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Figure 1. Human-Centric prediction of Human-Object Interaction. We explore Human-Object interaction when only the cues of the
human pose interacting with an unobserved object are available (’Input’). We propose a neural model that, for the first time, can infer
the location of the object (’Result’) from such input. This is possible even when our subject simulates the interactions with the object
(’Reference Image’).

Abstract

The intimate entanglement between objects affordances
and human poses is of large interest, among others, for
behavioural sciences, cognitive psychology, and Computer
Vision communities. In recent years, the latter has de-
veloped several object-centric approaches: starting from
items, learning pipelines synthesizing human poses and dy-
namics in a realistic way, satisfying both geometrical and
functional expectations. However, the inverse perspective
is significantly less explored: Can we infer 3D objects and
their poses from human interactions alone? Our investiga-
tion follows this direction, showing that a generic 3D hu-
man point cloud is enough to pop up an unobserved ob-
ject, even when the user is just imitating a functionality
(e.g., looking through a binocular) without involving a tan-
gible counterpart. We validate our method qualitatively and
quantitatively, with synthetic data and sequences acquired
for the task, showing applicability for XR/VR. The code is
available at: https://github.com/ptrvilya/object-popup.

1. Introduction

Complex interactions with the world are among the
unique skills distinguishing humans from other living be-
ings. Even though our perception might be imperfect (we
cannot hear ultrasonic sounds or see ultraviolet light [49]),
our cognitive representation is enriched with a functional
perspective, i.e., potential ways of interacting with objects
or, as introduced by Gibson and colleagues, the affordance
of the objects [19]. Several behavioural studies confirmed
the centrality of this concept [2, 9, 43], which plays a fun-
damental role also for kids’ development [2]. Computer
Vision is well-aware that the function of an object com-
plements its appearance [21], and exploited this in tasks
like human and object reconstruction [62]. Previous litera-
ture approaches the interaction analysis from an object per-
spective (i.e., given an object, analyze the human interac-
tion) [8,22,63], building object-centric priors [73], generat-
ing realistic grasps given the object [13, 34], reconstructing
hand-object interactions [8, 22, 63]. Namely, objects induce
functionality, so a human interaction (e.g., a mug suggests
a drinking action; an handle a grasping one). For the first
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Figure 2. Human-Centric vs. Object-Centric inference. A com-
mon perspective in the prior work is to infer affordances or human
pose starting from an object. We explore the inverse, Human-
Centric perspective of the human-object interaction relationship:
given the human, we are interested in predicting the object.

time, our work reverts the perspective, suggesting that ana-
lyzing human motion and behaviour is naturally a human-
centric problem (i.e., given a human interaction, what kind
of functionality is it suggesting, Fig. 2). Moving the first
step in this new research direction, we pose a fundamen-
tal question: Can we infer 3D objects and their poses from
human interactions alone?

At first sight, the problem seems particularly hard and
significantly under-constrained since several geometries
might fit the same action. However, the human body com-
plements this information in several ways: physical rela-
tions, characteristic poses, or body dynamics serve as valu-
able proxies for the involved functionality, as suggested by
Fig. 1. Such hints are so powerful that we can easily imag-
ine the kind of object and its location, even if such an object
does not exist. Furthermore, even if the given pose might
fit several possible solutions, our mind naturally comes to
the most natural one indicated by the observed behaviour.
It also suggests that solely focusing on the contact region
(an approach often preferred by previous works) is insuf-
ficient in this new viewpoint. The reification principle of
Gestalt psychology [37] highlights that ”the whole” arises
from ”the parts” and their relation. Similarly, in Fig. 3, the
hand grasps in B) pop up a binocular in our mind because
we naturally consider the relationship with the other body
parts.

Finally, moving to a human-centric perspective in
human-object interaction is critical for human studies and
daily-life applications. Modern systems for AR/VR [23],
and digital interaction [26] are both centered on humans,
often manipulating objects that do not have a real-world
counterpart. Learning to decode an object from human be-
haviour enables unprecedented applications.

