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Abstract

To study the correlation between clothing garments and
body shape, we collected a new dataset (Fashion Takes
Shape), which includes images of female users with clothing
category annotations. Despite the progress in body shape
estimation from images, it turns out to be challenging to infer
body shape from such diverse, real-world photos. Hence, we
propose a novel and robust multi-photo approach to estimate
body shapes of each user and build a conditional model of
clothing categories given body-shape. We demonstrate that
in real-world data, clothing categories and body-shapes are
correlated and show that our multi-photo approach leads to
a better predictive model for clothing categories compared
to models based on single-view shape estimates or manually
annotated body types. We see our method as the first step to-
wards the large-scale understanding of clothing preferences
from body shape.

1. Introduction

Fashion is a $2.4 trillion industry1 which plays a crucial
role in the global economy. Many e-commerce companies
such as Amazon or Zalando makes it possible for their users
to buy clothing online. However, based on a recent study, 2

around 50% of bought items were returned by users. One
major reason of return is ”It doesnt fit” (52%). Fit goes
beyond the mere size — certain items look good on certain
body shapes and others do not. In contrast to in store shop-
ping where one can try on clothing, in online shopping users
are limited to a coarse set of numeric size ranges (e.g. 36, 38
and so on) to predict the fitness of the clothing item. Also,
they only see the clothing worn by a professional model,
which does not account for the diverse body shape of peo-

1https://www.mckinsey.com/industries/retail/our-insights/the-state-of-
fashion

2https://www.ibi.de/files/Competence%20Center/Ebusiness/PM-
Retourenmanagement-im-Online-Handel.pdf

Figure 1: Our multi-photo approach uses 2D body joint and
silhouette to estimate 3D body shape of the person in the
photo. Our shape conditioned model of clothing categories
uses the estimated shape to predict the best fitting clothing
categories.

ple. A clothing item that looks very good on a professional
model body could look very different on another person’s
body. Consequently, understanding how body shape corre-
lates with people’s clothing preferences could avoid such
confusions and reduce the number of returns.

Due to importance of the fashion industry, the application
of computer vision in fashion is rising rapidly. Especially,
clothing recommendation [22, 36, 27, 14] is one of the hot
topics in this field along with cloth parsing [42, 44, 11],
recognition [9, 27, 17, 13, 2] and retrieval [40, 41, 23, 26].
Research in the domain of clothing recommendation studies
the relation between clothing and categories, location, travel
destination and weather. However, there is no study on the
correlation between human body shape and clothing. This
is probably due to the fact that there exists no dataset with
clothing category annotations together with detailed shape
annotations.

Therefore, our main idea is to leverage fashion photos of
users including clothing category meta-data and, for every
user, automatically estimating their body shape. Using this
data we learn a conditional model of clothing given the
inferred body shape.

Despite recent progress, the visual inference of body



shape in unconstrained images remains a very challenging
problem in computer vision. People appear in different poses,
wearing many different types of garments, and photos are
taken from different camera viewpoints and focal lengths.

Our key observation is that users typically post several
photos of themselves, while viewpoint and body pose varies
across photos, the body shape does not (within a posted
gallery of images). Hence, we propose a method that lever-
ages multiple photos of the same person to estimate their
body shape. Concretely, we first estimate body shape by
fitting the SMPL body model [29] to each of the photos
separately, and demonstrate that exhaustively searching for
depth improves performance. Then, we reject photos that
produce outlier shapes and optimize for a single shape that
is consistent with each of the inlier photos. This results in
a robust multi-photo method to estimate body shape from
unconstrained photos on the internet.

We use image from the web 3 and collected a dataset
(Fashion Takes Shape) which includes more than 18000 im-
ages with meta-data including clothing category, and a man-
ual shape annotation indicating whether the person’s shape
is above average or average. The data comprises 181 differ-
ent users. Using our multi-photo method, we estimated the
shape of each user. This allowed us to study the relationship
between clothing categories and body shape. In particular,
we compute the conditional distribution of clothing category
conditioned on body shape parameters.

