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Parameterization of Rotations

• Rotation Matrices

• Euler Angles

• Quaternions

• Twists and Exponential Maps
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Informally, what is a rotation?

• It is useful to characterize a transformation by its invariances. 

• A rotation is a linear transformation which preserves angles and 
distances, and does not mirror the object
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Commutativity of Rotations – 2D
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Commutativity of Rotations – 3D

Try it at home – grab a bottle!
• Rotate 90o around Y, then Z, then X

• Rotate 90o around Z, then Y, then X

• Was there any difference?
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Representing rotations – 2D

• How to get a rotation matrix in 2D?

• Suppose we have a function S(θ), that for a given θ, gives me the 
point (x, y) around a circle.

• What's e1 rotated by θ?

• What's e2 rotated by θ?

• How about u := a.e1 + b.e2?

• What then must the matrix look like?
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Rotation Matrices

S B

The columns of a rotation matrix are the

principal axis of one frame expressed relative 

to another
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2 Views of Rotations

Rotations can be interpreted either as

Coordinate 

transformation

Relative motion in 

time
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Rotation matrix drawbacks

• Need for 9 numbers

• 6 additional constrains to ensure that the matrix is orthonormal and 
belongs to SO(3)

• Suboptimal for numerical optimization
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Parameterization of rotations

• Rotation Matrices

• Euler Angles

• Quaternions

• Twists and Exponential Maps
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Euler Angles

• One of the most popular parameterizations

• Rotation is encoded as the successive rotations about three principal
axis

• Only 3 parameters to encode a rotation

• Derivatives easy to compute
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Euler Angles

S
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Euler Angles: Confusion

• Careful: Euler angles are a typical source of confusion!

• When using Euler angles 2 things have to be specified:

1. Convention: X-Y-Z, Z-Y-X, Z-Y-Z …

2. Rotations about the static spatial frame or the moving 
body frame (intrinsic vs extrinsic rotation)
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Example of intrinsic rotations (z,x’,z’’)

https://en.wikipedia.org/wiki/Euler_angles
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Gimbal Lock

• When using Euler angles θx, θy, θz, may reach a configuration where 
there is no way to rotate around one of the three axes!   

• Recall rotation matrices around the three axes:
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• The product of these represents rotation by the three Euler angles.



Gimbal Lock

• Consider the special case where θy=𝜋/2 (so, cos(θy)=0, sin (θy)=1)
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• We are left with a planar rotation. Notice it depends only of θx, θz. 
Not on θy.



Euler Angles: Drawbacks

• Gimbal lock: When two of the 
axis align one degree of freedom 
is lost!

• Parameterization is not unique

• Lots of conventions
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Parameterization of rotations

• Rotation Matrices

• Euler Angles

• Quaternions

• Twists and Exponential Maps
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Complex Analysis - Motivation

• Natural way to encode geometric transformations in 2D.

• Simplifies code/notation/debugging/thinking.

• Moderate reduction in computational cost/ bandwidth/storage.

• Fluency in complex analysis can lead to deeper/novel solutions to 
problems… 
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Imaginary units – Geometric description 
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Complex Numbers

• Complex numbers are then just two 
vectors

• Instead of e1, e2 use "1" and "⍳" to 
denote two bases.

• Otherwise behaves like a 2D space

• … except that we are also going to 
get a very useful new notation of 
the product between the two 
vectors. 

21



Complex Arithmetic

• Same operations as before, plus one more
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• Complex multiplication:
• Angles add

• Magnitude multiplies



Complex product – Rectangular form (1, ⍳)
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Complex product – Polar form

• Perhaps most beautiful identity in maths.

• Specialization of Euler's formula. 