To answer our question, we deploy a first straightforward
and effective pipeline to ”pop up” a rigid object from a 3D

B)A)

Figure 3. Reification principle. Gestalt theory suggests our
perception considers the whole before the single parts (A). This
served as inspiration for our work: the object can arise consider-
ing the body parts as a whole (B).

human point cloud. Starting from the input human point
cloud and a class, we train an end-to-end pipeline to in-
fer object location. In case a temporal sequence of point
clouds is available, we suggest post-processing to avoid jit-
tering and inconsistencies in the predictions, showing the
relevance of this information to handle ambiguous poses.
We show promising results on previously unaddressed tasks
in digital and real-world scenes. Finally, our method allows
us to analyze different features of human behaviour, high-
light their contribution to object retrieval, and point to ex-
citing directions for future works.

In summary, our main contributions are:

1. We formulate a novel problem, changing the perspec-
tive taken by previous works in the field, and open to a
yet unexplored research direction;

2. We introduce a method capable of predicting the object
starting from an input human point cloud;

3. We analyze different components of the human-object
relationship: the contribution of different pieces of in-
teractions (hands, body, time sequence), the point-wise
saliency of input points, and the confusion produced by
objects with similar functions.

2. Related Work
2.1. Object Functionality

In the core of human perception of objects, functional-
ity complements physical appearance, enhancing our per-
ception. Gibson [19] introduced the idea that humans use
affordances of objects for perception. Affordance can be
defined as: ”an intrinsic property of an object, allowing an
action to be performed with the object” [35].

From a Computer Vision perspective, object functional-
ity supports several tasks such as scene analysis [21], object
classification [17, 35], object properties inferring [71], and
it is also possible to learn object-specific human interaction
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models from 2D images [62]. These works suggest an inti-
mate entanglement between the action and the object itself.

2.2. Human-Object interaction

Modelling environment-aware humans and their interac-
tions in 3D is one of the most recent challenges to creating
virtual humans. We see two main lines of work there: hand-
focused and full-body ones.

Hand-Object Interaction. Several works tackle the
problem of human interaction, focusing solely on the hands
[10]. This has been done starting from 2D [8, 15, 18, 22, 25,
29, 30, 34, 61, 63], 2.5D [3, 5], and 3D data [4, 34, 55]. Par-
ticularly promising seems the application of well-designed
priors for the motion [73]. The class of objects involved in
these works are mainly limited to graspable ones. We argue
that interactions involving different body parts are common
in everyday life, more attractive from an applicative per-
spective, and more challenging. Moreover, full-body con-
text is crucial in reconstructing even grasp interactions since
body pose contains information on an object’s properties,
e.g. pounding with a hammer affects the whole posture to
support the action.

Fully-Body Interaction. On this line, several works fo-
cus on the interaction between a human and a scene [12,28,
31,38,57,64,65,69]. Also, in this case, priors can be used to
regularize the motion [48]. Several datasets are also avail-
able to study the interaction between a human and a sin-
gle object. For example, recent BEHAVE [1], GRAB [55],
and InterCap [32] capture full-body interactions with di-
verse objects. Works address the task of humans interac-
tions reconstruction from different kinds of data sources
like single image [59, 67], video [16, 50, 60], and multi-
view capturing [1, 33, 51], and synthetization of them as
well [7,27,41,54,56,58,66,70]. However, in all these works,
we observe a general object-centric perspective: given a
scene or an object, they aim to recreate the humans interact-
ing with them. We argue that the significantly less explored
complementary one has more concrete applications in daily
life, especially in VR/XR contexts where the human is cen-
tral to the system.

2.3. Human-centric perspective

While the general trend mainly focuses on the surround-
ing environment and objects, there is a growing interest and
availability of egocentric tools for humans [24, 68] also in-
teracting with objects [23,36,39]. They provide a subjective
view and a valuable paradigm for several applications, like
letting a user interact with objects in the digital world. Re-
cent works also involve more sophisticated devices [52,53],
while they are still far from applicability. In a similar direc-
tion to our work, others propose to recover objects arrange-

ments in a room starting from the human motion [42], to
hallucinate a coherent 2D image from a human pose [6],
or predicting physical properties of the objects (e.g., the
weight of a box) from human joints [71]. While the prin-
ciple inspires us, our study significantly differs: we focus
on object pose and its spatial relation with humans, starting
solely from unordered point clouds.

3. Method
This section describes our setting and the main compo-

nents of our methodology, both at inference and training
time. An overview of our pipeline can be found in Fig. 4.

