Hands-on Al based 3D Vision– Summer 25

Lecture 6_1 – Neural Fields

Prof. Dr.-Ing. Gerard Pons-Moll University of Tübingen / MPI-Informatics

What is a good representation for 3D data?

What is a good representation for 3D data?

- Compatible with neural networks.
- Flexible
- High fidelity

Voxels

- Discretization of 3D space into grid.
- Easy to process with neural networks.
- Cubic memory $\mathcal{O}(n^3) \rightarrow \text{limited resolution}$.

Pointclouds

- Discretization of 3D space into 3D points.
- Does not model connectivity/topology.
- Limited number of points.

Meshes

- Discretization into vertices and faces.
- Limited number of vertices/granularity.
- Requires class specific template.
- Leads to self-intersections.

[Wang et al. ECCV'18]

Implicit representation

- Implicit representation \rightarrow No discretization.
- Arbitrary topology and resolution.
- Low memory footprint.
- Not restricted to specific class.

[Chen et al. CVPR'19] [Park et al. CVPR'19

Surfaces as an Implicit Function

A function tells us whether a point is inside or outside an object

$$f(\mathbf{p}) = \begin{cases} 0, & \text{if } \mathbf{p} \in \text{outside} \bullet \\ 1, & \text{if } \mathbf{p} \in \text{inside} \bullet \end{cases} \qquad \mathbf{p} = (x, y, z) \in \mathbb{R}^3$$

If the function is continuous, a levelset of it defines a surface

Neural Fields

What is a Field? (Physics)

A **Field** is a mapping associating a scalar or vector quantity to each point in space

You have already seen fields!

You have already seen fields!

Occupancy Fields:
$$f(\mathbf{p}) = \begin{cases} 1, & \text{if } \mathbf{p} \in \mathcal{V} \\ 0, & \text{if } \mathbf{p} \notin \mathcal{V} \end{cases}$$
Unsigned Distance Fields: $f(\mathbf{p}) = \text{dist}(\mathbf{p}, \mathcal{S})$ Signed Distance Fields: $f(\mathbf{p}) = \begin{cases} \text{dist}(\mathbf{p}, \mathcal{S}), & \text{if } \mathbf{p} \in \mathcal{V} \\ -\text{dist}(\mathbf{p}, \mathcal{S}), & \text{if } \mathbf{p} \notin \mathcal{V} \end{cases}$

Fields can be anything

Parameterizing Fields

Discrete

Neural

Hybrid

Parameterizing Fields

Voxel Grid

- Subdivide 3D space into voxel grid of equal sized bins
- For each voxel store field value

Images are 2D Voxel Grids

Continuous Fields with Voxels

- Values can also be stored at corners of the voxels
- For a query point $\mathbf{p} \in \mathbb{R}^3$ interpolate via

$$f(\mathbf{p}) = \sum_{c_i} f(\mathbf{c}_i) k(\mathbf{p}, \mathbf{c}_i)$$

Stored value at corner
E.g. $k(\mathbf{p}, \mathbf{c}_i) = \frac{d(\mathbf{p}, \mathbf{c}_i)}{\sum_{c_j} d(\mathbf{p}, \mathbf{c}_j)}$

Properties of Voxel Grids

- For *d* input dimensions, and *n* bins per dimension the memory required is $\mathcal{O}(n^d)$
- Intractable in higher dimensions
- For 3D scenes: Lots of voxels store no useful information

- Retains locality information
- Easy to extend CNNs to 3D convolutions

Octrees

- Divide voxels into 8 subvoxels if it has more than N points in it
- Depth of octree depends on desired resolution

https://dulalsaurab.github.io/assets/img/octree.png

https://lmb.informatik.uni-freiburg.de/people/tatarchm/ogn/

Discussion of Octrees

- Reduces memory wasted by empty space
- Still memory extensive (depending on desired resolution)
- More expensive to construct
- Sub-division is not differentiable
- To sample a point, have to traverse hierarchy

https://doc.cgal.org/latest/Orthtree/index.html

Parameterizing Fields

Neural Fields

Neural Fields for 3D Scenes

DeepSDF, Park et al. CVPR'19

Neural Fields For Other Data

Memory

~1MB memory

Mesh: 110MB

Discussion of Neural Fields

- Storage memory does not grow with spatial resolution or number of spatial dimensions
- Resolution chosen at test time
- Adaptive resolution: Assigns more compute to higher frequency areas
- Work for arbitary dimensions
- Slow training and sampling
- Does not expose locality
- Inconvenient processing: Cannot run convolutions
- Editing is hard

