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Parameterization of Rotations

* Rotation Matrices

* Euler Angles

* Quaternions

e Twists and Exponential Maps



Informally, what is a rotation?

* Itis useful to characterize a transformation by its invariances.

 Arotation is a linear transformation which preserves angles and
distances, and does not mirror the object



Commutativity of Rotations — 2D
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Commutativity of Rotations — 3D

Try it at home — grab a bottle!
e Rotate 90° around Y, then Z, then X
e Rotate 90° around Z, then Y, then X
* Was there any difference?
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CONCLUSION: "bad things can Hapn if we're not
careful about the order in which we apply rotations!




Representing rotations — 2D

* How to get a rotation matrix in 2D?

e Suppose we have a function S(8), that for a given 6, gives me the
point (X, y) around a circle.

* What's e, rotated by 8? & = S(0)

* What's e, rotated by 6? & = S(0 + 71/2)

* How about u :=a.e; + b.e,?
u:=aS(0)+bS(0+ t/2)

e What then must the matrix look like?

[5(0) S(O+m/2) | =

cos(f) cos(6 + 7t/2) ] _ | cos(f) —sin(0)
sin(f) sin(6 + 7t/2) )



Rotation Matrices

The columns of a rotation matrix are the
principal axis of one frame expressed relative
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2 Views of Rotations

Rotations can be interpreted either as
| & - (@ ps(l)
4 sb
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Coordinate Relative motion In
transformation time

ps(0)
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Rotation matrix drawbacks

* Need for 9 numbers

e 6 additional constrains to ensure that the matrix is orthonormal and
belongs to SO(3)

SO(3) :={R c R**° | RR' = Id, det(R) = 1}

e Suboptimal for numerical optimization



Parameterization of rotations

* Rotation Matrices

* Euler Angles

* Quaternions

e Twists and Exponential Maps



Euler Angles

* One of the most popular parameterizations

* Rotation is encoded as the successive rotations about three principal
axis

* Only 3 parameters to encode a rotation

* Derivatives easy to compute



Euler Angles 10 0
R,=1{0 cosa sina
S A 0 —sina  cos o
N\ (cos 3 0 —sinf|
R, = 0 1 0

M\g __sinﬁ 0 cosf | _

cos(y) sin(y) O
R, = [—sin(y) cos(vy) O
0 0 1




Euler Angles: Confusion

|Careful: Euler angles are a typical source of confugion!

* When using Euler angles 2 things have to be specified:
1. Convention: X-Y-Z, Z-Y-X, Z-Y-Z ...

2. Rotations about the static spatial frame or the moving
body frame (Intrinsic vs extrinsic rotation)
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Example of intrinsic rotations (z,x’,z"")

https://en.wikipedia.org/wiki/Euler_angles
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Gimbal Lock

* When using Euler angles 8, Gy, 6,, may reach a configuration where
there is no way to rotate around one of the three axes!

e Recall rotation matrices around the three axes:

cosf, —sinf, O
R, = sinf, cosf, O

0 0 1

1 0 0
Ry=10 cosf, —sinfy
0 sinfy cosBy

COS Gy 0 sin Gy
0 1 0
— sin Gy 0 cos Gy

Ry:

* The product of these represents rotation by the three Euler angles.

cos 6, cos 0, — cos By, sin 6, sin 0,
RxRyR; = cos 0 sin 0y siny, + cos Oy sin®,;  cos by cos B, —sinby sinb, sinf; — cos Oy sin Oy
— €0s 0y cos 0, sin b, + sinfy sinf); cos 6, sin by + cos by sinb, sinb,  cos by cosb,



Gimbal Lock

* Consider the special case where 6 =1/2 (so, cos(,)=0, sin (6,)=1)

RxRyR; = cos 0, sin 0y sin 6, + cos 6y sin6,;  cos Oy cos 6, — sin by sin b, sinf, — cos b, sin Oy

cos 6y cos 6, — cos By sin 6, sin 6,
— cos 6y cos 0, sin 0 + sin Oy sinf, cos 6, sin by + cos by sinb, sinf;  cos by cos b,

0 0 1
— cos 0, sin 0y + cosO,sinf, cosb,cosf, —sinf,sinf, O
— cos By cos O, +sinf, sinf, cosb,sinby + cosb,sinb, 0

* We are left with a planar rotation. Notice it depends only of 6,, 6,.
Not on 6,



Euler Angles: Drawbacks

e Gimbal lock: When two of the
axis align one degree of freedom
s lost!