3.1. Object Pop-Up

Input. Our method starts from a single human point cloud
P ∈ RNP×3 with NP points and a hot-encoded object class
c. The input point cloud can result from 3D/4D scans, IMUs
template fitting, or any other shape-from-X approach. Re-
gardless of the point cloud source, we remark that no fur-
ther information is used apart from the 3D coordinates of
the points. We represent each object as 1500 key points Kc

uniformly sampled on the template mesh.

Object Center. Training a model to predict an object pose
from a human point cloud poses several challenges. Such
a task requires the network to understand the location of
different body parts and their subtle relations while jointly
developing a sense of its spatial relationship with the hu-
man. Empirically, we observed that this is only feasible by
carefully deconstructing the problem and designing differ-
ent features to ease the learning process. As the first step
to decompose this problem, we train a PointNet++ architec-
ture [11,45] to predict the object center oP starting from P.
At training time, this is supervised with an L2 loss against
the ground truth center ôP :

LoP
(P) = ∥oP − ôP ∥22. (1)

Solving this task provides a good initialization for the object
pose, and we move the key points associated with the input
class c to the predicted center oP . Also, the features Fo ∈
R512 extracted by the network encode import information
on the whole human body.

Local Neighbourhood. The center prediction module can
be further exploited using the nearest human regions. In-
tuitively, considering the closest body parts is essential to
infer a contact relationship, but also the influence of body
parts not directly in touch with the object (e.g., head ori-
entation while using binoculars). To learn these connec-
tions, we consider the centered key points together with
the 3000 closest points of the input human point cloud:
PL = KNN(P,oP ). We pass these two sets as a unique
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Figure 4. Object pop-up. Our method predicts the position of an object, starting only from an input point cloud and an object class. It
relies on a careful problem decomposition in several sub-tasks, extracting features that involve the entire human body and relations between
body parts near the object.

point cloud to a PointNet++ network, obtaining a new set of
per-point features FPL

∈ R128.

Object displacement. To predict the object’s final posi-
tion, we empirically observed that directly predicting a ro-
tation and a translation is not a good solution. Inspired by
recent works that suggest a point-wise offset prediction to
recover 3D human shapes [14], we apply a similar approach
to our task. Our goal is to predict a point-wise shift SK for
the Kc vertices to align them to the target pose. We ap-
pend the features Fo, FPL

, the one-hot encoding of the ob-
ject class c, and a positional encoding to the centered key
points, and we pass them to a decoder. At training time, we
consider the following loss:

Loff (Kc,Fo,FPL
, c) = ∥SK − ŜK∥2F . (2)

The network is then trained end-to-end using:

L = LoP
+ αLoff . (3)

The weighting coefficient is α = 10.

3.2. Template fitting

Procrustes alignment. The point-wise offset produced
by the network potentially distorts the key points structure
in a non-rigid way. To recover the desired global rigid trans-
formation, we rely on a Procrustes alignment [20]. This
procedure takes as input two point clouds and returns the ro-
tation R and the translation t to minimize the L2 distances
of the points:

P (·, ·) → (R, t). (4)

We apply this to the template key points and their con-
figuration obtained with our network:

P (Kc,Kc + oP + SK) → (R, t). (5)

Finally, we recover the desired object pose as:

T′ = RTc + t (6)

Time Smoothing. While our pipeline is designed to work
with a single point cloud as input, considering the temporal
evolution of interaction is often crucial, shaping the con-
text of the individual poses. If a temporal sequence of point
clouds is available, we provide a post-processing smooth-
ing technique to take advantage of this further information.
After running our method for each frame, we smooth the
centering prediction across the sequence using a Gaussian
kernel. Later, we will discuss a variation of our approach
that also predicts the object class. In that case, we con-
sider the most frequent class prediction over the whole set
of frames to fix a class for the sequence.

4. Experiments

In this Section, we will describe the datasets used for
training and testing our method. Then, we will present the
baseline and the evaluation metrics. Finally, we will pro-
vide validation of our method as well as an analysis of its
extended version that allows object class prediction.