To validate our conditional model, we compute the like-
lihood of the data (clothing categories worn by the user)
under the model and compare it against multiple baselines,
including a marginal model of clothing categories, a condi-
tional model built using the manual shape annotations, and a
conditional model using a state of the art single view shape
estimation method [7].

Experiments demonstrate that our conditional model with
multi-photo shape estimates always produces better data-
likelihood scores than the baselines. Notably, our model
using automatic multi-photo shape estimation even outper-
forms a model using a coarse manual shape annotations. This
shows that we extract more fine-grained shape information
than manual annotations. This is remarkable, considering
the unavoidable errors that sometimes occur in automatic
shape estimation from monocular images.

We see our method as the first step towards the large-scale
understanding of clothing preferences from body shape. To
stimulate further research in this direction, we will make the
newly collected Fashion Takes Shape Dataset (FTS), and
code available to the community. FTS includes clothing
meta-data, 2D joint detection, semantic segmentation and
our 3D shape-pose estimates.

3http://www.chictopia.com

2. Related Work
There is no previous work relating body shape to cloth-

ing preferences; here we review works that apply computer
vision for fashion, and body shape estimation methods.

Fashion Understanding in Computer Vision. Recently,
fashion image understanding has gained a lot of attention
in computer vision community, due to large range of its
human-centric applications such as clothing recommenda-
tion [22, 36, 27, 14, 18], retrieval [40, 41, 23, 26, 1], recogni-
tion [9, 27, 17, 13, 2], parsing [42, 44] and fashion landmark
detection [27, 28, 39].

Whereas earlier work in this domain used handcrafted fea-
tures (e.g. SIFT, HOG) to represent clothing [9, 22, 40, 26],
newer approaches use deep learning [6] which outperforms
prior work by a large margin. This is thanks to availability
of large-scale fashion datasets [36, 27, 28, 13, 34] and blogs.
Recent works in clothing recommendation leverage meta-
data from fashion blogs. In particular, Han et al. [13] used
the fashion collages to suggest outfits using multimodal user
input. Zhang et al. [47] studied the correlation between cloth-
ing and geographical locations and introduced a method to
automatically recommend location-oriented clothing. In an-
other work, Simo-Serra et al. [36] used user votes of fashion
outfits to obtain a measure of fashionability.

Although the relationship between location, users vote
and fashion compatibilities is well investigated, there is no
work which studies the relationship between human body
shape and clothing. In this work, we introduce an automatic
method to estimate 3D shape and a model that relates it to
clothing preferences. We also introduce a new dataset to
promote further research in this direction.

Virtual try-on: Another popular application of computer
vision and computer graphics to fashion is virtual try-on,
which boils down to a clothing re-targeting problem. Pons-
Moll et al. [32] jointly capture body shape and 3D clothing
geometry – which can be re-targeted to new bodies and
poses. Other works by pass 3D inference; using simple
proxies for the body, Han et al. [15] retarget clothing to
people directly in image space. Using deep learning and
leveraging SMPL [29], Lassner et al. [24] predicts images of
people in clothing, and Zanfir et al. [45] transfers appearance
between subjects. These works leverage a body model to
re-target clothing but do not study the correlation between
body shape and clothing categories.

3D Body Shape Estimation. Recovery of 3D human
shape from a 2D image is a very challenging task which
has been facilitated by the availability of 3D generative
body models learned from thousands of scans of peo-
ple [4, 33, 29]. Such models capture anthropometric con-
straints of the population and therefore reduce ambiguities.



Several works [35, 12, 16, 48, 10, 7, 19, 16, 48, 10] leverage
these generative models to estimate 3D shape from single
images using shading cues, silhouettes and appearance.

Recent model based approaches leverage deep learning
based 2D detections [8] – by either fitting a model to them at
test time [7, 3] or by using them to supervise bottom-up 3D
shape predictors [30, 21, 38, 37]. Similar to [7], we fit the
SMPL model to 2D joint detections, but, in order to obtain
better shape estimates, we include a silhouette term in the ob-
jective like [3, 19]. In contrast to previous work, we leverage
multiple web photos of the same person in different poses.
In particular, we jointly optimize a single coherent static
shape and pose for each of the images. This makes our multi-
photo shape estimation approach robust to difficult poses
and shape occluded by clothing. Other works have exploited
temporal information in a sequence to estimate shape under
clothing [5, 46, 43] in constrained settings – in contrast we
leverage web photos without known camera parameters. Fur-
thermore, we can not assume pose coherency over time [19]
since our input are photos with varied poses. None of previ-
ous work leverage multiple unconstrained photos of a person
to estimate body shape.

