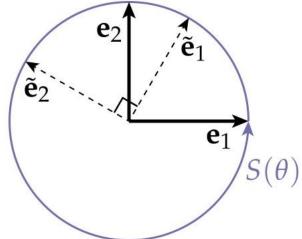
Representing rotations – 2D

- How to get a rotation matrix in 2D?
- Suppose we have a function $S(\theta)$, that for a given θ , gives me the point (x, y) around a circle.
- What's e_1 rotated by θ ? $\tilde{e}_1 = S(\theta)$
- What's e_2 rotated by θ ? $\tilde{e}_2 = S(\theta + \pi/2)$
- How about $u := a.e_1 + b.e_2$?

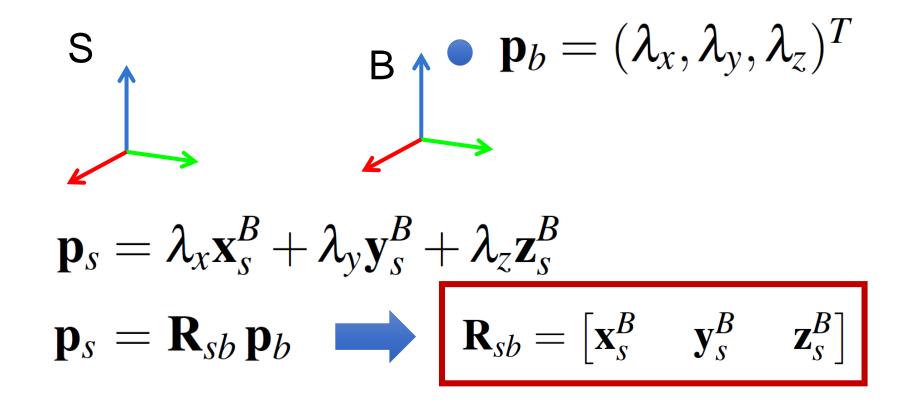
$$\mathbf{u} := aS(\theta) + bS(\theta + \pi/2)$$

What then must the matrix look like?

$$\begin{bmatrix} S(\theta) & S(\theta + \pi/2) \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \cos(\theta + \pi/2) \\ \sin(\theta) & \sin(\theta + \pi/2) \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$



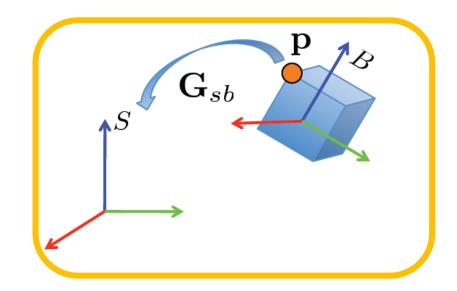
Rotation Matrices

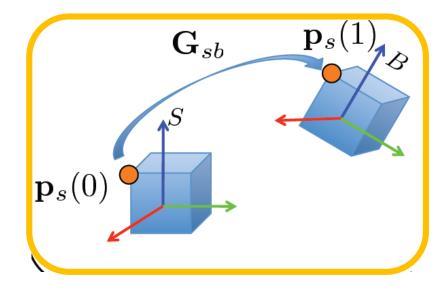


The columns of a rotation matrix are the principal axis of one frame expressed relative

2 Views of Rotations

Rotations can be interpreted either as





Relative motion in time

Rotation matrix drawbacks

Need for 9 numbers

• 6 additional constrains to ensure that the matrix is orthonormal and belongs to SO(3)

$$SO(3) := \{ R \in \mathbb{R}^{3 \times 3} \mid RR^T = Id, \det(R) = 1 \}$$

Suboptimal for numerical optimization

Parameterization of rotations

- Rotation Matrices
- Euler Angles
- Quaternions
- Twists and Exponential Maps

Euler Angles

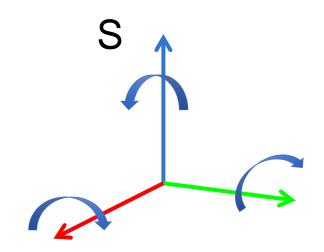
One of the most popular parameterizations