Datasets We jointly train on the union of BEHAVE [1]
and GRAB [55], obtaining a set of:

• 15 subjects, first 8 subjects from the GRAB dataset and
7 subjects from the official training part of BEHAVE;

• 40 different classes of objects, including all 20 ob-
jects from the BEHAVE dataset and 20 selected ob-
jects from the GRAB dataset;

We downsample training sequences of GRAB and BE-
HAVE to 10fps. To evaluate our method, we select sub-
jects 9 and 10 from the GRAB dataset and downsample the
sequences to 30fps. For the BEHAVE dataset, we use the
official test part, which includes all sequences at 1fps with
subject 3 and part of the sequences with subjects 4, 5. As
an input, we use point clouds with 9000 points sampled
uniformly over the SMPL-H [44] meshes. We refer to raw

4



Methods GRAB BEHAVE BEHAVE-Raw
Ec ↓ Ev2v ↓ Ec ↓ Ev2v ↓ Ec ↓ Ev2v ↓

NN 0.0362 0.1445 0.0802 0.3445 - -
Ours 0.0237 0.0943 0.0663 0.2900 0.0806 0.3143

Table 1. Comparison with the baseline. Our method significantly outperforms the baseline, even though the baseline uses the vertex
order as additional information. Moreover, the baseline method does not generalize to point clouds with an arbitrary number of vertices.

point clouds from the BEHAVE dataset used in our experi-
ments as BEHAVE-Raw. We use point clouds that are fused
from 4 Kinect sensors and subsample 90k points from them.

Data augmentation. During training, to simulate errors
in the center prediction, we randomly translate and rotate
the object around the ground-truth center ôP .

Implementation details. We implement our method us-
ing PyTorch framework and use Nvidia RTX3090 GPU for
training and evaluation. The model is trained using Adam
optimizer for 60 epochs with a learning rate of 1e−4, which
decays 10 times after 30-th and 40-th epochs. For the first
20 epochs of training, we use ground-truth object center ôP

instead of predicted oP to select local neighborhood FPL
,

to warm up the local PointNet++ encoder.

Nearest-Neighbor Baseline. Since we are the first to
tackle this task and no competitors are available, we propose
a simple while informative baseline. Given the input point
cloud, we recover the most similar in the training dataset in
an L2 sense. Then, we recover the object handled by that
subject and pose it in space in the same way. This baseline
demonstrates that the task is non-trivial and the generaliza-
tion to unseen poses and subjects of our method. Also, this
baseline requires that the target point cloud and the ones in
the training set share the same number of points. Hence,
if the input point cloud is a raw scan, this baseline is not
applicable. Our method, instead, does not rely on this as-
sumption and is more general.

Object classification. In our research, we also investigate
the possibility of incorporating class prediction inside the
network training. This task is significantly difficult at a
single-frame level since an isolated pose often does not sug-
gest a clear functionality. However, including this step is in-
teresting to analyze the interaction and the nature of the net-
work confusion. Hence, we modify our method by adding
a decoder module that takes the global features Fo and the
local ones FPL

as input to predict the object class. Then,
we add to the training a simple cross-entropy loss between
the predicted class and the ground truth one ĈP .

4.1. Metrics

In qualitative experiments, we use three main metrics to
evaluate our results. In the tables, we report the average
error across the considered test samples.

Vertex-to-vertex. In most cases, our resulting object and
the target one share the same number of vertices. Hence,
we can compute the error between our prediction and the
ground truth T̂′ as a point-to-point error:

Ev2v = ∥T′ − T̂′∥F . (7)

When such error is computed only between the object cen-
ters, we will refer to it as Ec.

Chamfer distance. When we evaluate the network that
also predicts the class, target objects and selected templates
might not share the same number of vertices. In that case,
as a metric we use bi-directional Chamfer distance:

Ech =
1

∥T′∥
∑
x∈T′

min
y∈T̂′

∥x−y∥2+
1

∥T̂′∥

∑
y∈T̂′

min
x∈T′

∥y−x∥2

(8)

Classification Accuracy. In case we use our network to
predict the object class, we measure our misclassification
error in terms of accuracy.

4.2. Object pose Evaluation

In Tab. 1, we report the quantitative evaluation on the
test set of the datasets, comparing our method to the base-
line. Our approach significantly outperforms the baseline,
even if this latter exploits the points order information. We
obtain the most significant margin on the GRAB dataset,
where objects are small and mainly involve hands, showing
the precision of our method. The baseline cannot be applied
on BEHAVE-Raw since it does not share the same number
of vertices as the training set, while our method shows only
a limited performance decrease, pointing to generalization
also to point clouds coming from different sources. We re-
port qualitative results of our method on GRAB (first two
rows) and BEHAVE (last row) in Fig. 5, and on BEHAVE-
Raw in Fig. 6. Finally, to further evaluate the generaliza-
tion of our method to unseen poses and subjects, we also
considered point clouds obtained by an egocentric pipeline.
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Figure 5. Qualitative results. Results of our method on GRAB (first and second rows) and BEHAVE (third row) datasets.