* Parameterization is not unique

* Lots of conventions
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Parameterization of rotations

* Rotation Matrices

* Euler Angles

* Quaternions

e Twists and Exponential Maps



Complex Analysis - Motivation

* Natural way to encode geometric transformations in 2D.
* Simplifies code/notation/debugging/thinking.
* Moderate reduction in computational cost/ bandwidth/storage.

* Fluency in complex analysis can lead to deeper/novel solutions to

problems...
COMPLEX

lJ

C

Truly: no good reason to use 2D vectors instead of complex numbers...



Imaginary units — Geometric description

Imaginary unit is just a quarter-turn
in the counter-clockwise direction.



Complex Numbers

* Complex numbers are then just two

vectors REAL COMPLEX
|

* Instead of e, e, use "1" and "{' to €21 4(a,b) " ga+tbi

denote two bases. / /
* Otherwise behaves like a 2D space e 7
e ... except that we are also going to

- R? C
get a very useful new notation of

the product between the two
vectors.



Complex Arithmetic

» Same operations as before, plus one more

A
/Z'
> | i |
vector scalar
addition multiplication

* Complex multiplication:
* Angles add
* Magnitude multiplies

2149

> 1

complex
multiplication

“POLAR FORM"*:
have to be more
Z1 = (7’1, 91) careful here!
zp 1= (r2,02)
212y = (r112,01 + 62)

*Not quite how it really works, but basic idea is right.
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Complex product — Rectangular form (1, ¢

z1 = (a + bi)

2y = (C Bl dl) two quarter turms—
ame as -1

7122 = ac + adi + bci + bdi)=
(ac — bd) + (ad + be)u.

Z A
“ T ” e ° f ” / a —|_ bl
real part imaginary part

Re(z12) Im(z1z3)

m We used alot of “rules” here. Canyou 1
justify them geometrically?

m Does this product agree with our
geometric description (last slide)?




Complex product — Polar form

* Perhaps most beautiful identity in maths.
e+ 1=0

 Specialization of Euler's formula.
e’ = cos(0) + 1sin(h)
e Can use to implement complex product.

71 =ae?, z, = be'?

2120 = abe'019)

\

(as with real exponentiation, exponents add)

Leonard Euler
(1707-1783)
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2D rotations: Matrices vs. Complex

Suppose we want to rotate a vector u by an angle 6, then by an angle ¢.

REAL / RECTANGULAR COMPLEX/ POLAR
u=(x | cos® —sin6 T
b y) A= | sinf  cos0 ] U= 7”69
B_ [ cos¢p —sing a=e
| sing  cos¢ h — ¢'¢

Au =

BAu =

BAu = [

[ xcosf — ysinb
| xsint) +ycosb

[ (xcosf —ysinb)cos¢p — (xsinf + ycos ) sin¢
| (xcos® —ysinB)sing + (xsin® + y cos ) cos ¢

= .. -some trigonometry - - - =

xcos(0 + ¢) — ysin(6 + ¢) ]
xsin(f +¢) +ycos(60 +¢) |-

|




Quaternions generalize complex numbers

* TLDR: Kinda like complex numbers but for 3D rotations
* Weird situation: can't do 3D rotations w/ only 3 components!

Here as he walked by
|| on the 16th of October 1843
1| Sir William Rowan Hamilton
iH| in a flash of genius (llC(,OVC-‘led

1| the fundamencal formula f'otz
4 quaternion multlphcatlon

3 i’=j*=R*=ijR=~-1 =%
4 & cutit onastone ofthjs bndg‘é

William Rowan Hamilton
(1805-1865)



Quaternions

* A quaternion has 4 components:
q=[qw 4r 4y ¢

* They generalize complex numbers
q=quw+ ¢l+q)+qgk

with additional properties: i*=j*=k*=i-j -k = —1

* Unit length quaternions can be used to carry out rotations. The set they
form is called S°



Quaternions

« Quaternions can also be interpreted as a scalar plus a 3-

vector
q = [qw V]T
W

. Where 0
Gy = COS 5 6

0

vV = Siﬂ — (W m Much easier to remember (and manipulate) than matrix!

uyty (1 —cos®) +uzsinf  cosf + uﬁ (1—cos@)  uyu; (1—cosf) — uysinf

cosf+uZ (1 —cosf)  uyuy (1 —cos) —uzsinf wuyu; (1—cosb) + uysinf
Uuzily (1 —cosf) — uysing® 11y (1—cosf)+ uysinf cosf + u% (1—cosf)



Quaternions

* Rotations can be carried away directly in parameter space via the
guaternion product:

* Concatenation of rotations:
qicq2 = (qmlqwﬁz —Vi-V2, guwi1V2+gw2V] TV X V2)
* If we want to rotate a vectom
a' = Rotate(a) =qoaoq
whereq = (¢, — v) is the quat conjugate.