Rotation is encoded as the successive rotations about three principal axis

• Only **3 parameters** to encode a rotation

• **Derivatives** easy to compute

Euler Angles



$$\mathbf{R}_{\mathbf{x}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{bmatrix}$$

$$\mathbf{R}_{\mathbf{y}} = \begin{bmatrix} \cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$\mathbf{R_z} = \begin{bmatrix} \cos(\gamma) & \sin(\gamma) & 0 \\ -\sin(\gamma) & \cos(\gamma) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

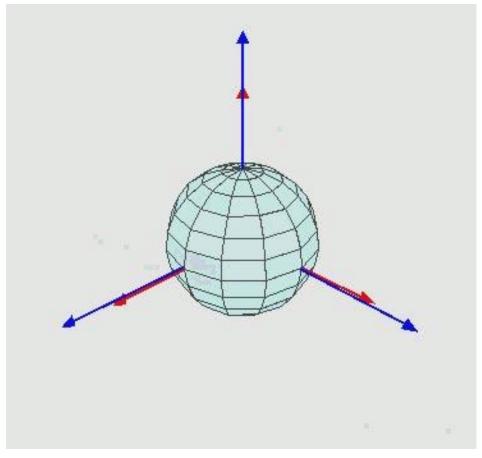
$$\mathbf{R}(\alpha, \beta, \gamma) = \mathbf{R}_{\mathbf{x}}(\alpha) \, \mathbf{R}_{\mathbf{y}}(\beta) \, \mathbf{R}_{\mathbf{z}}(\gamma)$$

Euler Angles: Confusion

Careful: Euler angles are a typical source of confusion!

- When using Euler angles 2 things have to be specified:
 - 1. Convention: X-Y-Z, Z-Y-X, Z-Y-Z ...
 - 2. Rotations about the static spatial frame or the moving body frame (intrinsic vs extrinsic rotation)

Example of intrinsic rotations (z,x',z'')



https://en.wikipedia.org/wiki/Euler_angles

Gimbal Lock

- When using Euler angles θ_x , θ_y , θ_z , may reach a configuration where there is no way to rotate around one of the three axes!
- Recall rotation matrices around the three axes:

$$R_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_x & -\sin \theta_x \\ 0 & \sin \theta_x & \cos \theta_x \end{bmatrix} \qquad R_y = \begin{bmatrix} \cos \theta_y & 0 & \sin \theta_y \\ 0 & 1 & 0 \\ -\sin \theta_y & 0 & \cos \theta_y \end{bmatrix} \qquad R_z = \begin{bmatrix} \cos \theta_z & -\sin \theta_z & 0 \\ \sin \theta_z & \cos \theta_z & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The product of these represents rotation by the three Euler angles.

$$R_x R_y R_z = \begin{bmatrix} \cos \theta_y \cos \theta_z & -\cos \theta_y \sin \theta_z & \sin \theta_y \\ \cos \theta_z \sin \theta_x \sin \theta_y + \cos \theta_x \sin \theta_z & \cos \theta_z - \sin \theta_x \sin \theta_y \sin \theta_z & -\cos \theta_y \sin \theta_x \\ -\cos \theta_x \cos \theta_z \sin \theta_y + \sin \theta_x \sin \theta_z & \cos \theta_z \sin \theta_x + \cos \theta_x \sin \theta_y \sin \theta_z & \cos \theta_x \cos \theta_y \end{bmatrix}$$

Gimbal Lock

• Consider the special case where $\theta_y = \pi/2$ (so, $\cos(\theta_y) = 0$, $\sin(\theta_y) = 1$)

$$R_{x}R_{y}R_{z} = \begin{bmatrix} \cos\theta_{y}\cos\theta_{z} & -\cos\theta_{y}\sin\theta_{z} & \sin\theta_{y} \\ \cos\theta_{z}\sin\theta_{x}\sin\theta_{y} + \cos\theta_{x}\sin\theta_{z} & \cos\theta_{x}\cos\theta_{z} - \sin\theta_{x}\sin\theta_{y}\sin\theta_{z} & -\cos\theta_{y}\sin\theta_{x} \\ -\cos\theta_{x}\cos\theta_{z}\sin\theta_{y} + \sin\theta_{x}\sin\theta_{z} & \cos\theta_{z}\sin\theta_{x} + \cos\theta_{x}\sin\theta_{y}\sin\theta_{z} & \cos\theta_{x}\cos\theta_{y} \end{bmatrix}$$

$$\implies \begin{bmatrix} 0 & 0 & 1 \\ \cos\theta_{z}\sin\theta_{x} + \cos\theta_{x}\sin\theta_{z} & \cos\theta_{x}\cos\theta_{z} - \sin\theta_{x}\sin\theta_{z} & 0 \\ -\cos\theta_{x}\cos\theta_{z} + \sin\theta_{x}\sin\theta_{z} & \cos\theta_{z}\sin\theta_{x} + \cos\theta_{x}\sin\theta_{z} & 0 \end{bmatrix}$$