In this scenario, we record a user motion with an XSens
system [46], retarget the pose to an SMPL+H model, and
obtain the point cloud by sampling the resulting mesh. Out-
puts of our method can be observed in Fig. 1 and Fig. 7.
Generalizing to unseen poses and subjects acquired with
wearable systems prone to measurement errors opens sev-
eral exciting applications for VR/XR contexts.

4.3. Human Affordance analysis

We use our method to analyze human-object interaction
considering three key factors: changes in the input informa-
tion, the points saliency, and confusion in classification.

Input information. Since we are curious to analyze how
information is encoded in the inputs, we consider three
more scenarios:

• Hands: We generate the input data using the MANO
[47] hand model annotations included in GRAB
dataset. Hence, the model should infer the pose of the
object without relying on other body parts.

• SMPL: We consider all the points of the subject, but
the ones from the hands are in the rest pose provided
by SMPL [40]. In this way, we analyze how much the
network captures the information of the finger pose.
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Methods GRAB BEHAVE BEHAVE-Raw
Ec ↓ Ev2v ↓ Ec ↓ Ev2v ↓ Ec ↓ Ev2v ↓

Ours, hands1 0.0242 0.0871 - - - -
Ours, SMPL 0.0245 0.1009 0.0667 0.2877 0.0843 0.3205
Ours, SMPLH 0.0237 0.0943 0.0663 0.2900 0.0806 0.3143
Ours, SMPLH+T 0.0235 0.0983 0.0686 0.2880 0.0823 0.3161

Table 2. Human Affordance. We use our pipeline to explore how different inputs affect the object pose prediction. Using full body
provides richer features for object recovery.

Figure 6. BEHAVE-Raw. Results of our method considering as input raw point clouds from BEHAVE dataset. Despite the amount of
noise and occlusions, our method is able to generalize and performs reliably.

Figure 7. Human from IMUs. Results of our method from a motion sequence acquired with IMUs. Even if the subject is unseen and the
motion is subject to noise in the IMUs sensors, our method produces stable results.

Basketball Chairwood Eyeglasses Controller

Figure 8. Saliency. Point cloud saliency computed for different objects, rendered from two perspectives. The contact region is relevant for
all the interactions, while the network also focuses on the feet and head regions. All the predictions are results of our method.

• SMPLH+T: We consider all the points of the sub-
ject with the finger correctly posed (as in our method),
and also we apply the temporal smoothing outlined
in Sec. 3. Temporal information contextualizes the in-
teractions and regularizes the predictions throughout
the sequence.

For the first two cases, we train ad-hoc networks. Results
1The results were revised with the help of better data preprocessing.

of this analysis are reported in Tab. 2. We notice that hands
provide crucial information for the GRAB dataset. The re-
sult is expected since, as the name suggested, all the inter-
actions in the dataset are focused on hands. However, full-
body context is crucial for reconstructing interactions from
the BEHAVE dataset, as they often involve multiple body
parts.
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Method GRAB BEHAVE
Ec ↓ Ech ↓ Acc.↑ Ec ↓ Ech ↓ Acc.↑

NN, SMPLH 0.0404 0.1938 15.42 0.0880 0.3873 21.48
Ours, SMPLH 0.0290 0.1387 20.80 0.0728 0.3046 24.16
Ours, SMPLH + T 0.0263 0.1384 30.15 0.0722 0.3069 49.28

Table 3. Object classification. Quantitative results of models with object class prediction. Introducing temporal information has a dramatic
impact on object classification.
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Figure 9. Confusion Matrix. The confusion matrix for a subset of
the predicted classes. Objects with similar functionality are often
confused (Coffemug vs Cup), while ones that suggest characteris-
tic human poses (Dorknoob, Hammer) are well separated.

Points saliency. As further evidence that object interac-
tion involves different body parts, we conducted a study
to discover what input points are crucial for the network.
We follow a recent protocol to find 3D point cloud saliency
[72]: we cast the input through the network, we compute a
loss on the output (in our case, the one in Eq. (2)), and we
modify the input using the backpropagated gradient. This
procedure is performed iteratively, and we refer to [72] for
the details. We report the results of this study in Fig. 8,
where points modified by the procedure are highlighted in
red. We find the results of this analysis fascinating. As ex-
pected, the contact region is always essential to infer the
correct object location. However, feet play a crucial role in
all the reported cases, since they provide information about
the human position and the consequent pose of the body.
Another highlighted region is the head: different orienta-
tions give clues about object location and body posture.