3. Robust Human Body Shape Estimation from
Photo-Collections

Our goal is to relate clothing preferences to body shape
automatically inferred from photo-collections. Here, we
build on the SMPL [29] statistical body model that we fit
to images. However, unconstrained online images make the
problem very hard due to varying pose, clothing, illumina-
tion and depth ambiguities.

To address these challenges, we propose a robust multi-
photo estimation method. In contrast to controlled multi-
view settings where the person is captured simultaneously
by multiple cameras, we devise a method to estimate shape
leveraging multiple photos of the same person in different
poses and camera viewpoints.

From a collection of photos, our method starts by fitting
SMPL (Sec. 3.1) to each of the images. This part is similar
to [7, 3] and not part of our contribution and we describe
it in Sec. 3.2 for completeness. We demonstrate (Sec. 3.3)
that keeping the height of the person fixed and initializing
optimization at multiple depths significantly improves results
and reduces scale ambiguities. Then, we reject photos that
result in outlier shape estimates. Using the inlier photos, our
multi-photo method (Sec. 3.4) jointly optimizes for multiple
cameras, multiple poses, and a single coherent shape.

3.1. Body Model

SMPL [29] is a state of the art generative body model,
which parameterizes the surface of the human body with
shape β and pose θ. The shape parameters β ∈ R10 are the

PCA coefficients of a shape space learned from thousands of
registered 3D scans. The shape parameters encode changes
in height, weight and body proportions. The body pose
θ ∈ R3P , is defined by a skeleton rig with P = 24 joints.
The joints J(β) are a function of shape parameters. The
SMPL function M(β,θ) outputs the N = 6890 vertices of
the human mesh transformed by pose θ and shape β.

In order to “pose” the 3D joints, SMPL applies global
rigid transformations Rθ on each joint i as Rθ(Ji(β)).

3.2. Single View Fitting

We fit the SMPL model to 2D body joint detection Jest
obtained using [20], and a foreground mask S computed
using [31]. Concretely, we minimize an objective function
with respect to pose, shape and camera translation K =
[X,Y, Z]:

E(β,θ,K;Jest,S) = EP (β,θ) + EJ(β,θ;K,Jest)

+ Eh(β) + ES(β,θ,K;S), (1)

where EP (β,θ)4 are the four prior terms as described in [7],
and the other terms are described next.

Joint-based data term: We minimize the re-projection
error between SMPL 3D joints and detection:

EJ(β,θ,K;Jest) =
∑
jointj

ωjρ(ΠK(Rθ(J(β)j))− Jest,j)

(2)

where ΠK is the projection from 3D to 2D of the camera
with parameters K. ωj are the confidence scores from CNN
detection and ρ a Geman-McClure penalty function which
is robust to noise.

Height term: Previous work [7, 25] jointly optimizes for
depth (distance from the person to camera) and body shape.
However, the overall size of the body and distance to the
camera are ambiguous; a small person closer to the camera
can produce a silhouette in the image just as big as a bigger
person farther from the camera. Hence, we aim at estimating
body shape up to a scale factor. To that end, we add an addi-
tional term that constrains the height of the person to remain
very close to the mean height TH of the SMPL template

Eh(β) = ||Mh(0,β)− TH ||22,

where heightMh(0,β), is computed on the optimized SMPL
model before applying pose. This step is especially crucial
for multi-photo optimization as it allows us to analyze shapes
at the same scale.

4For details please look at the supplementary material



Silhouette term: To capture shape better, we minimize the
miss-match between the model silhouette Is(θ,β,K), and
the distance transform of the CNN-segmented mask S [31]:

ES(β,θ,K;S) = G(λ1Is(θ,β,K)S+λ2(1−Is(θ,β,K))S),
(3)

where G is a Gaussian pyramid with 4 different levels, K is
the camera parameter, and S is the distance transform of the
inverse segmentation, and λ is a weight balancing the terms.

