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Figure 1: Dyna: Three different animated body shapes performing different motions with soft-tissue deformations predicted by Dyna. These
deformations are predicted by a learned function that depends on body shape, the angular velocity and acceleration of body parts, the velocity
and acceleration of the body, and the history of previous non-rigid deformations. Dyna generalizes to new body shapes of varying body mass
index and can be applied to stylized characters to automatically add realistic soft-tissue motions to animations.

Abstract

To look human, digital full-body avatars need to have soft-tissue
deformations like those of real people. We learn a model of soft-
tissue deformations from examples using a high-resolution 4D cap-
ture system and a method that accurately registers a template mesh
to sequences of 3D scans. Using over 40,000 scans of ten sub-
jects, we learn how soft- tissue motion causes mesh triangles to
deform relative to a base 3D body model. Our Dyna model uses a
low-dimensional linear subspace to approximate soft-tissue defor-
mation and relates the subspace coefficients to the changing pose
of the body. Dyna uses a second-order auto-regressive model that
predicts soft-tissue deformations based on previous deformations,
the velocity and acceleration of the body, and the angular velocities
and accelerations of the limbs. Dyna also models how deformations
vary with a person’s body mass index (BMI), producing different
deformations for people with different shapes. Dyna realistically
represents the dynamics of soft tissue for previously unseen sub-
jects and motions. We provide tools for animators to modify the
deformations and apply them to new stylized characters.
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1 Introduction

Interest in creating and animating realistic virtual humans has led to
a wide variety of models. The most realistic methods model body
shape using 3D scans of many bodies and many poses [Allen et al.
2002; Anguelov et al. 2005; Hasler et al. 2009; Hirshberg et al.
2012; Chen et al. 2013]. These models can capture pose-dependent
static shape deformations but cannot realistically model the effects
of soft-tissue dynamics on bodies in motion. While physics-based
models and finite-element modeling provide a possible solution, the
complexity of such systems makes them difficult to produce and
control. Instead we take a learning-based approach to modeling
the deformation of visible surface geometry caused by soft-tissue
dynamics. Previous learning-based methods rely on the motion
capture of many markers attached to the body [Park and Hodgins
2006; Park and Hodgins 2008]. Markers provide limited spatial
resolution, are time consuming to apply, may change the motion we
want to observe, and large marker sets pose technical difficulties for
marker identification and tracking. Consequently these approaches
do not easily scale to capture detailed soft-tissue deformations on a
wide variety of body shapes. What is needed is a method to capture
surface deformations of the body at high spatial and temporal res-
olutions and a mathematical model relating these deformations to
the motion and body shapes of novel characters.

To that end, we propose a new model called Dyna that is learned
from examples and is able to produce realistic soft-tissue motions
for a wide range of body shapes and motions as illustrated in Fig. 1.
Dyna is an extension of the SCAPE model [Anguelov et al. 2005]
to include full body deformations that are driven by the motion of
the body. While SCAPE approximates static surface deformations
of soft tissue, Dyna approximates dynamic surface deformations re-
lated to the motion of soft tissue. At the core, Dyna is a mathemati-
cal model that relates deformations of the body surface to changing
poses of the body in time. To make this feasible, we learn a low-
dimensional model of these deformations from 3D scans containing
soft tissue in motion. The scans are recorded by a 4D full-body cap-
ture system that outputs high-resolution 3D meshes of the body at
60 fps, revealing detailed soft- tissue motions.



Given such data, we develop an algorithm that accurately aligns a
template mesh to sequences of 3D scans. The approach uses an
existing SCAPE model to make this reliable and is fully automatic.
Using this method we have aligned over 40,000 body scans of 10
training subjects and an additional 30,000 scans of 6 test subjects.
The training meshes are available for research purposes. 1

Deviations of these aligned meshes from a SCAPE model, which
captures only static deformations, are primarily due to soft-tissue
motion. As with SCAPE, these deviations are represented as tri-
angle deformations. Given deformations for 10,000 of the train-
ing meshes, per gender, we perform principal component analysis
(PCA) to obtain a reduced linear subspace that can approximate the
soft-tissue surface deformations in the training set.

Dyna is a second-order autoregressive model that predicts the low-
dimensional linear coefficients of soft-tissue motion from the ve-
locity and acceleration of the body, the angular velocities and ac-
celerations of the body parts, and the history of previous soft-tissue
shape coefficients. These soft-tissue deformations can be thought
of as another layer on top of SCAPE. However, unlike the standard
pose-dependent deformations of SCAPE, the soft-tissue ones are a
function of full body motion and are constructed from the dynamic
PCA space.

Soft-tissue motion varies, not only with the body motion, but with
the composition of the body. While it is an imperfect measure, we
use body mass index (BMI) as a variable related to the amount of
soft-tissue dynamics. For training, we captured subjects (5 men and
5 women) spanning a range of body shapes and BMIs performing
many actions. Dyna models the soft-tissue deformations as result-
ing from a mixture of causes. We train an autoregressive model for
each subject and then represent a new subject with a new BMI as
a weighted linear combination of these models. This allows us to
predict the dynamics for a new person with a different BMI from
the training data or to vary the dynamics of a given person by arti-
ficially varying their BMI.

While we refer to Dyna as a dynamical model of soft-tissue de-
formation, we do not attempt to model the physics of soft-tissue
dynamics. It is important to draw the distinction between the static
and dynamic deformations of real tissue, which are governed by
physical forces, and our mathematical model, which is an approxi-
mation of their observable effect on the surface of the body. When
we talk about soft-tissue dynamics in the world, we refer to the
causal physical process (which we do not model), whereas, when
we talk about soft-tissue deformation in our model, we mean the
visible deformation of the surface. Dyna models only this deforma-
tion of the 3D surface shape analogous to how SCAPE is a model
of static surface deformations and not a model of statics (forces).

We demonstrate Dyna by animating test bodies in motion and show
how it generalizes to new body shapes and motions not seen in
training. The resulting animations contain visually realistic and
compelling soft-tissue deformations. While realism is important,
animators often want to edit or manipulate soft-tissue deformations
for dramatic effect. To that end, we provide several controls. First,
we allow overall attenuation or amplification of the soft-tissue de-
formations. Second, we provide a way to focus this control to par-
ticular body parts, allowing animators to, for example, make the
stomach or chest more jiggly. Third, we show how Dyna can be
applied to animate stylized characters. For this we need the charac-
ter mesh to be in alignment with our template mesh and then Dyna
generates the soft-tissue dynamics on the new character.