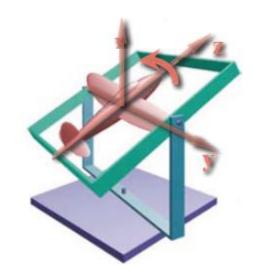
• We are left with a planar rotation. Notice it depends only of θ_x , θ_z . Not on θ_y .

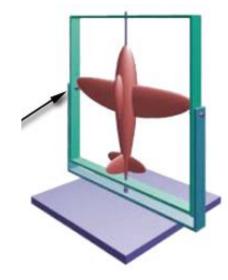
Euler Angles: Drawbacks

 Gimbal lock: When two of the axis align one degree of freedom is lost!

Parameterization is not unique

Lots of conventions



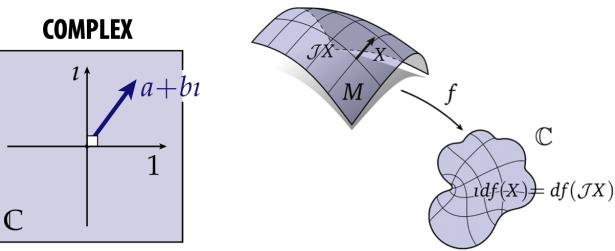


Parameterization of rotations

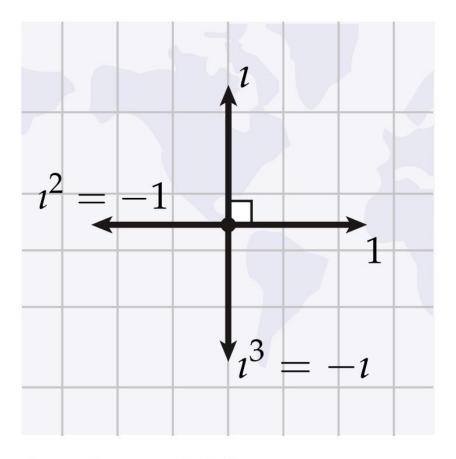
- Rotation Matrices
- Euler Angles
- Quaternions
- Twists and Exponential Maps

Complex Analysis - Motivation

- Natural way to encode geometric transformations in 2D.
- Simplifies code/notation/debugging/thinking.
- Moderate reduction in computational cost/ bandwidth/storage.
- Fluency in complex analysis can lead to deeper/novel solutions to problems...



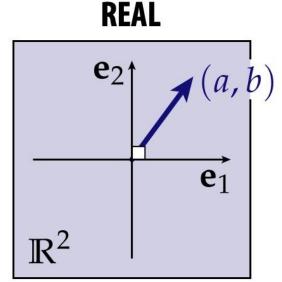
Imaginary units – Geometric description

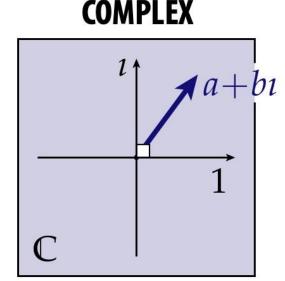


Imaginary unit is just a quarter-turn in the counter-clockwise direction.

Complex Numbers

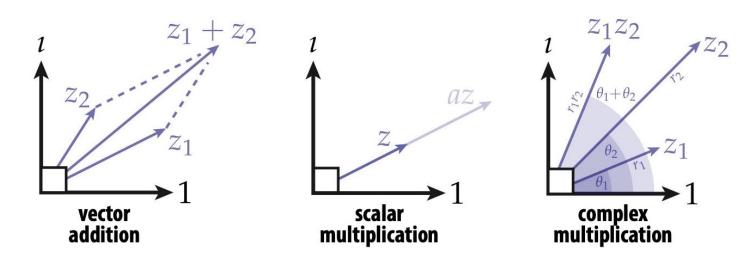
- Complex numbers are then just two vectors
- Instead of e₁, e₂ use "1" and "*t*" to denote two bases.
- Otherwise behaves like a 2D space
- ... except that we are also going to get a very useful new notation of the *product* between the two vectors.