Quaternions are ideal for interpolation

* Interpolating Euler angles can yield strange-looking paths, non-
uniform rotation speed, ...

* Simple solution with quaternions: "SLERP" (spherical linear
interpolation):

Slerp(qo, q1,t) = qo(




Quaternions

Quaternions have no singularities

Derivatives exist and are linearly independent
Quaternion product allows to perform rotations
Good for interpolation

X But all this comes at the expense of using 4 numbers instead

of 3 ‘ qH2 — 1
X Enforce quadratic constraint




Parameterization of rotations

* Rotation Matrices

* Euler Angles

* Quaternions

* Twists and Exponential Maps



Axis-angle

Any rotation about the origin can be
expressed in terms of the axis Bf'rotation
and the anfle of rotation  with the
exponential map

R =-exp(0w)



Lie Groups / Lie Algebras

Definition: A group is an n-dimensional Lie-group, if the set of its
elements can be represented as a continuously differentiable
manifold of dimension n, on which the group product and inverse
are continuously differentiable functions as well

ooM |

Lie Group » Lie algebra

M . 0f
exp(6¢)




Axis-angle

 Glven a vectotw

AN

6w

6

0 —w3 o
w 0 —w
—w o 0

the skew symetric matrix is

You will also find
It as Wy

* |t Is the matrix form of the cross-product:

WXP=wWp



Exponential map

* The exponential map recovers the rotation matrix from the axis-angle
representation (Lie-algebra)

e S

R(6,0) =exp(0w)



Exponential map

Proof: exponential map

p(r) =7



Exponential map

Proof: exponential map @‘
p(r) = 0 x p(r) = Dp(1) [,

@ Ps



Exponential map

Proof: exponential map
p(t) = 0 x p(t) = Op(?)

!

p(7) = exp(@1)p(0)



Exponential map

Proof: exponential map @
p(r) = @ x p(r) = ®p(7) N

1 Ps
p(r) = exp(@r)p(0)

@ If we rotate © units of time

R(0,m) =exp(6w)



Exponential map

R R e, 03
exp (00) = e :1+9w+§w2+?w3+...

Exploiting the properties of skew symetric matrices
Rodriguez formula:

Closed form!
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TWIStS

 What about translation ?
 The twist coordinates are defined as

6 =0(vi,v2,v3, 01,0, 0s)

 And the twist Is defined as Ds b

0 —z W Vl_

oe =0k =0 ® 0 0

0 0 0 0




Exponential map

* The rigid body motion can be computed in closed form as well

G(6,0) = {1:013:: tﬁ“} — exp(6E)

* From the following formula

exp(Qg) = Fngf}a}) (I_GXP(QE‘}))(? x v+ oo’ vo)



Which representation should | use?

Number of | Singularities Human Concatenate | Optimization
parameters constraints motion (derivatives)

Twists Quaternions Twists Quaternions Twists

Euler Angles Twists Quaternions Twists Euler Angles

Quaternions Euler Angles Euler Angles Euler Angles Quaternions
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Articulation

——

" &1 S

In a rest position we have

Ps (0) — Gsbpb
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Articulation




Articulation
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Articulation

The coordinates of the point in the spatial
frame Zo B0 _
Py = Gsb(el ; 92) = °!171 e *Gogp (O)I)b
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Product of exponentials

« G, (©@) is the mapping from coordinate B to coordiante S

- BUTexP(0:€i) 1S NOT the mapping from segment i+1 to
segment |I.

~~

exp(Big) . ..
* Think of simply as the relative motion of that joint.
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Inverse Kinematics

Supose we want to find the angles to reach a specific goal

50



Inverse Kinematics

Supose we want to find the angles to reach a specific goal
X

tttttt

* The problem is non-linear

A4  Linearize with the
articulated Jacobian
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Slide credits and further reading

e Keenan Crane — Computer Graphics (slides on quaternions). CMU
computer graphics lecture

e Pons-Moll & Rosehnan — ICCV’2011 Tutorial on Model Based Pose
Estimation

* Book chapter: model based human pose estimation available on pdf on
my website.

e A Mathematical Introduction to Robotic Manipulation

* excellent rigorous treatment of twists and exponential maps for
articulated bodies
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https://virtualhumans.mpi-inf.mpg.de/papers/ponsmollModelBased/ponsmollModelBased.pdf
http://www.cse.lehigh.edu/~trink/Courses/RoboticsII/reading/murray-li-sastry-94-complete.pdf