Confusion in classification. As a final analysis, we ex-
plore the learning object classification during the training.
We jointly train a further MLP module that takes as an in-
put Fo and predicts the object class, using a cross-entropy
loss. When a time sequence of point clouds is available,
we exploit it by selecting the class with the highest score
across the frames and applying it to the whole sequence.
We report results in Tab. 3. Our experiment suggests that the
task is challenging while, given the number of classes (40),
we still consider our results a promising first step. Also,

we notice that temporal smoothing significantly helps clas-
sification accuracy. Temporal context disambiguate poses
without a clear functionality. In Fig. 9, we report the confu-
sion matrix for a subset of the classes for our method. The
misclassification mainly arises from interactions of objects
with similar functionality.

5. Conclusions
In this work, we have addressed a novel and inspiring

problem that changes the perspective on object-human in-
teraction. Our proposed model is simple, carefully de-
signed, and inspired by behavioural studies. We collected
evidence of the method’s effectiveness on a large set of
object classes and empirically proved its generalization on
noisy and different inputs. Finally, our analysis of human
affordance is unprecedented, showing that human-object in-
teraction can also involve body parts distant from the object
and pointing to interesting relations useful for applications
and subsequent works.

Limitations and Future Works. As the first exploration
in this direction, our study enables several future possibil-
ities. In this work, the temporal information is only used
after the training procedure. Incorporating this informa-
tion can create other patterns, further improving the results’
quality. Our empirical evidence suggests that class predic-
tion requires further investigation and more sophisticated
techniques, like specialized attention mechanisms. Finally,
we do not consider sequences that involve long (e.g., hours-
long) and complex (e.g., multi-objects) interactions, which
are difficult to capture. We hope our work can foster the
community to collect such datasets.
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APPENDIX

This appendix, provides an ablation study on our design
choices in Appendix A. In Appendix B we report further de-
tails on our method, how we modified it to address the class
prediction task, and a description of the considered baseline.
In Appendix C we include results for different kinds of in-
puts (shapes from GRAB and BEHAVE, IMUs, and noisy
point clouds), and discuss failure cases oth the method. Fi-
nally, in Appendix D we describe the points saliency esti-
mation procedure, report further examples, and include the
full confusion matrix for the classification.

A. Ablation Study

Method GRAB BEHAVE
Ec Ev2v Ec Ev2v

R,t 0.0727 0.2556 0.0804 0.3167
no FPL 0.0260 0.1112 0.0617 0.2868
Ours 0.0237 0.0943 0.0663 0.2900

Table A.1. Ablation study. We ablate different parts of our
method, showing their importance for the quality of the final re-
sults. We observe that directly predicting the rotation and the
translation produces the worst results.

We perform an ablation study to validate our design
choices and analyze their impact on the system. We report
the results in Tab. A.1.

R,t. Our method outputs a vertex-wise offset. Given
that our goal is recovering a global pose of a rigid object, a
more natural option is to predict a global rotation and trans-
lation directly. However, training a model this way signif-
icantly decreases performance, suggesting that our richer
output representation provides the network more flexibility.

No FPL
. One of our hypotheses is that the correct ob-

ject location arises from the union of human parts. In our
design, we enrich the features from the whole body with
others that are focused around the predicted center location
of the object. By removing the latter, we observe up to 15%
impact on the performance. We discover this information
is particularly relevant for small objects (i.e., GRAB [55]),
where recovering the pose requires a finer understanding.
The performance for the larger objects (i.e., BEHAVE [1])
is on par with the main model, as in this case, the whole
body becomes predominant in the prediction.

B. Architecture and implementation details

In this section we provide more details about the pro-
posed architecture. We gather the used notations in
Tab. A.2.