Complex Arithmetic

• Same operations as before, plus one more



- Complex multiplication:
 - Angles add
 - Magnitude multiplies

"POLAR FORM"*:

$$z_1 := (r_1, \theta_1)$$
 have to be more careful here! $z_2 := (r_2, \theta_2)$ \downarrow $z_1 z_2 = (r_1 r_2, \theta_1 + \theta_2)$

Complex product – Rectangular form (1, 1)

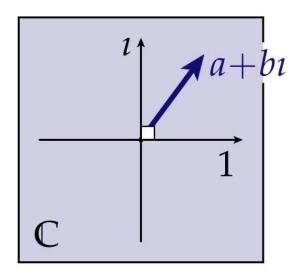
$$z_1 = (a+bi)$$

$$z_2 = (c+di)$$

$$z_1z_2 = ac + adi + bci + bdi^2 =$$

$$(ac - bd) + (ad + bc)i.$$

- We used a lot of "rules" here. Can you justify them geometrically?
- Does this product agree with our geometric description (last slide)?



Complex product – Polar form

Perhaps most beautiful identity in maths.

$$e^{i\pi} + 1 = 0$$

Specialization of Euler's formula.

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Can use to implement complex product.

$$z_1 = ae^{i\theta}, \quad z_2 = be^{i\phi}$$

$$z_1 z_2 = abe^{i(\theta + \phi)}$$

Leonhard Euler (1707–1783)

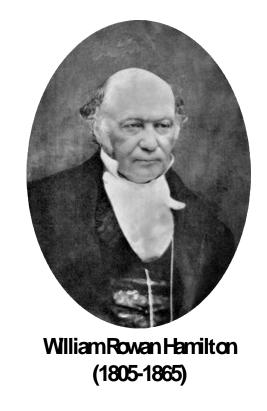
2D rotations: Matrices vs. Complex

Suppose we want to rotate a vector u by an angle θ , then by an angle ϕ .

REAL / RECTANGULAR	COMPLEX / POLAR
$\mathbf{u} = (x, y) \qquad \mathbf{A} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$	$u=re^{i\alpha}$
$\mathbf{B} = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix}$	$u = re^{i\alpha}$ $a = e^{i\theta}$ $b = e^{i\phi}$
$\mathbf{A}\mathbf{u} = \begin{bmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \end{bmatrix}$	$abu = re^{i(\alpha + \theta + \phi)}$
$\mathbf{BAu} = \begin{bmatrix} (x\cos\theta - y\sin\theta)\cos\phi - (x\sin\theta + y\cos\theta)\sin\phi \\ (x\cos\theta - y\sin\theta)\sin\phi + (x\sin\theta + y\cos\theta)\cos\phi \end{bmatrix}$	
$= \cdots$ some trigonometry $\cdots =$	
$\mathbf{BAu} = \begin{bmatrix} x\cos(\theta + \phi) - y\sin(\theta + \phi) \\ x\sin(\theta + \phi) + y\cos(\theta + \phi) \end{bmatrix}.$	

Quaternions generalize complex numbers

- TLDR: Kinda like complex numbers but for 3D rotations
- Weird situation: can't do 3D rotations w/ only 3 components!



Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication $i^2 = j^2 = k^2 = ijk = -1$ & cut it on a stone of this bridge

A quaternion has 4 components:

$$\mathbf{q} = [q_w \ q_x \ q_y \ q_z]^T$$

They generalize complex numbers

$$\mathbf{q} = q_w + q_x \mathbf{i} + q_y \mathbf{j} + q_z \mathbf{k}$$

with additional properties: $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i} \cdot \mathbf{j} \cdot \mathbf{k} = -1$

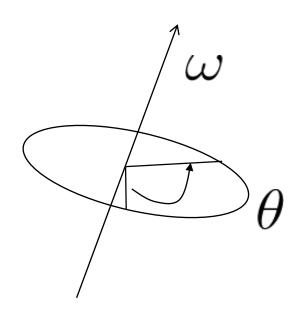
• Unit length quaternions can be used to carry out rotations. The set they form is called S^3