3.3. Camera Optimization

Camera translation and body orientation are unknown.
However, we assume that rough estimation of the focal
length is known. We set the focal length as two times the
width of the image. We initialize the depth Z via the ratio of
similar triangles, defined by the shoulder to ankle length of
the 3D model and the 2D joint detection. To refine the esti-
mated depth, we minimize the re-projection error EJ of only
torso, knee, and ankle joints (6 joints) with respect to camera
translation and body root orientation. At this stage, β is
held fixed to the template shape. We empirically found that
a good depth initialization is crucial for good performance.
Hence, we minimize the objective in 1 at 5 different depth
initializations – we sample in the range of [-1,+1] meters
from the initial depth estimate. We keep the shape estimate
from the initialization that leads to a lower minimum after
convergence. After obtaining the initial pose and shape pa-
rameter we refine the body shape model adding silhouette
information.

3.4. Robust Multi-Photo Optimization

The accuracy of the single view method heavily depends
on the image view-point, the pose, the segmentation and
2D joint detection quality. Therefore, we propose to jointly
optimize one shape to fit several photos at once. Before
optimizing, we reject photos that are likely to be outliers
in order to make the optimization more robust. First, we
compute the median shape from all the single view estimates
and keep only the views whose shape is closest to the median.
Using these inlier views we jointly optimize V poses θi, and
a single shape β. We minimize the re-projection error in all
the photos at once:

Emp(β,θ
∀i,K∀i;J∀i

est,S
∀i) =

K∑
i=1

E(β,θi,Ki;Jiest,S
i)

where E() is the single view objective function, Eq. 1 and
K are number of views we kept after outlier rejection. Our
multi-photo method leads to more accurate shape estimates
as we show in the experiments.

4. Evaluation
To evaluate our method, we proposed two datasets: syn-

thetic and real images. We used the synthetic dataset to

perform an ablation study of our multi-photo body model.
Using unconstrained real-world fashion images, we evaluate
our clothing category model conditioned on the multi-photo
shape estimates.

4.1. Synthetic Bodies

SMPL is a generative 3D body model which is
parametrized with pose and shape. We observe that while
the first shape parameter produces body shape variations due
to scale, the second parameter produces shapes of varied
weight and form. Hence, we generate 9 different bodies by
sampling the second shape parameter from N (µ, 1) and
µ ∈ [−2 : 0.5 : 2]. In Figure 2a, we show the 9 different
body shapes and a representative rendered body silhouette
with 2D joints which we use as input for prediction. We
also generate 9 different views for each subject to evaluate
our multi-photo shape estimation in a controlled setting (Fig-
ure 2b). In all experiments, we report the mean Euclidean
error between the estimated shape parameters β and the
ground truth shapes.

Input

(a) Variation in body shape

   1                 2                  3                  4                    5                   6                   7                 8                 9

(b) Variation in view

Figure 2: Using SMPL 3D body model we generate 9 subject
each with 9 views. We study the effectiveness of our method
on this dataset. As shown in (a) the input to our system is
only image silhouette and a set of 2D body joints.
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Figure 3: The plot shows the mean euclidean norm between
estimated and the ground truth shape among all subjects for
each view on synthetic data.



Single-View Shape Estimation: In this controlled, syn-
thetic setting, we have tested our model in several conditions.
We summarize the results of our single view method in the
first column of Table 1 (mean shape error over all 9 subjects
and 9 views), and plot the error w.r.t. viewpoints in Fig-
ure 3. Please note in Table 1 that SMPLify[7] can only use
one photo, and therefore columns corresponding to multiple
photos are marked as “na” (not available).

Overall, we see in Table 1 a reduction of shape estimation
error from 1.05 by SMPLify [7] to 0.91 of our method by
adding joint estimation (J), silhouette features (S) and depth
selection (DS). The depth selection (DS) strategy yield the
strongest improvement. We see an additional decrease to
0.84 by considering multiple photos (k = 5) despite having
to estimate camera and body pose for each additional photo.