1http://dyna.is.tuebingen.mpg.de/

2 Previous Work

The animation of physical dynamics of varying materials is widely
studied in computer graphics. Here we focus on methods that re-
produce the dynamics of the full human body in motion. There are
two main classes of approaches: physically-based and data-driven.

Physically-based models. The classic approach to “layered
character construction” [Chadwick et al. 1989] uses a skeleton
that drives soft-tissue motions including kinematic deformations
(e.g. muscle bulging) and dynamics. The fat/tissue layer is typically
represented by a simplified, low-resolution, mass-spring model.
Many methods exist for controlling dynamic simulation of general
rigged models [Capell et al. 2002] using finite element methods
(FEM); e.g. dynamic elements can be layered on top of a standard
skinned model [Larboulette et al. 2005].

Numerous authors have studied the material properties of human
soft tissue with the goal of realistic animation [Maurel et al. 1998]
and numerous methods for modeling and animating muscles have
been proposed [Assassi et al. 2012; Aubel and Thalmann 2001; Fan
et al. 2014; Lee et al. 2009; Scheepers et al. 1997; Sifakis et al.
2005; Teran et al. 2005; Terzopoulos and Waters 1990; Wilhelms
and Van Gelder 1997]. Creating realistic musculature and fat by
hand is difficult and setting the physical parameters is even harder.
Consequently, one approach attempts to infer this from meshes (ei-
ther artist defined or scans); e.g. [Pratscher et al. 2005].

Bickel et al. [2009] design a trinocular stereo system combined with
a force probe to deform simple objects and capture their physical
properties. They fit an FEM model to the data and then simulate
the materials in motion. Their capture approach is not practical for
full bodies and does not address object self motion or articulation.

Until recently, detailed physical models have not produced results
that look as realistic as methods that directly learn surface deforma-
tions from examples. Recently, Weta Digital has employed a phys-
ical approach in many feature films with beautiful results. Such
methods, however, are labor intensive and require expert animators
to create and animate the models. A model built for one charac-
ter cannot be quickly repurposed to others. Weta and others often
focus on stylized characters whereas here we focus on generating
realistic humans where viewers are particularly sensitive to errors.

Approximating physical models from simulations. Since controlling
and efficiently animating finite-element models is difficult, there is
a long literature on approximating dynamics based on simulations
[Hahn et al. 2012; James and Pai 2002; Kim and James 2009; Shi
et al. 2008]. Using clothing simulations, there are methods that
learn low-dimensional (low-D) PCA models of cloth and capture
the dynamics of cloth as autoregressive models of cloth parameters
and kinematics [de Aguiar et al. 2010; Guan et al. 2012]. These are
similar in spirit to our approach but are not learned from real data.
No physics-based model exists for generating training body meshes
with the realism of 4D scanning.

Learning models of deformation. Capell et al. [2007] make forces
part of a surface deformation rig and optimize the forces to model
human body deformations. The forces, however, are learned from
static body scans to capture kinematic deformations. EigenSkin
[Kry et al. 2002] captures fine deformations as deviations mapped
to a rest pose using a low-D subspace. This is similar in spirit to
how we learn soft-tissue deformations except that we model tem-
poral dynamics as well.

Kim and James [2011] note that learning a global linear subspace
to represent soft-tissue dynamics is quite inefficient and, instead,
break the body into regions and learn separate modal models for
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each region. They then have the problem of stitching these back
together in a seamless way. They learn their method from body
scans but the animations lack realism. In contrast, we take a global
approach here because we find it better captures correlated effects
across the body and with the overall motion of the skeleton. When a
person wiggles their arm, soft tissue in the torso and legs is affected
– human body deformations are not fully local.

Related to the idea of learning low-D models is work on generic
mesh sequence compression. Alexa and Müller [2000] introduce
the idea of representing sequences of 3D meshes using PCA. Karni
and Gotsman [2004] take this further and combine PCA with linear
predictive coding. The prediction does not code differences from
a model and does not relate temporal dynamics to accelerations
of an underlying model. Kim and James [2009] take a different
approach to on-line model reduction. They focus on a dynamics
simulation approach and incrementally approximate the mass and
damping matrices using a low-D linear model.

Data-driven models. Most previous methods for capturing natu-
ral body shape have used laser scanners, which are slow and require
holding a static pose [Allen et al. 2002; Anguelov et al. 2005]. Such
scans can be used to build a good model of pose-dependent defor-
mation but they do not capture the dynamics of soft tissue. Work on
modeling deforming bodies typically relies on sparse surface data
and has a long history [Metaxas and Terzopoulos 1993]. Here we
focus on methods that acquire surface data of moving bodies, fit
meshes to them, and attempt to model soft-tissue dynamics.

Sparse 3D data. The work most similar to ours is the seminal work
of Park and Hodgins [2006; 2008]. They use a marker-based cap-
ture system with hundreds of markers placed on the body. In [Park
and Hodgins 2006] they capture 350 markers on an actor in motion,
fit a 3D model of the actor to the data, and then realistically replay
the action on the character with soft-tissue motions. They segment
the body into rigidly moving parts and then compute the residual
deformation due to soft tissue. They model this with simple modes
of deformation plus a further residual deformation using a scattered
data interpolation method. The method captures soft-tissue motions
but does not model their temporal dynamics.

In [Park and Hodgins 2008], they go further to drive soft-tissue
motion from skeletal mocap. Like us, deformations are factored
into static and dynamic deformations. They perform PCA on the
dynamic marker motions and model the motion in a low-D space
using a second order dynamics equation. They do this analysis per
body part, not across the whole body. They demonstrate the method
on one actor, who was captured and then simulated in a limited set
of motions.

Neumann et al. [2013a] use approximately 1000 dots painted on
the body and a multi-camera setup to track them. They do this for
one shoulder and arm on several subjects. Manual input is used to
align one template mesh per subject and then track the mesh across
poses. Then muscle deformations are learned as a non-linear func-
tion of body type, pose and external forces. They show generaliza-
tion to new motions and forces but, while they capture sequences,
they do not model temporal dynamics. We capture the full body at
much higher resolution, less intrusively, and go further to define a
dynamical model of soft-tissue deformation.

At the other extreme, Loper et al. [2014] extract full body soft-
tissue motions from standard sparse mocap marker sets. They ap-
proximate these soft-tissue motions as shape variations within the
space of human body shapes. They do not model dynamics, rather
they fit body shape to mocap marker data that contains dynamics.

Dense 3D data. For the above methods, the set of markers, while

Figure 2: 4D scanner. Our scanning system captures full-body 3D
mesh sequences at 60 fps using active stereo. The color image from
each of 22 scanning units is shown (see text).

dense compared with standard mocap systems, only provides a
sparse sampling of the body surface. In constrast, Neumann et
al. [2013b], like us, work with 3D mesh sequences. From these
they learn a sparse model of deformations. They model meshes
in terms of these sparse components but do not model or analyze
temporal dynamics.