Symbol Meaning
P ∈ Rn×3 Input 3D human point cloud
oP ∈ R3 Predicted Object Center
ôP ∈ R3 Ground truth Object Center
PL ∈ R2000×3 Selected neighbourhood
Fo ∈ R512 Features from the global point cloud
FPL

∈ R128 Features from the local neighbourhood
C = {c1, c2, . . . , c39} Classes
c ∈ C Object class (given as input, or predicted)
Kc ∈ R1500×3 Key points of the class c
Tc ∈ Rm×3 Template for the class c
SK ∈ R1500×3 Predicted point-wise offset
ŜK ∈ R1500×3 Ground truth point-wise offset

Table A.2. Symbols. In this table we report the main symbols
used across the method.

B.1. Object pop-up

Training details. Training the model for 60 epochs on
Nvidia RTX3090 GPU takes approximately 18 hours. Se-
quences from the GRAB dataset are downsampled from
120fps to 10fps for training and 30fps for evaluation. The
BEHAVE dataset provides extended annotations at 30fps
for some sequences, that are downsampled to 10fps for
training. For evaluation on BEHAVE, the original 1fps an-
notations are used. We align the meshes to share the same
ground plane, keeping the original global rotation.

B.2. Object pop-up with class prediction

The overview of the model with class prediction is pre-
sented in Fig. A.1. Object class is predicted from global
Fo using MLP, apart from that module other modules are
similar to the main model.

Training details. This model is trained in exactly the
same setting as the model without class prediction. We use
cross entropy loss Lcel, to supervise class prediction.

The network is then trained using the following loss:

L = LoP
+ αLoff + Lcel. (9)

The weighting coefficient is α = 100.

B.3. Nearest neighbour baseline

Here we provide a detailed description of the Nearest
Neighbour baseline. First of all, we consider the set of train-
ing point clouds

Ptrain = {Ptrain
1 ,Ptrain

2 , . . . ,Ptrain
k }, (10)

where each Ptrain
i is equipped with a correctly posed object

template Ttrain
i and the relative class ctraini . Then, given a
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Figure A.1. Object pop-up with class prediction. Our modified method predicts the object position and the class, starting only from an
input point cloud. We train another module to take as input Fo and predict the class c for the considered interaction.

new input point cloud P, we look for the closest point cloud
in the training set:

î = argmin
i∈[0,...,k]

∥P−Ptrain
i ∥F . (11)

When the task is to recover the object with the class given
as input, we consider only the training samples of the given
class, and we retrieve the object Ttrain

î
. When the method

also has to predict the class, we consider the entire training
dataset, and we also output the associated class ctrain

î
.

Remark. This baseline can be applied only if the input
point cloud shares the same number and order of vertices as
the ones coming from the training set. While this gives an
advantage to the baseline, we decided to proceed this way
for a computational reason, given the large training dataset
size.

C. Results
This section presents more qualitative results of the pro-

posed Object pop-up method and discusses the failure cases.

Hands and SMPL. Qualitative results for Object pop-up
trained on data generated from MANO [47] hand meshes
from the GRAB dataset are presented in Fig. A.2. The vast
majority of actions in GRAB are done with hands, so that
the model can predict the object’s position quite well. How-
ever, for other types of interactions (i.e. involving other
body parts), having full-body context is crucial. In Fig. A.3
we show qualitative results for Object pop-up model trained
on data generated from SMPL [40] meshes from GRAB
and BEHAVE. This data differs from the primary training
data generated from SMPL-H [44] meshes by the absence
of articulated hand pose. Some easier interactions with ob-
jects through hands, like lifting a camera on the left side of
Fig. A.3, are handled by the model well. However, more
complex cases, like cutting with a knife in the middle of

Fig. A.3, lead to erroneous prediction because the model
lacks local features essential for the interaction. At the
same time, interactions involving full-body, like sitting in
the right of Fig. A.3, are perceived well by the model be-
cause hands are not contributing much to the local interac-
tion context there.

GRAB and BEHAVE. We present more qualitative re-
sults on GRAB in Fig. A.6 and BEVAHE in Fig. A.5. Our
method can predict the object’s realistic location for many
classes.

Generalization. We present additional results on
BEHAVE-Raw in Fig. A.4, and in Fig. A.7 we report
more qualitative examples on the data recorded with
IMU sensors. Our method shows generalization to both
noisy point clouds of BEHAVE-Raw and unseen subjects,
recorded with a wearable IMU setup.