Comparison

	Memory	Speed	Locality	Resolution
Discrete	X	\checkmark	\checkmark	X
Neural	\checkmark	X	X	\checkmark

Hybrid Parametrizations: Best of both worlds

Parameterizing Fields

Voxel-Features + Neural Field

IF-Nets, Chibane et al. CVPR '20 Convolutional Occupancy Networks, Peng et al. ECCV '20 Neural Sparse Voxel Fields, Liu et al. NeurIPS '20

Orthographic Projection onto Feature Plane

Triplane Representation

Convolutional Occupancy Networks, Peng et al. ECCV '20 EG3D, Chan et al. CVPR '22

Octree-Feature Volumes

Octree-Feature Volumes

Multi-Scale Voxel Grid + Hash Encoding

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding, Müller et al. SIGGRAPH '22

Mult-Scale Voxel Grid + Hash Encoding

Elapsed training time: 0 seconds

Hybrid Representations

- Trade-off between memory and speed
- Best of both worlds
- Neural network can locally "super-resolve" discrete representation

Neural Fields for 3D Reconstruction

Neural Implicits for 3D Reconstruction

3D Reconstruction Tasks

Voxel Super-Resolution

Point Cloud Completion

Previous Implicit Function Learning Architecture

Previous Implicit Function Learning Architecture

Neural Implicits for common objects

Work well for rigid objects:

Continuous

Multiple topologies

Problem with Previous Work

🗙 Retain Details

Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion

Julian Chibane^{1,2}, Thiemo Alldieck^{1,3}, Gerard Pons-Moll¹

<u>CVPR 2020</u>

Problems with previous work

Implicit Feature Networks (IF-Nets)

 $3D \text{ Grid} \\ K \times K \times K$

Implicit Feature Networks (IF-Nets)

 $3D \text{ Grid} \\ K \times K \times K$

Representation of IF-Nets $f(\mathbf{z},\mathbf{p})\mapsto |0,1|$ Previous: $\mathbf{F}_1,\ldots,\mathbf{F}_n, \quad \mathbf{F}\in\mathcal{F}^{K\times K\times K}$ $f(\mathbf{F}_1(\mathbf{p}),\ldots,\mathbf{F}_n(\mathbf{p}))\mapsto [0,1]$ Ours:

Chibane et al. IF-Nets CVPR'20

IF-Nets for 3D Shape Reconstruction and Completion

Reconstruct Articulations

Retain Details

✓ Complete Shape

IF-Nets for Texture completion ECCV SHARP CHALLENGE

[Chibane and Pons-Moll, IF-Nets for texture. SHARP 2020 Chibane et al. IF-Nets CVPR'20]

- Surfaces that do not divide the space in two regions can not be represented.
- We need a different output representation.

Neural Unsigned Distance Fields for Implicit Function Learning

Julian Chibane, Aymen Mir, Gerard Pons-Moll NeurIPS 2020

Our Solution

Change the output representation

 $f(\mathbf{F}_1(\mathbf{p}),\ldots,\mathbf{F}_n(\mathbf{p}))\mapsto \mathbb{R}^+$

 $f(\mathbf{F}_1(\mathbf{p}),\ldots,\mathbf{F}_n(\mathbf{p}))\mapsto [0,1]$

Unsigned distance:

$$f(\mathbf{p}) = \min_{\mathbf{q} \in \mathcal{S}} \|\mathbf{p} - \mathbf{q}\|$$

Neural Distance Fields

Chibane et al. NDF, NeurIPS 2020

Neural processing of arbitrary surfaces

Next, we illustrate the capabilities of NDF to neurally process arbitrary surfaces, not representable by prior learned implicit work:

- Mathematical Functions and Manifolds We train a single NDF on a dataset consisting of 1000 functions per type: linear function, parabola, sinusoids and spirals.
- Garments Open Surfaces, without thickness. Training on ~300 garments of five types from [Bhatnagar et al. ICCV'19].
- Scenes Open surfaces with holes and no thickness. Training on 34 real world scenes captured by RGBD Sensors from [Xia et al. CVPR'18].

NDF results

Direct Rendering of NDF

Representation and Regression of Functions

Classical regression using NDFs and an adapted sphere tracing (ray tracing method)

61

Representation and Completion of Scenes

Input

Output

Ground Truth

62

Meshes vs Implicits

Slides credit and resources

Thanks to Julian Chibane, Enric Corona and Qianli Ma for providing materials.

Parts of the slides were inspired by the course Inverse Graphics by Vincent Sitzmann

<u>TUM AI Lecture Series - Neural Implicit Representations</u> <u>for 3D Vision</u> (talk by Prof. Pons-Moll)