People with similar joint length could have different body
mass. As SMPLify only uses 2D body joint as input, it
is not able to estimate the body shape with high accuracy.
Silhouette is used to capture a better body shape. However
adding silhouette with a wrong depth data, decreases the
accuracy of shape estimation drastically (Ours using 2D
joint and silhouette (Ours+J+S), red curve in Figure 3 from
0.91 to 1.20. Hence, to study the impact of depth accuracy in
shape estimation, we provide ground-truth depth (in Figure 3,
green curve: Ours(D)) to our method. We observe that
using ground truth depth information improves the error of
Our+J+S from 1.20 to 0.86.

This argues for the importance of our introduced depth
search procedure. Indeed, we find that our model with depth
selection (“Ours+J+S+DS”) yields a reduced error of 0.91
without using any ground truth information.

Multi-Photo Shape Estimation: Table 1 present also our
result for multi-photo case. Real-world images exhibit noisy
silhouettes and 2D joints, body occlusion, variation in cam-
era parameters, viewpoints and poses. Consequently, we
need a robust system that can use all the information to ob-
tain an optimized shape. Since every single photo may not
give us a very good shape estimation, we jointly optimize
all photos together. However, for certain views, estimating
the pose and depth is very difficult. Consequently, adding
those views leads to worse performance. Hence, before opti-
mization, we retain only the K views with shape estimates
closest to the median shape estimate of all views. This ef-
fectively rejects outlier views. The results are summarized
in Table 1. K is the number of photos we kept out of the
total of 9 to perform optimization. Using only 2D joint
data, we optimized the shape in multi-photo setting (Ours+J
in Table 1). In the second step we add silhouette term to
our method in multi-photo optimization (Ours+J+S). Both
of these experiments shows decrease in accuracy of the the
estimated shape compared to SMPLify. However, for our
full method which uses up to K = 5 views, we observe a

single-view k=2 k=3 k=4 k=5 k=6 k=7

SMPLify [7] 1.05 na na na na na na
Ours+J 1.05 1.81 1.80 1.80 1.80 1.80 1.82
Ours+J+S 1.20 1.80 1.80 1.80 1.80 1.80 1.77
Ours+J+S+DS 0.91 0.91 0.88 0.87 0.84 0.85 0.88

Ours(D) 0.86 0.84 0.79 0.77 0.80 0.83 0.92

Table 1: We present the results for Multi-Photo optimization
on the synthetic data. The error is the L2 distance between
ground-truth and estimated shape parameter. Ours(D) has
ground truth camera translation(depth) data.

consistent decrease in error; beyond 5 the error increases,
which supports the effectiveness of the proposed integration
and outlier detection scheme. We improve over our single
view estimate reducing the error further from 0.91 to 0.84
(for K = 5) – and even approach the oracle performance
(0.86) where ground truth depth is given.
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Figure 4: Histogram of posts in our dataset. A total number
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Figure 5: Chictopia’s users upload images of themselves
wearing different garments. Each post has 1 or more image
of the person(red box). In addition to images, meta data
such as ”Tags”(orange box) and users opinion(blue box) are
available.



4.2. Fashion Takes Shape Dataset

Not every clothing item matches every body shape. Hence
our goal is to study the link between body shapes and cloth-
ing categories. In order to study these correlations, we col-
lected data from 181 female users of “Chictopia”5 (online
fashion blog).

We look for two sets of users: in the first set, we collected
data of users with average and below the average size, which
we call group Ga; the second set contains data of above
average (plus size) users referred to as Gp. In total, we have
141 users in group Ga and 40 in group Gp which constitute
a diverse sample of real-world body shapes. Figure 4, shows
the summary of our dataset. The total number of posts from
all users is 18413 – each post can contains one or more
images (usually between 2 to 4). The minimum number
of posts per user is 1 and the maximum 1507. In average,
we have 102 posts per user, and a median of 38 posts per
user. Furthermore, each post contains data about clothing
garments, other users opinions (Votes, likes) and comments.
Figure 5 shows a post uploaded by a user.
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Figure 6: Shape distribution of our dataset. The thinner the
person the higher values of β2 they have. While the group
Gp has lower values (negative).