Quaternions can also be interpreted as a scalar plus a 3-vector

$$\mathbf{q} = [q_w \ \mathbf{v}]^T$$

• Where $q_w = \cos \frac{\theta}{2}$

$$\mathbf{v} = \sin\frac{\theta}{2}\,\omega$$



■ Much easier to remember (and manipulate) than matrix!

$$\begin{bmatrix} \cos\theta + u_x^2 \left(1 - \cos\theta \right) & u_x u_y \left(1 - \cos\theta \right) - u_z \sin\theta & u_x u_z \left(1 - \cos\theta \right) + u_y \sin\theta \\ u_y u_x \left(1 - \cos\theta \right) + u_z \sin\theta & \cos\theta + u_y^2 \left(1 - \cos\theta \right) & u_y u_z \left(1 - \cos\theta \right) - u_x \sin\theta \\ u_z u_x \left(1 - \cos\theta \right) - u_y \sin\theta & u_z u_y \left(1 - \cos\theta \right) + u_x \sin\theta & \cos\theta + u_z^2 \left(1 - \cos\theta \right) \end{bmatrix}$$

- Rotations can be carried away directly in parameter space via the quaternion product:
 - Concatenation of rotations:

$$\mathbf{q}_1 \circ \mathbf{q}_2 = (q_{w,1}q_{w,2} - \mathbf{v}_1 \cdot \mathbf{v}_2, q_{w,1}\mathbf{v}_2 + q_{w,2}\mathbf{v}_1 + \mathbf{v}_1 \times \mathbf{v}_2)$$

• If we want to rotate a vector

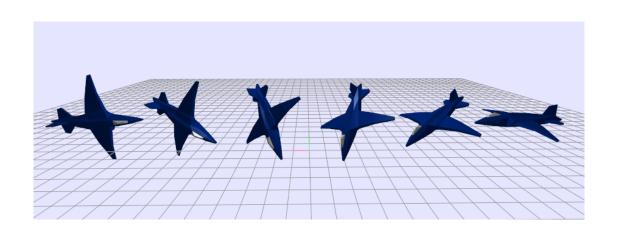
$$\mathbf{a}' = Rotate(\mathbf{a}) = \mathbf{q} \circ \tilde{\mathbf{a}} \circ \bar{\mathbf{q}}$$

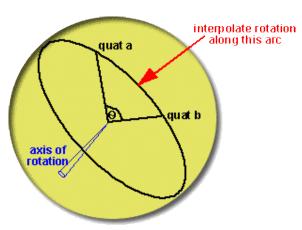
where $\bar{\mathbf{q}} = (q_w - \mathbf{v})$ is the quat conjugate.

Quaternions are ideal for interpolation

- Interpolating Euler angles can yield strange-looking paths, non-uniform rotation speed, ...
- Simple solution with quaternions: "SLERP" (spherical linear interpolation):

Slerp
$$(q_0, q_1, t) = q_0(q_0^{-1}q_1)^t, t \in [0, 1]$$





- Quaternions have no singularities
- Derivatives exist and are linearly independent
- Quaternion product allows to perform rotations
- Good for interpolation
- Mathematical But all this comes at the expense of using 4 numbers instead of 3 $||\mathbf{q}||_2 = 1$
- Enforce quadratic constraint

Parameterization of rotations

- Rotation Matrices
- Euler Angles
- Quaternions
- Twists and Exponential Maps

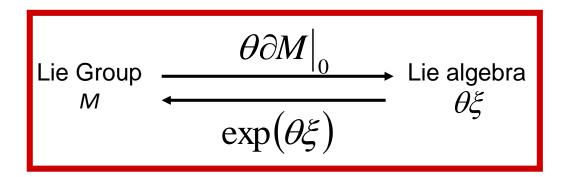
Axis-angle

Any rotation about the origin can be expressed in terms of the axis of the axi

$$\mathbf{R} = \exp(\theta \widehat{\boldsymbol{\omega}})$$

Lie Groups / Lie Algebras

Definition: A group is an *n*-dimensional *Lie-group*, if the set of its elements can be represented as a continuously differentiable manifold of dimension *n*, on which the group product and inverse are continuously differentiable functions as well