Tsoli et al. [2014] capture 3D meshes of people breathing, repre-
sent the deformations in a low-dimensional space, and develop a
temporal model of the coefficients in this space. Unlike our work,
their scans are of static shapes and their temporal model relates to
lung volume, not body motion.

de Aguiar and Ukita [2012] capture relatively coarse meshes of
the full body using a multi-camera silhouette method. They model
the motion of the mesh using a standard blend-skinned model and
then model the dynamics of deviations from this using a Gaussian
process dynamical model. This is largely a “capture and replay”
method that admits a small amount of user editing to the motion.

None of the above methods captures realistic full body soft-tissue
dynamics or the correlations between body shape and deformation.

3 Dynamic Human Shape Capture: Methods

Dyna relies on two technologies to capture and process the data of
full bodies in motion: 4D scanning and 4D mesh alignment. To-
gether we call these 4cap, for 4D motion capture. 4Cap is like
motion capture in that it provides high-framerate 3D data about the
body surface that is in correspondence over time. The distinction
between 4cap and mocap is that, rather than registering a sparse
set of markers across time, we register a dense set of vertices cor-
responding to a base template mesh. This is similar to previous
markerless full-body performance capture systems [de Aguiar et al.
2008; Stark and Hilton 2007] but focuses on full-body soft-tissue
deformations with significantly higher spatial and temporal resolu-
tion and accuracy. We describe the technology below. Dyna is built
on top of a SCAPE model [Anguelov et al. 2005], which we also
summarize.



3.1 4D scanning

To model human soft-tissue dynamics we first need to be able to
capture it. To that end, we use a custom-built multi-camera ac-
tive stereo system (3dMD LLC, Atlanta, GA) to capture tempo-
ral sequences of full-body 3D scans at 60 frames per second (fps)
(Fig. 2). We find that 60fps is sufficient to capture soft-tissue defor-
mations due to short term impulsive external forces such as ground
contact and the secondary effects of waves propagating through the
tissue (see Supplemental Video).

The system uses 22 pairs of stereo cameras, 22 color cameras, 34
speckle projectors and arrays of white-light LED panels. The pro-
jectors and LEDs flash at 120fps to alternate between stereo cap-
ture and color capture; we do not use the color information here.
The projected texture pattern makes stereo matching more accurate,
dense, and reliable compared with passive stereo methods. The
stereo pairs are arranged to give full body capture for a range of
activities, enabling us to capture people in motion; see Fig. 2. The
system outputs 3D meshes with approximately 150, 000 vertices on
average. Example meshes are shown in Fig. 3.

3.2 Data collection.

For training, we scanned 10 subjects (5 men and 5 women) of var-
ious shapes; Fig. 3 shows one scan for each subject. All training
subjects were professional models working under a modeling con-
tract. Additionally, all subjects gave their informed written consent
for the analysis and publication of their 3D scan data including im-
ages and scans of their faces. To test generalization, we scanned an
additional 3 men and 3 women, all non-professionals.

Subjects wore minimal form-fitting clothing (bikini briefs for both
men and women and a sports-bra for women). To elicit soft-tissue
motions we defined a protocol with 14 motions that included var-
ious “jiggling” or “shaking” motions as well as activities such as
jumping, hopping and running in place that involve impact with the
ground. Each capture began with the subject in an “A” pose to sim-
plify automatic mesh alignment.

Since deformations due to dynamics depend on the physical prop-
erties of the adipose tissue, muscle, and skin we chose subjects to
span different levels of BMI, from low BMI (20.5 for men, 20.7 for
women) to high BMI (47.7 for men, 34.9 for women); see Fig. 3.

We captured roughly 40, 000 training scans where there is signifi-
cant motion. This is split into separate male and female sets, each
with about 20, 000 scans. These were further split into various
training and testing sets as explained in Sec. 6. We captured a fur-
ther test set of ∼ 30, 000 scans of 6 subjects to test generalization
(Sec. 6).

3.3 Body Modeling: BlendSCAPE

SCAPE [Anguelov et al. 2005] represents body shape in terms of
3× 3 deformation matrices [Sumner and Popović 2004] that trans-
form triangles, t, in a template mesh, T , into corresponding trian-
gles in an instance mesh, M; the reader is referred to [Anguelov
et al. 2005] for details.

We define the body pose, θ, as the axis-angle representation of rela-
tive rotations between body parts. To reconstruct a mesh,M, three
types of deformation gradients are applied to the triangles, t, of
the template mesh, T . 1) Pose dependent deformations, Qt(θ),
are a linear function of pose parameters, θ; see [Anguelov et al.
2005]. To learn this linear function we captured and registered ap-
proximately 1800 scans of people in a wide variety of static poses.
2) Identity-dependent transformations, St(β), which are a linear

function of a vector of body shape coefficients, β. 3) Rigid rota-
tions, Rl[t](θ), which are the absolute rotation for body part l[t]
obtained by accumulating the relative rotations along the kinematic
chain from the root. Here we use a variant called BlendSCAPE
[Hirshberg et al. 2012] in which the deformation of a triangle is a
linear combination of several parts that influence the triangle

R∗t (θ) =
∑
i

wtiRi(θ) (1)

where the wti are blend weights that say how much part i influ-
ences triangle t. The sum is over all the parts in the kinematic tree,
however, the blend weights are sparse and only a few parts influ-
ence any triangle (cf. standard linear-blend skinning [Lewis et al.
2000]). The part segmentation and blend weights are artist-defined.

To train Dyna we use sequences of meshes, indexed by k, cor-
responding to each subject, j. Specifically, given the edges v̂t,e,
where e ∈ {0, 1}, of each triangle t in the template, we represent
the edges, vt,e, of triangle t belonging to the k-th mesh of subject
j as

vt,e(β
j ,θjk) = R∗l[t](θ

j
k)St(β

j)Qt(θ
j
k)v̂t,e. (2)

To form a watertight mesh, SCAPE stitches the triangles together
by solving for the mesh that best matches the deformed edges; see
[Anguelov et al. 2005].

To represent different body shapes we train separate male and fe-
male models using approximately 2000 laser scans for each gen-
der from the US and European CAESAR datasets [Robinette et al.
2002]. After aligning the scans with the template [Bogo et al. 2014;
Hirshberg et al. 2012], we compute the mean deformation, µS , and
subtract this from all training deformations. We then take these tri-
angle deformations and stack them in a vector. We perform PCA on
the matrix of shape training vectors and take the leading eigenvec-
tors to form a low-D shape subspace, US . The product of the shape
parameters, β. and the basis vectors, uS , in US linearly approx-
imates a wide variety of body shape deformations from the mean
shape, µS . We typically use S = 300 shape components.