• Can use to implement complex product.
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2D rotations: Matrices vs. Complex

Suppose we want to rotate a vector u by an angle θ, then by an angle ɸ. 
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Quaternions generalize complex numbers

• TLDR: Kinda like complex numbers but for 3D rotations

• Weird situation: can't do 3D rotations w/ only 3 components!
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Quaternions

• A quaternion has 4 components:

• They generalize complex numbers

with additional properties:

• Unit length quaternions can be used to carry out rotations. The set they 
form is called 
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Quaternions

• Quaternions can also be interpreted as a scalar plus a 3-
vector

• Where
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Quaternions

• Rotations can be carried away directly in parameter space via the 
quaternion product:

• Concatenation of rotations:

• If we want to rotate a vector

where is the quat conjugate.
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Quaternions are ideal for interpolation

• Interpolating Euler angles can yield strange-looking paths, non-
uniform rotation speed, …

• Simple solution with quaternions: "SLERP" (spherical linear 
interpolation):

 CMU 15-462/662

Interpolating Rotations

Suppose we want to smoothly interpolate between two 
rotations (e.g., orientations of an airplane) 

Interpolating Euler angles can yield strange-looking paths, 
non-uniform rotation speed, … 

Simple solution* w/ quaternions: “SLERP” (spherical linear 
interpolation):

*Shoemake 1985, “Animating Rotation with Quaternion Curves”
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Quaternions

Quaternions have no singularities

Derivatives exist and are linearly independent

Quaternion product allows to perform rotations

Good for interpolation

But all this comes at the expense of using 4 numbers instead

of 3

Enforce quadratic constraint

31



Parameterization of rotations

• Rotation Matrices

• Euler Angles

• Quaternions

• Twists and Exponential Maps
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Axis-angle

Any rotation about the origin can be

expressed in terms of the axis of rotation

and the angle of rotation with the

exponential map
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Lie Groups / Lie Algebras

Definition: A group is an n-dimensional Lie-group, if the set of its 
elements can be represented as a continuously differentiable 
manifold of dimension n, on which the group product and inverse 
are continuously differentiable functions as well
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Axis-angle

• Given a vector the skew symetric matrix is

• It is the matrix form of the cross-product: 

You will also find 

it as
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Exponential map

• The exponential map recovers the rotation matrix from the axis-angle 
representation (Lie-algebra)
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Exponential map

?

Proof: exponential map
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Exponential map

Proof: exponential map
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Exponential map

Proof: exponential map
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Exponential map

Proof: exponential map

If we rotate θ units of time 
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Exponential map

Exploiting the properties of skew symetric matrices

Rodriguez formula:

Closed form!
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Twists

• What about translation ? 

• The twist coordinates are defined as

• And the twist is defined as
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Exponential map

• The rigid body motion can be computed in closed form as well

• From the following formula
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Which representation should I use?

Number of

parameters

Singularities Human 

constraints

Concatenate

motion

Optimization

(derivatives)

Twists Quaternions Twists Quaternions Twists

Euler Angles Twists Quaternions Twists Euler Angles

Quaternions Euler Angles Euler Angles Euler Angles Quaternions
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Articulation

S

B

In a rest position we have
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Articulation

S
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Articulation

S
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Articulation

S

The coordinates of the point in the spatial

frame
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Product of exponentials

• is the mapping from coordinate B to coordiante S

• BUT                    IS NOT the mapping from segment i+1 to
segment i.

• Think of simply as the relative motion of that joint.
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Inverse Kinematics

Supose we want to find the angles to reach a specific goal

£Thati satest
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Inverse Kinematics

Supose we want to find the angles to reach a specific goal

£Thati satest

• The problem is non-linear

• Linearize with the

articulated Jacobian
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Slide credits and further reading

• Keenan Crane – Computer Graphics (slides on quaternions). CMU 
computer graphics lecture

• Pons-Moll & Rosehnan – ICCV’2011 Tutorial on Model Based Pose 
Estimation
• Book chapter: model based human pose estimation available on pdf on 

my website.

• A Mathematical Introduction to Robotic Manipulation
• excellent rigorous treatment of twists and exponential maps for 

articulated bodies
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https://virtualhumans.mpi-inf.mpg.de/papers/ponsmollModelBased/ponsmollModelBased.pdf
http://www.cse.lehigh.edu/~trink/Courses/RoboticsII/reading/murray-li-sastry-94-complete.pdf