Axis-angle

Given a vectot
 w
 the skew symetric matrix is

$$egin{aligned} heta \widehat{\omega} &= eta egin{bmatrix} 0 & -\omega_3 & \omega_2 \ \omega_3 & 0 & -\omega_1 \ -\omega_2 & \omega_1 & 0 \end{bmatrix} \end{aligned}$$

You will also find it as ω_{\times}

• It is the matrix form of the cross-product:

$$\omega \times \mathbf{p} = \hat{\omega} \mathbf{p}$$

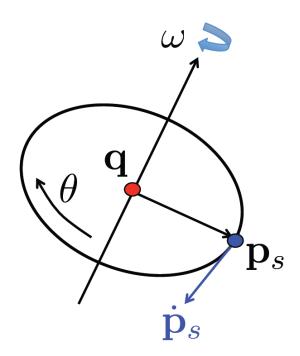
Exponential map

• The exponential map recovers the rotation matrix from the axis-angle representation (Lie-algebra)

$$\mathbf{R}(\boldsymbol{\theta}, \boldsymbol{\omega}) = \exp(\boldsymbol{\theta} \widehat{\boldsymbol{\omega}})$$

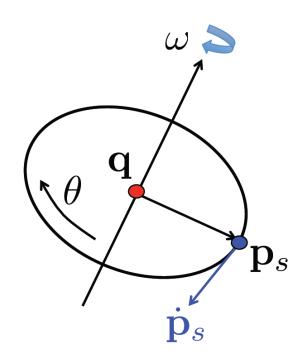
Proof: exponential map

$$\dot{\mathbf{p}}(t) = ?$$



Proof: exponential map

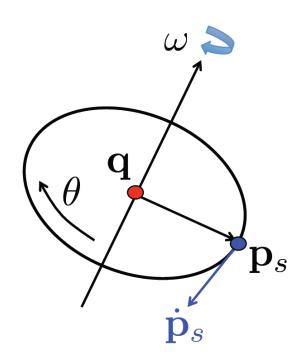
$$\dot{\mathbf{p}}(t) = \boldsymbol{\omega} \times \mathbf{p}(t) = \widehat{\boldsymbol{\omega}} \mathbf{p}(t)$$



Proof: exponential map

$$\dot{\mathbf{p}}(t) = \boldsymbol{\omega} \times \mathbf{p}(t) = \widehat{\boldsymbol{\omega}} \mathbf{p}(t)$$

$$\mathbf{p}(t) = \exp(\widehat{\boldsymbol{\omega}}t)\mathbf{p}(0)$$



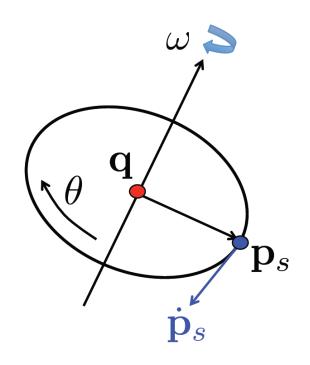
Proof: exponential map

$$\dot{\mathbf{p}}(t) = \boldsymbol{\omega} \times \mathbf{p}(t) = \widehat{\boldsymbol{\omega}} \mathbf{p}(t)$$

$$\mathbf{p}(t) = \exp(\widehat{\boldsymbol{\omega}}t)\mathbf{p}(0)$$

If we rotate θ units of time

$$\mathbf{R}(\boldsymbol{\theta}, \boldsymbol{\omega}) = \exp(\boldsymbol{\theta} \widehat{\boldsymbol{\omega}})$$



$$\exp(\theta \widehat{\omega}) = e^{(\theta \widehat{\omega})} = I + \theta \widehat{\omega} + \frac{\theta^2}{2!} \widehat{\omega}^2 + \frac{\theta^3}{3!} \widehat{\omega}^3 + \dots$$

Exploiting the properties of skew symetric matrices Rodriguez formula:

$$\exp(\theta \widehat{\omega}) = I + \widehat{\omega} \sin(\theta) + \widehat{\omega}^2 (1 - \cos(\theta))$$

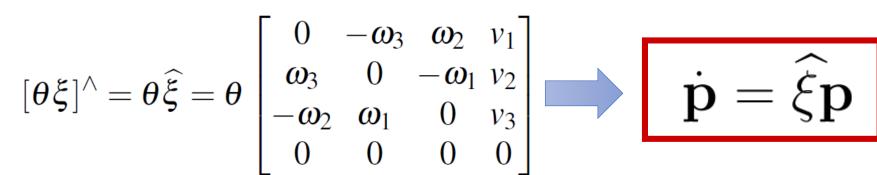
Closed form!