4.3. Shape Representation

In order to build a model conditioned on shape, we first
need a representation of the users’ shapes. Physical body
measurements can be considered as an option which is not
possible when we only have access to images of the person.
Hence, we use our multi-photo method to obtain a shape
β ∈ R10 estimate of the person from multiple photos.

Since we do not have ground truth shape for the uncon-
strained photos, we have trained a binary Support Vector
Machine (SVM) on the estimated shape parameters β for
classification of the body type into Ga and Gp. The intuition
is that if our shape estimations are correct, above average
and below average shapes should be separable. Indeed, the

5http://www.chictopia.com

SVM obtains an accuracy (on a hold-out test set) of 87.17%
showing that the shape parameter is at the very least infor-
mative of the two aforementioned body classes. Looking at
the SVM weights, we recognize that the second entry of the
β vector has the most contribution to the classifier. Actually,
classifying the data by simple thresholding of the second di-
mension of the β vector results in an even higher accuracy of
88.79%. Hence, for following studies, we have used directly
the second dimension of β. We illustrate the normalized
histogram of this variable in Figure 6. The normalized his-
togram suggests that users in group Gp have negative values
whereas group Ga have positive values. For later use, we
estimate a probability density function (pdf) for this variable
β2 with a kernel density estimator – using a Gaussian kernel:

ρK(β2) =
1

N

N∑
i=1

K((β2 − βi2)/h) (4)

The green line in Figure 6 illustrate the estimated pdf
ρK(β2) of all users.

4.4. Correlation Between Shape and Clothing Cat-
egories

The type of clothing garment people wear is very closely
correlated with their shape. For example, “Leggings” might
look good on one body shape but may not look very good
on other shapes. Hence, we introduce 3 models to study
the correlation of the shape and clothing categories. Our
basic model (Model 1) uses only data statistics with no in-
formation about users shape. In the second approach (Model
2), clothing is conditioned on binary shape categories Ga
and Gp – which in fact requires manual labels. The final
approach (Model 3) is facilitated by our automatic shape
parameter estimation β2.

We evaluate the quality of the model via the negative log
likelihood of held-out data. A good model minimizes the
negative log-likelihood. Hence a better model should have
smaller value in negative log likelihood. The negative log
likelihood is defined as:

LL = − 1

N

N∑
i=1

Z∑
j=1

logP
cij
M (5)

Where N is the number of users, Z is the number of clothing
categories and cij ∈ Ci is a vector of user’s clothing cate-
gories. M represents the model. In the following, we present
the details of these three approaches. The log likelihood of
each approach is reported in the Table 2.

Model 1: Prediction Using Probability of Clothing Cate-
gories: We established a basic model using the probability
of the clothing categories PM = p(c). The clothing cate-
gories tag of the dataset is parsed for fourteen of the most
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Figure 7: Probabilities of 14 different clothing garments of
our dataset.

common clothing’s categories. Category “Dress” has the
highest amount of images (Figure 7) whereas “Tee and Tank”
were not tagged very often.
Model 2: Prediction for GivenGa andGp: This is based
on the conditional probability of the clothing category given
the annotated body type PM = p(c|G) where G ∈ Ga, Gp.
From this measure we find out that several clothing cate-
gories are more likely for certain group (Figure 8). As an
example, while “Cardigan” and “Jacket” have higher prob-
abilities for the Gp group, users in Ga were more likely to
wear “Short” and “Skirt”.
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Model 3: Prediction for a Given Shape β2: As shown
in the second model, body types and clothing garments are
correlated. However, categorizing people only into two or
more categories is not desirable. First, it requires tedious and
time consuming manual annotation of body type. Second,

the definition of the shape categories is very personal and
fuzzy.

The estimated shape parameters of our model provides
us with a continuous fine-grained representation of human
body shape. Hence, we no further need to classify people
in arbitrary shape groups. Using the shape parameter β2
and statistics of our data, we are able to measure the con-
ditional probability of shapes for a given clothing category
p(β2|c). This probability is measured for wearing and not
wearing a certain category. The result is shown in Figure 9
where for each category the Blue line represents wearing
the category. Similarly to the previous model, one can see
users with negative values of β2 wearing “Cardigan”, where
the probabilities of wearing “Short” and “skirt” is skewed
towards positive values of β2. Furthermore, using the Bayes
rule we can predict clothing condition on the body shape
PM = p(c|β2) as:

p(c|β2) =
p(β2|c)p(c)
P (β2)

(6)

The green line in Figure 9 illustrate the p(c|β2).