3.4 Mesh Alignment

The first step in building Dyna brings all the temporal 3D scans,
Sjk, for all subjects, j, into correspondence by aligning (register-
ing) a 3D body template to all of them. The template is a water-
tight triangulated mesh with 6890 vertices and 13, 776 triangles.
This registration is performed in two steps. First, a subject-specific
shape model, Sj , is computed based on a subset of scans where the
person is static. Second, all scans, Sjk, are aligned using the subject-
specific shape models, which makes optimization in the second step
substantially faster and better behaved. The process is fully auto-
matic.

3.4.1 Step 1: Subject-specific model creation

The goal of the first step is to compute the shape deformations, Sj ,
for each subject, j, to capture their detailed body shape more ac-
curately than with the low-D subspace approximation, S(βj), in
Eq. (2). Each subject is captured performing a variety of move-
ments where each movement begins in the A-pose. We take the
first frames of each sequence, giving a set of frames, A. We regis-
ter these scans Sjk, k ∈ A, to a common template using a method
similar to [Bogo et al. 2014] that regularizes the aligned templates
to be similar to a BlendSCAPE model. This gives a set of aligned
template meshes,Mj

k, and their poses, θjk, k ∈ A. We then com-
pute the mesh that best explains all the individual aligned templates
in a regularized least squares sense.



Figure 3: Data capture. Raw scans of 10 professional models with their BMI. One time instant, from a sequence, is shown for a variety of
motions.

Since we do this for a specific subject, j, we drop the subject index
here. Specifically we simultaneously solve for the low-D subject-
specific body shape parameters, β, the scan-specific pose parame-
ters, θk, and a deformed template,Mk, that minimize∑

k∈A

E(β,θk,Mk;Sk) (3)

with

E(β,θ,M;S) = wgEg + wcEc + wθEθ + wdEd (4)

Eg(M;S) =
∑
xs∈S

ρ( min
xm∈M

‖xm − xs‖) (5)

Ec(M,β,θ) =
∑
t,e

wt‖Mt,e − vt,e(β,θ)‖2F (6)

Eθ(θ) = DM (θ;µθ,Σθ) (7)
Ed(β) = DM (β; 0,Σβ), (8)

where Eg encourages the vertices, xm, of the deformed template,
M, to be close to the scan surface. For all points, xs, on the sur-
face of the scan, S, we find the closest point, xm, on the deformed
template; where ρ(·) is a robust Geman-McClure penalty function.
Ec encourages the template deformations to be close to the best
BlendSCAPE model and vice versa; we call this a “coupling” term
and it plays an important role in regularizing the deformation of the
templateM, whereMt,e is the edge, e, of triangle t. The scalar
weight, wt, is set empirically to increase the coupling strength for
parts like hands and feet where the scans are noisier.

Note that Eq. (3) uses a single body shape for all the scans of a sub-
ject but lets pose vary since not all scans will be in the exact same A-
pose. The terms Eθ(θ) and Ed(β) are penalty terms that impose a
prior on poses and shapes, respectively. Specifically DM (x;µ,Σ)
is the Mahalanobis distance from x to the mean, µ, with covari-
ance Σ. For body shape, Σβ is a diagonal matrix with the squared
singular values estimated via PCA from CAESAR with zero mean.
For pose, Σθ is learned from our pose training set containing varied
poses and the mean pose, µθ , is roughly an A-pose.

Optimization is performed in stages. We first set the regularizer
weights such that the optimization initially performs model-only

alignment to fit the BlendSCAPE parameters to the scan. Then the
regularizer weights are decreased and the data weight increased, al-
lowing the aligned mesh,M, to deform away from the body model
to fit the scan.

Since the objective in Eq. (3) is highly non-convex, initialization
plays an important role. Here we initialize the poses, θk, to µθ , the
shape to the mean shape in CAESAR (β = 0), and the registra-
tion edges,Mt,e, to the model edges, vt,e(β,θk), estimated in the
preceding stage.

Given the aligned meshes we now solve for a single subject-specific
mesh that best explains all of them. Specifically, we solve for the
subject-specific deformation, Sj , that gives a mesh (Eq. (2)) that
minimizes the squared distance to the meshes, Mj

k, subject to a
smoothness term that penalizes differences in deformations, Sjt , for
triangles, t, that share an edge. Below we then replace St(β

j) in
Eq. (2) with Sjt to create subject-specific shapes in any pose.

3.4.2 Step 2: Subject-specific sequence registration

Given subject-specific models, Sj , we align the full sequences of
scans Sjk to the template, while regularizing the solution to the
subject-specific model by minimizing

E(Mj
k,θ

j
k;Sjk) = wgEg + wcEc (9)

Ec(Mj
k,θ

j
k) =

∑
t,e

wt‖Mj
t,e,k − vt,e(θ

j
k)‖2F , (10)

where Eg(·) is the same as in Eq. (5) and where

vt,e(θ
j
k) = R∗l[t](θ

j
k)SjtQt(θ

j
k)v̂t,e. (11)

Equation (9) is a simplification of Eq. (3). We no longer optimize
over the shape parameters βj as the shape is replaced by Sj . Note
also that the pose prior, Eθ(·), is not used. Since our sequences are
captured at 60fps, the changes of pose and shape between one frame
and the next are relatively small. This makes accurate alignment of
sequences more stable and efficient than aligning scans in arbitrary
unknown poses. We initialize the optimization at each frame with



Figure 4: Data pre-processing. From left to right: 1) an example of a raw scan, 2) template body mesh aligned to the scan 3) subject specific
BlendSCAPE body model best fitting the aligned mesh. 4) Frobenius norm distance between the deformations of the aligned template mesh
and BlendSCAPE. These differences are color coded (hot colors are large differences). Note that our model is trained from these differences
of triangle deformations. This reflects how the aligned body shape deviates from BlendSCAPE.

the pose from the previous frame and only small changes are re-
quired. For the first frame, we use the aligned mesh obtained during
the subject-specific model creation step.

3.4.3 Optimization

Both the first and second step objective functions ((3) and (9)) are
optimized with Powell’s dog leg [Powell 1970]. While the first step
requires three stages and typically several optimization iterations,
the second uses only one stage and typically converges in less than
three iterations (if the motion is not extreme).