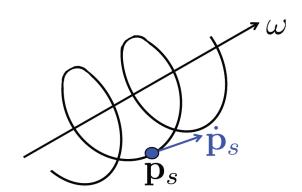
Twists

- What about translation ?
- The twist coordinates are defined as

$$\theta \xi = \theta(v_1, v_2, v_3, \boldsymbol{\omega}_1, \boldsymbol{\omega}_2, \boldsymbol{\omega}_3)$$

• And the twist is defined as





The rigid body motion can be computed in closed form as well

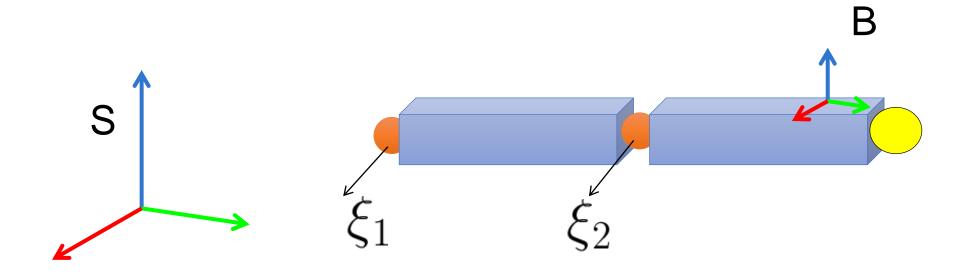
$$\mathbf{G}(\boldsymbol{\theta}, \boldsymbol{\omega}) = \begin{vmatrix} \mathbf{R}_{3\times3} \ \mathbf{t}_{3\times1} \\ \mathbf{0}_{1\times3} & 1 \end{vmatrix} = \exp(\boldsymbol{\theta}\widehat{\boldsymbol{\xi}})$$

From the following formula

$$\exp(\theta \widehat{\xi}) = \begin{bmatrix} \exp(\theta \widehat{\omega}) \ (I - \exp(\theta \widehat{\omega}))(\omega \times v + \omega \omega^T v \theta) \\ \mathbf{0}_{1 \times 3} \end{bmatrix}$$

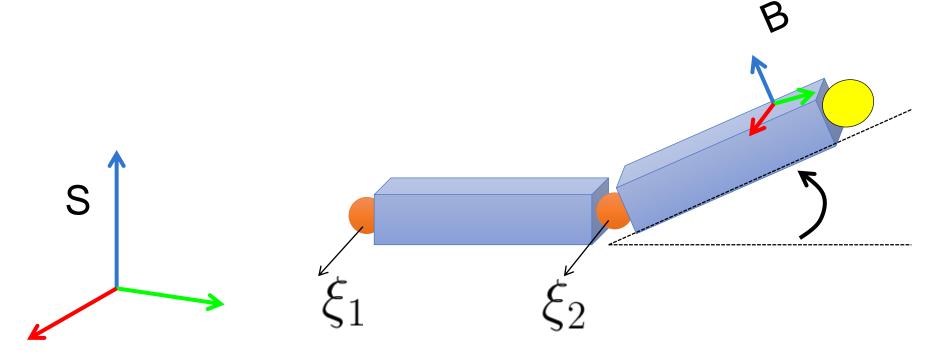
Which representation should I use?

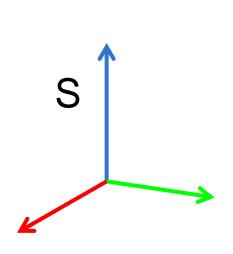
Number of parameters	Singularities	Human constraints	Concatenate motion	Optimization (derivatives)
Twists	Quaternions	Twists	Quaternions	Twists
Euler Angles	Twists	Quaternions	Twists	Euler Angles
Quaternions	Euler Angles	Euler Angles	Euler Angles	Quaternions