Negative Log likelihood We quantify the quality of our
prediction models by the negative log likelihood of held out
data. As we are using negative of log likelihood, the model
with smallest values is the best. The results, of each model
on our dataset, is summarized in the Table 2. Also, we used
the estimated shape parameters of Bogo et al [7] and ours
for comparison. In addition to our method which optimized
multi-photo, we only used the median shape among photos
of a user as a baseline as well. We also include the likelihood
under the prior as a reference. For better analysis, we split
the users into 4 groups: The first group contains users which
there is only a single photo (I = 1) of them in each post.
In the second group, users always have 2 images(I = 2)
and third group contains users with 3 or more images of a
clothing(I ≥ 3). Finally, we also show results with taking
into account all users. Table 2, shows that our method ob-
tained the smallest negative log-likelihood on the full dataset
– in particular outperforming the model that conditions on
the two discrete labeled shape classes, shape based on prior
work SMPlify[7], as well as a naive multi-photo integration
based on a median estimate. While the median estimate is
comparable if only two views are available, we see signifi-
cant gains for multiple viewpoint – that also show on the full
dataset.

5. Qualitative Results on Shape Estimation
In Figure 10 we present example results obtained with

our method and compare it to the result obtained with
SMPLify [7]. SMPLify fits the body model based on 2D
positions of body joints that often do not provide enough in-
formation regarding body girth. This leads to shape estimates
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Figure 9: Probabilities of p(β2|c) for wearing (blue curves) and not wearing (red curves) of a clothing category on our dataset.
Using Bayes rule we can estimate the probability of clothing given the shape p(c|β2)(green curve). Negative values of β2
corresponds to above average while average and below average users have positive values for β2.

Model 1 Model 2 Model 3
p(c) p(c|Ga/Gp) p(c|β2)1 Medianβ2 p(c|β2)2

I = 1 12.81 12.80 13.63 - 12.16
I = 2 13.31 13.47 13.34 13.09 13.11
I ≥ 3 19.06 19.11 18.8 18.59 17.85

All 20.13 20.39 20.48 20.12 19.81

Table 2: We measured the negative Log-Likelihood of our
different models on held out data. Numbers are comparable
within the rows. Smaller is better. p(c|β2)1 uses estimated
shape from SMPLify[7] and p(c|β2)2 uses our estimated
shape.

that are rather close to the average body shape for above-
average body sizes (rows 1 and 2 in Figure 10). SMLPify
also occasionally fails to select the correct depth that results
in body shape that is too tall and has bent knees (red box).
The single-view variant of our approach improves over the
result of SIMPLify for the first example in Figure 10. How-
ever it still fails to estimate the fine-grained pose details such
as orientation of the feet (blue box). In the second exam-
ple in Figure 10 the body segmentation includes a handbag
resulting in a shape estimate with exaggerated girth by our
single-view approach (yellow box). These mistakes are cor-
rected by our multi-photo approach that is able to improve
feet orientation in the first example (blue box) and body
shape in the second example (yellow box).

6. Conclusion

In this paper we aimed to understand the connection be-
tween body shapes and clothing preferences by collecting
and analyzing a large database of fashion photographs with
annotated clothing categories. Our results demonstrate that
clothing preferences and body shapes are correlated and
that we can build predictive models for clothing categories
based on the output of automatic shape estimation. To ob-

Figure 10: Shape estimation results on real data. Note that
the shape estimates obtained with SMPLify [7] are rather
close to the average body shape whereas our multi-photo
approach is able to recover shape details more accurately
both for above-average (rows 1 and 2) and average (rows 3
and 4) body types.

tain estimates of 3D shape we proposed a new approach
that incorporates evidence from multiple photographs and
body segmentation and is more accurate than popular recent
SMPLify approach [7]. We are making our data and code
available for research purposes.
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