3.4.4 Alignment results

The result of the alignment process is ∼ 70, 000 meshes,Mj
k, that

are in correspondence with the template, T . Figure 4 shows a repre-
sentative scan, Sjk, and the corresponding aligned mesh,Mj

k. Note
that we show the quad structure of the template mesh to help the
reader visualize the correspondence between meshes. See the Sup-
plementary Video for movies showing the temporal alignment.
The 40, 000 training meshes are available on line for research pur-
poses along with a video showing all training alignments.

3.5 Dynamic Shape Space

The alignment of all the scans to a set of registered meshes facil-
itates statistical analysis of soft-tissue deformations. From these
meshes we compute the total deformations, Tj

k, which we then
split into different causes. Let vjt,e,k be an edge of Mj

k. To
recover the deformations for Mj

k, we simultaneously solve for
pose, θjk, and the total non-rigid deformations, Tj

k, by minimizing
(see [Anguelov et al. 2005])

arg min
θ
j
k
,T

j
k

∑
t

∑
e=0,1

‖R∗l[t](θjk)Tj
kQt(θ

j
k)v̂t,e − vjt,e,k‖

2
F

+ λ
∑

t1,t2 adj

‖Tj
t1,k
−Tj

t2,k
‖2F . (12)

The first term minimizes the reconstruction error between the
edges, vjt,e,k, of the aligned meshes,Mj

k, and their BlendSCAPE

representation. The second term enforces smooth deformations be-
tween adjacent triangles. Note that the smoothness term here is
applied only to the shape deformations. This is applied over all ad-
jacent triangles t1, t2 adj. In practice, we have found good results
optimizing Eq. (12) using alternation; that is first optimizing for
pose, θjk, and then optimizing for the total deformations, Tj

k, for
every scan, k, of every subject, j.

We assume that this total deformation is the sum of the identity
deformation, Sj , of the person, which is constant, and a dynamic
shape component, Dj

k, that varies. To find the dynamic part, we
compute the average shape deformation, S̄j , for each subject

S̄j =
1

N

∑
k

Tj
k. (13)

Note that S̄j may be different from Sj defined above, which is
learned only from static A-poses. Figure 4 shows an example of
a subject specific shape posed according to the estimated pose, θjk.
This person-specific model lacks dynamic soft-tissue motions as
these are averaged out.

Let Dj
k = Tj

k − S̄j be the residual deformation after subtracting
the mean shape from the overal shape. This effectively factors out
pose, θjk, pose-dependent deformations, Qt(θ

j
k), and identity S̄jt

to focus on what is left. If the BlendSCAPE model accurately cap-
tures pose dependent deformations and static shape, then the resid-
ual shape deformations should be due only to the deformation of
soft tissue. Figure 4 (far right) visualizes these deformation differ-
ences between an aligned mesh and the personalized BlendSCAPE
model. Here we show color-coded distances (Frobenius norm) be-
tween triangle deformations. It is these deformations that we want
to model.

From our thousands of high-dimensional deformations Dj
k, we

want to learn a model of soft-tissue deformation. To facilitate that,
we first reduce the dimensionality of the data via PCA; this is anal-
ogous to learning the identity-dependent shape space in SCAPE.
Taking the Dj

k of all subjects, we compute the mean, µD , and sub-
tract this from the deformations. We then stack the mean-subtracted
deviations at each frame into a vector, form a matrix of these, and
perform PCA. Note that we separate the aligned training data by
gender giving approximately 20, 000 meshes each. We withhold



Figure 5: Principal components of soft-tissue deformation. Several representative components illustrating soft-tissue deformations; pairs
of bodies shown at±5std from the mean. Note the variation in shape in the hips, thighs, and chest. We analyze male and female deformations
separately. See Supplemental Video.

half the data for testing and perform PCA on 10, 000 meshes per
gender.

We take the D principal components, UD , corresponding to the
largest eigenvalues. Unless otherwise stated, we useD = 300 com-
ponents accounting for 95% of the data variance. Several of these
component directions are visualized in Fig. 5; see Supplemental
Video for movies.

The total non-rigid shape of a given subject is approximated as

T̂j
k = S̄j + µD +

D∑
d=1

δd,kuD,d (14)

where uD,d is the d-th basis vector in UD and the linear coeffi-
cients δd,k determine the dynamic shape variations. A sequence
of such coefficients δd,k approximates the soft-tissue motion in our
training scans. In the following section we learn a temporal model
of how these coefficients evolve with body motion.

4 DYNA

Animating the body with BlendSCAPE produces realistic pose-
dependent deformations but the resulting animations lack the nat-
ural non-rigid dynamics that occur during human motion. One of
our key contributions is to extend BlendSCAPE so that it realisti-
cally generates such dynamics. To that end, we first define the total
non-rigid deformation of a body as a combination of identity and
soft-tissue deformations as

T(β, δ) = µS +
S∑
s=1

βs,kuS,s + µD +
D∑
d=1

δd,kuD,d (15)

= S(β) + D(δ). (16)

Hence, in Dyna, triangles edges are

vt,e(β,θk, δk) = R∗l[t](θk)Tt(β, δk)Qt(θk)v̂t,e (17)

= R∗l[t],k(θk)(St(β) + Dt(δk))Qt(θk)v̂t,e.
(18)

Note that, like SCAPE, this factors deformations due to differ-
ent causes: specifically, body shape deformations, S(β), pose-
dependent deformations, Q(θ), and dynamics-dependent deforma-
tions, D(δ). Below we define the dynamic deformations to depend
on velocities and accelerations; that is, they are not dependent on
static pose.

Our goal is to produce a realistic animation given a subject shape β
and a sequence of poses, θk. Dynamic deformations are the result

of inertia and impact and are therefore related to velocities and ac-
celerations. Hence the input to our model are angular velocity and
acceleration (θ̇k, θ̈k) at all the joints in the body as well as the ve-
locity and acceleration of the root of the body at time k, (vk,ak).
Velocities and accelerations are computed using forward finite dif-
ferences at 60 fps.

To model the typical ripples of soft tissue due to an impact we use
an auto-regressive model of order M . Let {δ̂k−1 . . . δ̂k−M} ∈
Y be the set containing the history of estimated low-D dynamic
deformation coefficients. We use M = 2 in all our experiments.
Altogether, let xk = {θ̇k, θ̈k,vk,ak, δ̂k−1, δ̂k−2} ∈ X denote
the set of inputs to our model. We call this the dynamic control
vector.

Finally, we note that the dynamic deformations depend on body
shape and the amount of fat on the body; generally, a person with
high BMI will jiggle more than one with low BMI. This means that
our model of soft-tissue motion will depend on the shape identity
coefficients, β.