Failure cases. Our method sometimes predicts objects in-
terpenetrating the human body (e.g. yoga ball on the left
of Fig. A.8). The absence of an explicit surface in the in-
put data requires the network to recover such a complex
structure and the non-interpenetrating relationship. In some
cases, the method struggles to predict correct object place-
ment for objects with small handles (e.g. mug in the mid-
dle of Fig. A.8, as grabbings by different parts (e.g., by the
handle, or by the central body of the object) are all plausible
solutions. These two cases differ only in a slight variation
of hand pose, which can be hard to grasp even with the local
focus of the network. Another failure case is incorrect ob-
ject placement for interactions that do not involve objects’
functionality (i.e. lifting, passing, inspecting). An exam-
ple of such a case is a teapot interaction on the right side of
Fig. A.8, where it is just shifted in the space. For this case,
the method still predicts an object pose which is more com-
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Figure A.2. Hands. Our method results on hands from the GRAB dataset. The input point cloud is visualized over the human mesh for
reference. The prediction is made using just a point cloud and an object class label.

Figure A.3. SMPL. Results of our method on data generated from SMPL model from GRAB and BEHAVE. This case differs from data
sampling from SMPL-H model by the absence of articulated hand pose. The input point cloud is visualized over the human mesh for
reference. The prediction is made using just a point cloud and an object class label.

Figure A.4. BEHAVE-Raw. Results of our method on raw point clouds from the BEHAVE dataset. The input point cloud is visualized
over the human mesh for reference. The prediction is made using just a point cloud and an object class label.
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mon for the object’s functionality (Fig. A.6 presents such
distinctive teapot grasp).

D. Human affordance details
D.1. Points saliency estimation

Here we report the details about Points saliency estima-
tion, following the procedure from the Algorithm 1 of [72].

1. Given an input point cloud P and the associated class
c, first of all we compute the center of P as the median
of the three individual coordinates of the points:

pm = (median(Px),median(Py),median(Pz)).
(12)

2. For each point, we compute the vector that connect the
center pm to it:

ri = (pi − pm) (13)

3. We cast P and c through the network, obtaining the
output offsets SK . We use them to compute Loff as
reported in the main manuscript.

4. For each input point pi of the point cloud, we recover
the gradient by backpropagation:

gi = ∇piLoff (14)

5. We construct the point-wise saliency map as:

si = −∥ri∥2(ri · gi) (15)

6. We pick the 90 input points (1% of the point cloud)
associated to the top saliency scores, and we shift the
position of each of these points toward the shape me-
dian:

p̃j = pj − 0.05ri (16)

7. We substitute these values in the original point cloud,
and we restart the procedure from the beginning for 10
times.

In Fig. A.9 we report further results of this procedure (in
red, the points touched by these iterations).

D.2. Confusion matrix of classes.

For the sake of completeness, in Fig. A.10 we report the
full confusion matrix for all the classes on the classification
task. We observe that the task is particularly challenging,
and several ambiguous cases exist. We believe this is due to
the presence of objects with similar functions (e.g. various
boxes, two chairs and a stool, etc.), but also the ambiguity
of some datasets sequence (e.g., a human inspecting object
without actually using it with a clear functionality). In fu-
ture, the collection of other datasets designed explicitly for
this task will significantly ease the learning.
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Figure A.5. BEHAVE. Results of our method on the BEHAVE dataset. The input point cloud is visualized over the human mesh for
reference. The prediction is made using just a point cloud and an object class label.
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Figure A.6. GRAB. Results of our method on the GRAB dataset. The input point cloud is visualized over the human mesh for reference.
The prediction is made using just a point cloud and an object class label.
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Figure A.7. Human from IMUs. Results of our method on data acquired with wearable IMUs. The input point cloud is visualized over
the human mesh for reference. The prediction is made using just a point cloud and an object class label.

Figure A.8. Failure cases. Our method may fail to predict correct object location. (Left) Interpenetration of the object and human might
happen, because the method does not fully account for a surface of the human body. (Mid) Incorrect position for an object that can be
grasped both by the handle and by the body with only slight variation in hand pose. (Right) Wrong object location for non-object-specific
interactions, such as pass, lift or inspect.

Game controller Stool Yoga ball Cup

Figure A.9. Saliency. Point cloud saliency computed for different object predictions, rendered from two different perspectives. We observe
that contact region is relevant for all the interaction, while the network also focuses on feet and head. All the objects are results of our
method.

18



Figure A.10. Confusion Matrix. Here we report the full confusion matrix for the classification prediction. Zoomin for details.
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