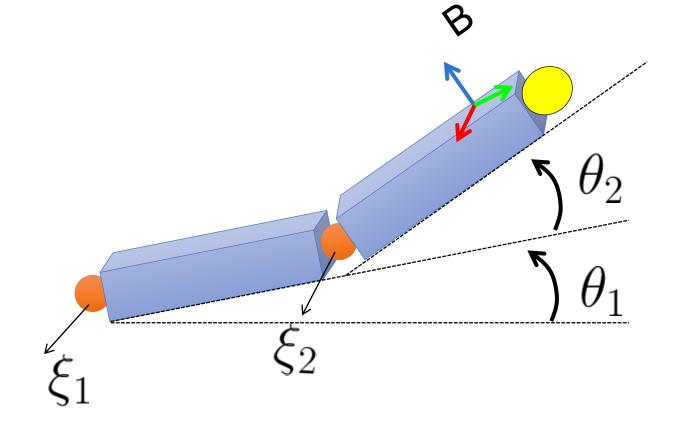


In a rest position we have

$$\mathbf{p}_s(0) = \mathbf{G}_{sb}\mathbf{p}_b$$







The coordinates of the point in the spatial frame $\hat{\epsilon}$

frame
$$\bar{\mathbf{p}}_s = \mathbf{G}_{sb}(\theta_1, \theta_2) = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} \mathbf{G}_{sb}(\mathbf{0}) \bar{\mathbf{p}}_b$$

Product of exponentials

$$\mathbf{G}_{sb}(\boldsymbol{\Theta}) = e^{\widehat{\boldsymbol{\xi}}_1 \theta_1} e^{\widehat{\boldsymbol{\xi}}_2 \theta_2} \dots e^{\widehat{\boldsymbol{\xi}}_n \theta_n} \mathbf{G}_{sb}(\mathbf{0})$$

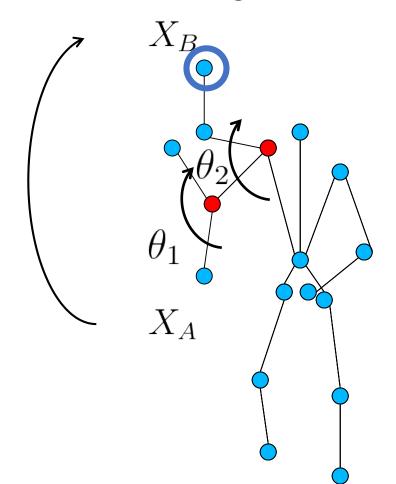
- $G_{sb}(\Theta)$ is the mapping from coordinate B to coordiante S
- BUT $\exp(\theta_i\widehat{\xi_i})$ IS NOT the mapping from segment i+1 to segment i.

$$\exp(\theta_i \widehat{\xi}_i)$$

 $\exp(heta_i\widehat{\xi_i})$ • Think of simply as the relative motion of that joint.

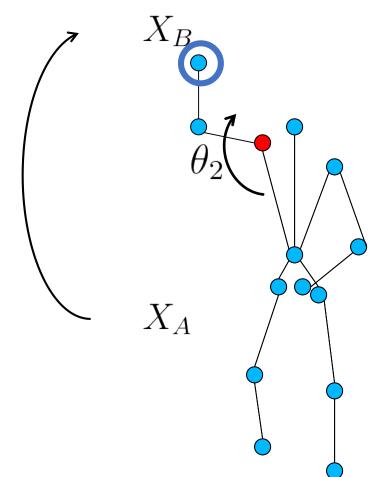
Inverse Kinematics

Supose we want to find the angles to reach a specific goal



Inverse Kinematics

Supose we want to find the angles to reach a specific goal



$$\arg\min_{\theta_1...\theta_n} \|\exp(\theta_1 \widehat{\xi}_1) \ldots \exp(\theta_n \widehat{\xi}_n) \mathbf{X}_A - \mathbf{X}_B \|^2$$

- The problem is non-linear
- Linearize with the articulated Jacobian

Slide credits and further reading

- Keenan Crane Computer Graphics (slides on quaternions). CMU computer graphics lecture
- Pons-Moll & Rosehnan ICCV'2011 Tutorial on Model Based Pose Estimation
 - Book chapter: <u>model based human pose estimation</u> available on pdf on my website.
- A <u>Mathematical Introduction to Robotic Manipulation</u>
 - excellent rigorous treatment of twists and exponential maps for articulated bodies