The goal is then to learn a function f : X ×RS 7→ RD that predicts
the low dimensional representation of the dynamics at time k from
xk and the subject static shape coefficients β ∈ RS . Hence, the
edges, vt,e(β,θk, δk) of triangle t are reconstructed at frame k as

R∗l[t](θk)(St(β) + Dt(f(xk,β)))Qt(θk)v̂t,e. (19)

This generalizes SCAPE to include soft-tissue deformations.

4.1 Predictive Model

We now learn f(xk,β), which takes as input the dynamic con-
trol vector and the static shape of a given subject and predicts the
non-rigid dynamic deformations. Let the n-th element, xk, in the
dynamic control vector be denoted as xk[n] (i.e. xk[0] = θ̇k). We
start with formulating the problem of learning a temporal function,
gj(x), that is specific to subject j.

Single-person model. We adopt an auto-regressive model with
exogenous inputs (ARMAX) relating soft-tissue deformations to
the dynamic control vector of subject j

δ̂
j

k = gj(xk) =

4∑
n=1

Bj
nxk[n] +

M∑
l=1

diag(ajl )δ̂
j

k−l + bj (20)

where the parameters of the model are the constant offset bj , the
matrices {Bj

l }
4
i=1 and the vectors of auto-regressive (AR) coeffi-

cients {ajl }. Since the PCA coefficients are uncorrelated (in the



training set) we force the auto-regressive matrices to be diagonal;
this significantly reduces over-fitting and the number of parameters
to be learned. In addition, this allows to train and predict every
coefficient independently. This AR linear model captures the angu-
lar velocity and angular accelerations of the body parts. Note that
the model is linear in the parameters. Hence, it can be efficiently
learned given a training set.

This model, when trained using data from a single subject, is al-
ready quite powerful and can synthesize non-rigid deformations for
new motions of the same subject. This is useful for modeling an ac-
tor and then editing their motions or animating them in new ways.
Such a model, however, does not generalize well to deformations
due to very different body shapes. To address this, one could train
the model in Eq. (20) using more than one subject. This reduces
over-fitting to a single subject but the model produces deformations
that look like the average of deformations of the subjects in the
training data.

Instead we want the dynamics of a heavy person to be explained
by a model trained using heavy people, and the dynamics of light
person should be explained by a model trained with lighter peo-
ple. In particular, we make the assumption that the dynamics of
people with similar BMI will show similar dynamics. This is of
course an approximation. For example, BMI is well known to be
overestimated in muscular people. Additionally, two people with
the same BMI may have very different proportions of visceral to
subcutaneous adipose tissue, resulting in vary different soft-tissue
dynamics. Here we find BMI to be a useful and intuitive variable
for animation control; 4D scans with more precise data about the
type and distribution of adipose tissue are not available.

Mixture model. Given a training dataset consisting ofNsubj sub-
jects, we model the coefficients of a new subject using a mixture
model

δ̂k = f(xk, a) =
1

Z

Nsubj∑
j

exp

(
−‖a

j − a‖
τ

)
gj(xk), (21)

where a indicates the BMI of the body we want to animate and
Z =

∑
j αj is a constant to make the sum of the mixture weights

αj = exp(−‖aj − a‖)/τ) equal to one after normalization. Note
that aj is the BMI of the j-th subject in the training database. The
parameter τ is a kernel width that controls the influence of each of
the trained subject models in the prediction. For τ 7→ ∞ one ob-
tains equal weights and therefore the model does not depend on the
test subject BMI, and for τ 7→ 0 one obtains support from the sub-
ject model in the training data that is closest in BMI. One can also
view this as a radial basis function (RBF) approximation in which
we compute the weighted distance to each subject using the kernel
above. Each subject’s BMI defines an RBF center for scattered data
interpolation.

An advantage of the model is that BMI is a meaningful quantity
that, for example, an animator can intuitively control. That is, one
can easily change the predicted dynamics by varying BMI. In some
situations however, one wants to animate a given mesh without any
knowledge of the BMI of that subject. Therefore, given a labeled
dataset of static meshes [Robinette et al. 2002] we learn a function
that estimates the BMI of a given static shape. In particular, we
learn a linear mapping C to obtain estimates of weight, w, and
height, h. Let f = [w, h], then f̂ = Cβ. 2 From these estimates
of weight and height we can compute the standard BMI measure,

2Actually since weight is linear with volume, the weight is corrected as
w′ = w

1
3 to obtain a more linear relationship with the shape coefficients.

defined as a = w
h2 and consequently we can compute the distance

inside the exponential in Eq. (21). Let dBMI(·) : RS × RS 7→
R denote the function that takes two vectors of static body shape
coefficients and returns the absolute BMI distance.

Consequently, the mixture in Equation (21) can be written as

f(x,β) =
1

Z

Nsubj∑
j=1

exp

(
−dBMI(β

j ,β)

τ

)
gj(x) (22)

from which we predict dynamics at time k using δ̂k = f(xk,β)
which is a function of static shape and motion as desired.

4.2 Dyna Training

Let pj = {bj , {Bj
n}4n=1 , {ajl }

M
l=1} be the parameters of sub-

ject model j. Then the model parameters to be learned are are
p = {pj}Nsubj

j=1 and the kernel width, τ , which is shared across
all subjects. To that end, we construct a training dataset D :=
{(xjk, δ

j
k)},∀j, k containing pairs of dynamic control vectors, xjk

and the ground truth soft-tissue deformation coefficients, δjk. Let
Dj denote a subset of the complete training set, D, consisting of
training data of only subject j.

Recall, xk = {θ̇k, θ̈k,vk,ak, δ̂k−1, δ̂k−2} ∈ X . The root veloc-
ity and acceleration are computed using forward differences giv-
ing estimates in world coordinates vW ,aW . Velocities and ac-
celerations are then transformed to the root body coordinates by
vk = RT

k v
W
k , ak = RT

k a
W
k , where Rk is the root orientation of

the body; this provides invariance to body orientation. To compute
the linear coefficients, δjk, we compute Dj

k = Tj
k − S̄j and then

project the vectorized deformations Dj
k onto the low-D dynamic

subspace, UD .

To train the mixture in Eq. (21), we begin by training the Nsubj

subject specific models, gj(x;p
j) separately using Dj . We define

the empirical risk using a squared loss as

R(pj ;Dj) =
1

|Dj |

|Dj |∑
k=1

‖δjk − gj(xk;pj)‖2. (23)

Since gj(·) is linear, we compute the optimal parameters, pj , by
simply solving a system of linear equations.

Even with careful regularization, such models will be very specific
to the given subject and will not generalize well. Training on all
the subjects together will produce a generic model that generalizes
but is non-specific. To train subject-specific models that generalize
we train them using all the data but bias the solution towards the
particular subject’s data. That is we fit the subject-specific param-
eters using all the data but weight the data for that subject more
highly. To do so, modify the empirical risk and minimize what we
call weighted risk

Rw(pj ;D) =

Nsubj∑
i=1

|Di|∑
k=1

1

|Di| ‖wi(δ
i
k − gi(xik;pj)‖2(24)

=

Nsubj∑
i=1

w2
iR(pj ;Di) (25)

where wi are per-subject weights that control the overall influence
of a particular dataset on the learned model. To bias the model
to subject j, we set wi =

√
2(Nsubj − 1) : i = j and wi =
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Figure 6: Dyna prediction. True (GT, black) and predicted (red)
values of the second dynamic shape coefficient are shown for a “jig-
gle on toes” motion. The red curve shows the full 2nd order AR
model prediction (2-AR). For comparison the blue curve shows the
prediction with a 0th order model (no AR).

1 : i 6= j so that the weight of the data for subject j has twice the
influence in the training as the rest of the subjects’ data together. By
minimizing the weighted risk we can train a subject model using all
the data available which heavily reduces over-fitting while keeping
the properties of the subject-specific deformations. Note that the
weighted risk is still linear and can be minimized as before using
weighted least squares.

We are only left with finding the optimal width, τ , of the kernel in
Eq. (21). This could be done by optimizing τ to minimize predic-
tion error using a leave-one-out strategy. With only 5 subjects per
gender, however, we found that we had insufficient training data
for this approach. Consequently we manually set τ = 2.0 for all
experiments.

5 Computational time

The only computationally expensive elements of Dyna are 4D
alignment and the PCA computation. Mesh alignment (Eq. (8))
takes between 20 and 30 seconds per frame on a 2.40GHz Intel
Xeon CPU E5620. 16 alignments were run simultaneously on a
single computer, so all the training alignments were computed in
less than a day in a single machine. Factorization of deformation
gradients into pose and dynamic components (Eq. (12)) takes 5 sec-
onds per frame. PCA (Sec. 3.5) takes around 35 minutes for 10,000
scans. Training time after computing PCA is fast since it works with
the low-dimensional representation; it is linear with the number of
training points. For 20,000 training data points and 5 subjects, it
takes 7 seconds to learn the mixture model with no autoregression
and it takes 7 minutes with second order autoregression (Sec. 4.2).
The autoregressive model takes a bit longer to train due to the fact
that we impose a diagonal structure in the autoregression matrices
to avoid overfitting. Animation with Dyna involves predicting the
dynamic coefficients, which takes around 1ms per frame. The for-
ward kinematics and the stitching process of SCAPE takes 94ms
per frame in an unoptimized Python implementation.

6 Experiments

Figure 6 illustrates soft-tissue deformations predicted by Dyna
compared with ground truth. It shows the trajectory of one of the
dynamic shape coefficients (principal component 2 in this case) dur-
ing a “jiggle on toes” movement. The subject was not present in the
training set and the movement was held-out for training the AR
model (generalization Case 4, see Section 6.1). The ground truth is
obtained by projecting the aligned test meshes onto the PCA space.
The figure compares the predicted coefficient using the second-
order AR model against a zero-order model. The zero-order model
uses only the angular velocities and accelerations of the limbs and
the velocity and acceleration of the torso.

6.1 Generalization

As with any model trained from examples, it is important to evalu-
ate how well it generalizes. To that end, we evaluate generalization
to new motions and new shapes in four use cases. In the first two
cases, the PCA space is constructed from half the training data for
each gender. In these cases we test on the training subjects but the
Dyna AR model is tested on held-out motions. These cases cor-
respond to having a known set of actors and generalizing them to
perform new motions. The second two cases test on the 6 subjects
not present in the training data and correspond to having completely
new subjects.

The cases are: (1) New motion instance: Given a subject in the
database we animate them with a motion that they did not perform
in the training set. We train Dyna with all the training data, leav-
ing out the specific sequence of the subject being tested. In this
case the training set contains motions similar to the test motion but
performed by other subjects. (2) Completely new motion: Here we
remove a motion completely from the AR training set and then an-
imate our known subjects performing this motion. This tests gen-
eralization to new motions. (3) Completely new subject but known
motion: We evaluate how well the algorithm generalizes to com-
pletely new subjects using motions present in training. (4) Com-
pletely new subject and completely new motion: In this most chal-
lenging scenario, neither the motion nor the subject are present in
training.

A representative example of Case 1 is shown in Fig. 7. Cases 2,3
and 4 are shown in Fig. 8. In Fig. 7, the comparison between the
aligned mesh, BlendSCAPE, and Dyna shows how Dyna better cap-
tures the motion of the soft tissue. Note that the Dyna shape is
driven only by body shape and the body motion; it is not fit to the
aligned scan. Note that Dyna does not replicate the deformations of
the ground truth meshes exactly but rather qualitatively; this is what
we expect and this makes it difficult to compare Dyna numerically
to aligned scans. Rather, Dyna synthesizes a soft-tissue deforma-
tion that is visually plausible.

The dynamic nature of the animation is better viewed and compared
in the Supplemental Video, which shows the four generalization
cases. The video results demonstrate that the model generalizes
both to new motions and new shapes.

6.2 Soft-tissue deformations with static subjects

Dyna can produce realistic animations of subjects where we only
know their static body shape. To this end, we first predict the sub-
ject BMI based on the subject static shape. Then, given a motion
sequence, Dyna produces different deformations depending on the
estimated BMI. This is illustrated in Fig. 9, where we animate static
subjects from the CAESAR dataset with a “jiggle on toes” motion.



Figure 7: Generalization (Case 1): Subject performing jumping jacks. The subject is in the training set, but not doing this motion. Left to
right: alignment (green), BlendSCAPE (blue), Dyna (white). Detail regions compare the deformation of the stomach and chest. Note how
Dyna captures the deformation of the chest and stomach.

Figure 8: Generalization (Cases 2, 3, 4): We show two frames for different subjects and different movements for different generalization
cases. First from the left, we show an example of generalization Case 2 for a “jiggle on toes” sequence. Second, we show a generalization
Case 3 for running on the spot. The rest of the examples show generalization Case 4, the most challenging scenario where neither the motion
nor the subject is present in the training data. Dyna produces realistic deformations even in Case 4.

6.3 Soft-tissue deformations with weight gain/loss

We allow animators to edit how the soft-tissue deformations behave
to produce effects such as exaggeration. For example, an animator
can directly control the static and dynamic deformation by changing
a character’s weight. Increasing the subject’s weight, while keep-
ing height and other proportions fixed, results in a change in BMI.
To achieve this, we train a linear regressor from a feature vector
consisting of height and rectified weight, f = [w

1
3 , h], to static

shape coefficients, β (cf. [Allen et al. 2003]). More features, such
as arm length, can be added to the regressor to constrain other prop-
erties of the person’s shape, although we only use height and rec-
tified weight for this experiment. To increase the person’s weight
by some amount, we simply compute the new feature fnew and the
new deformation as

S̄new = S̄old + USA(fnew − fold) (26)

where US is the matrix containing the PCA basis vectors, A is the
regression matrix, and fold and fnew are the feature vectors of the
orignal body and the desired one respectively. Note that we change
the weight and keep the height the same. This linear prediction

gives deformations that, when added to the original body, produce a
body shape with the desired weight. This results in a new BMI that
makes the prediction of soft-tissue deformations change according
to Eq. (21). To illustrate this in Fig. 10 we change the original
subject’s BMI (middle) by decreasing her weight by 30kg (left) and
increasing her weight by 30kg (right). The Supplemental Video
shows how the soft-tissue deformations are attenuated as the weight
decreases and accentuated as the weight increases as one would
expect. We note however, that Dyna models the dynamics produced
by decreasing weight better than by increasing weight. A better
model would require more training subjects with high BMI.

6.4 Soft-tissue retargeting

An animator may want to give a character the soft-tissue motions of
someone else. One can think of this as the retargeting of soft tissue
to a new character. This is straightforward. We simply generate the
soft-tissue deformations using one body shape (the heavy one in this
case) and add them to the shape of the target body in Dyna model
(Eq. (19)); that is, the shape becomes(St(βi) + Dt(f(xk,β

j)))
where i and j represent different body shapes.



Figure 9: Dyna can animate subjects where we have only seen their shape. We first predict the BMI of the subject based on their static shape.
We then use this to predict the dynamic deformations given a motion sequence. In this example, we animate five subjects from the CAESAR
dataset ordered (left to right) from lowest to highest BMI. To further exaggerate the contrast in the deformations we scale the predicted
deformations by factors of (from left to right) 0.9, 1.1, 1.3, 1.5, 1.7. Notice how the deformations produced by Dyna differ depending on the
subject BMI, see for example how the stomach deformation for the fourth subject is different than the deformation of the left-most subject.

Figure 10: Changing BMI: Animators can change the BMI of the BlendSCAPE model resulting in a change in body shape and a realistic
change in soft-tissue deformations. We start with the subject shape in the center and show a pair of poses. We then change her weight
by -30 kg (left bodies) and +30 kg (right bodies). By changing the weight, while keeping height fixed, the BMI changes and therefore the
deformations predicted by Dyna change.

Figure 11 shows two examples in which we transfer the dynamics
of a heavy male to an “ogre” and a heavy female to a thin “office
worker.” To animate a character like the ogre, that cannot be repre-
sented in US , we simply replace St(β) in Eq. (19) with the shape
we want to animate. This requires that the new shape is in align-
ment with our template mesh. The Supplemental Video illustrates
how the ogre deforms plausibly and how putting the dynamics of a
heavy woman on a thin character creates interesting effects.

6.5 Exaggeration

An animator might want to exaggerate the dynamic deformations.
This can be easily achieved in our model by uniformly scaling the
output deformations predicted by Dyna. Figure 12 shows the result
of exaggerating deformations δ by a factor of λ = 2.5.

6.6 Localized exaggeration

Finally, our model allows local editing of the deformations. An
animator can exaggerate certain parts of the body by locally scal-
ing the components of the PCA basis vectors. The artist defines
weights, for example by painting them on the mesh, and these cor-

respond to elements in the PCA vectors in the Dyna deformation
space. We exaggerate deformations by scaling the corresponding
elements of the shape-deformation vector non-uniformly according
to the weights. Figure 13 illustrates this exaggeration in comparison
with BlendSCAPE and Dyna without exaggeration. The weights
here increase the deformation of the chest region while keeping the
soft-tissue deformations of the other regions unchanged. Notice
how the weighted region undergoes more deformation.

7 Conclusion and Future Work

Dyna provides a new method for automatically animating charac-
ters with realistic soft-tissue deformations. It significantly advances
the state of the art in terms of realism. This is enabled by novel
methods for capturing and registering 3D meshes over time. We
train the model from men and women of different BMI and learn a
mixture of different models that is able to generalize to new subjects
and motions. We develop a training method that allows Dyna to
generalize despite a limited set of body shapes and motions. Dyna
can be applied for realistic human animation and admits various
animator controls for varying the soft-tissue motion.

This technology opens up many directions for future research.



Figure 11: Soft-tissue retargeting: We can retarget Dyna to new body shapes as long as they share the same topology as our template mesh.
This can be used to bring soft-tissue motions to stylized characters. Here we retarget a heavy man to an ogre and a heavy woman to a thin
female character. We simply animate the characters and apply the deformations predicted by Dyna.

Figure 12: Global exaggeration. We can exaggerate the dynamic
deformations predicted by Dyna by scaling δ by a constant factor.
Left: Dyna. Middle: Dyna exaggerated. Right: Dyna exaggerated
and unposed. The unposed results show the predicted dynamic de-
formations in fixed T-pose.

Dyna captures only the visible surface effects of body motions on
soft-tissue. It would be interesting (though challenging) to relate
these visible surface changes to the underlying surface material
properties and physical forces. This would require a computation-
ally manageable model of the body’s soft tissues. Given such a
physics-based model, one might be able to infer the parameters of
the model, enabling greater generalization through FEM. It would
also be interesting to relate these parameters to individual health;
for example, to the distribution and consistency of fat on the body.
We could also learn more localized models of soft-tissue deforma-
tion using a model like the one in [Neumann et al. 2013b]. Some
properties of soft tissue may be local while others are more global
so it is unclear whether this approach will be valuable.

Our current capture system supports a wide range of motions but is
not able to capture many sports activities that require a larger vol-
ume. Extending these scanning methods to large volumes remains
an open problem. Modeling people with compression garments and

Figure 13: Localized exaggeration: Deformations can be exag-
gerated locally in regions selected by the animator. Weights are
illustrated by the color coding (right). The hotter the weight, the
larger the exaggeration of the deformation. Left: BlendSCAPE.
Middle: Dyna. Right: Local exaggeration.

how such garments change soft-tissue motion is an important prob-
lem for the garment industry. Finally, we would like to capture the
static effects of gravity and other forces using our methods.
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