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Real-world interaction captured with wearable sensors

Figure 1. We propose HOPS – a method of capturing human-object interactions
using only a wearable camera and inertial sensors. Combining visual localization
cues and our novel interaction model, HOPS tracks the human and the object
pose even when it is not visible. Since our method is inherently dynamic, we
urge readers to view our supplementary video for animated results.

Abstract. In everyday lives, humans naturally modify the surrounding
environment through interactions, e.g ., moving a chair to sit on it. To
reproduce such interactions in virtual spaces (e.g ., metaverse), we need
to be able to capture and model them, including changes in the scene
geometry, ideally from ego-centric input alone (head camera and body-
worn inertial sensors). This is an extremely hard problem, especially
since the object/scene might not be visible from the head camera (e.g .,
a human not looking at a chair while sitting down, or not looking at the
door handle while opening a door). In this paper, we present HOPS, the
first method to capture interactions such as dragging objects and opening
doors from ego-centric data alone. Central to our method is reasoning
about human-object interactions, allowing to track objects even when
they are not visible from the head camera. HOPS localizes and registers
both the human and the dynamic object in a pre-scanned static scene.
HOPS is an important first step towards advanced AR/VR applications
based on immersive virtual universes, and can provide human-centric
training data to teach machines to interact with their surroundings. The
supplementary video, data, and code will be available on our project
page at http://virtualhumans.mpi-inf.mpg.de/hops/.

http://virtualhumans.mpi-inf.mpg.de/hops/
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1 Introduction

Current XR applications provide limited immersion as interaction with the vir-
tual world either requires a controller, gloves, or other input device or is restricted
to simply walking through the scene. At the same time, imagine the immersion
that could be reached if it was possible to interact with the virtual world through
interacting with objects in the real world. For example, opening a door in the
real world would open a portal into another dimension in a virtual reality appli-
cation, or moving a piece of furniture would solve a puzzle in an AR adventure
game. Imagine the possibilities collaborative settings open up, where one person
can virtually visit another space and observe another person interacting with
their environment (see Fig. 2).

Common to the examples above is that they require capturing the interac-
tion between a human and objects in the environment. Naturally, one could use
an external camera system to identify and track both and this case has been
covered in the literature [46, 47], including tracking objects within SLAM sys-
tems [38, 50]. However, expecting non-experts to buy, mount, and calibrate a
multi-camera system while ensuring that there are no blind-spots, e.g., due to
a human occluding the door while opening it (as in Fig. 7, seq. 4), seems very
unrealistic and a deterrent to such applications becoming widely adopted. In
order to be both scalable and to limit the efforts required by a user to setup
the system, only wearable sensors such as cameras, IMU sensors, etc. should be
used. Prior work showed that such a setup allows to precisely localize a human
in a known scene and to capture their body’s motion [17]. However, this prior
work assumes that the scene is static and is not capable of modeling changes in
a scene caused by humans interacting with objects.

To the best of our knowledge, this paper is the first attempt to address a
novel extremely challenging problem: jointly tracking and localising the human
and the dynamic scene changes resulting from the interaction, from wearable
sensors alone. Since the objects in the scene are often not visible in the head
camera during the interaction, this might appear as an impossible task. The
human might not look at the object during the interaction, e.g ., while adjusting
the position of a chair while sitting down. Or the object might appear static to
the camera, e.g ., a table might fill the human’s field of view while dragging it
through the scene, creating the impression that neither table nor human move
(see Fig. 3). It thus becomes necessary to include contact information, e.g .,
provided by pressure sensors.

Certainly, a traditional visual tracker is not sufficient, and metrically accu-
rate tracking is nearly impossible in the absence of visual cues. However, many
applications only require visually plausible tracking instead. That is obtaining a
motion which looks qualitatively similar to the original motion, while satisfying
physical and contact interaction constraints. Real humans are capable of such
tracking of objects without permanently looking at them because contacts with
the object give us a strong cue of the object location relative to us. We also have
a mental model of the degrees of freedom of objects (e.g, a door can only move
along a hinge joint, or a couch can only move on the XY plane unless it is lifted).
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Person A point of view Person B is observing the 
interaction in the virtual world

Interaction in the virtual world

Person A – using HOPS to 
capture real world interaction
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headset at a remote location

A B

Fig. 2: HOPS potential application. One person can interact and change the
real scene while the other can observe this interaction from a remote location in
the virtual world.

These observations motivate the design of our novel method, which we name
HOPS – Human-Object Positioning System. HOPS is the first method to lo-
calize and estimate the pose of the human and the object the person interacts
with, within a pre-scanned 3D scene using IMUs and a head-mounted RGB
camera. HOPS integrates several cues in a sequential optimization framework
with interaction reasoning. For some frames, the person can be reliably local-
ized in the scene with visual localization from the head camera. Such estimates
are integrated jointly with IMU-based full body pose estimates. Similarly for
some frames, the dynamic object (which can be in a different location relative
to the static scan) is visually localized within the 3D scene from the head cam-
era. Although this is only possible when the person is sufficiently far away from
the object, before and after the interaction, such object and person localization
estimates serve as anchor points. When the person interacts and contacts the
object, person and visual object localization are typically no longer possible, be-
cause there are not enough reliable cues (as in Fig. 3). Hence, during contact
interaction, we track the human using IMUs cues only. We track the object by
enforcing that it moves coherently along with the human satisfying contacts and
the degrees of freedom of the object – we parameterize the object motion to
satisfy physical constraints (e.g., a door can only move along a hinge joint) [22].
All aforementioned cues are integrated to obtain qualitative human-object mo-
tion which is coherent with the anchor points, contacts and physical constraints
during interaction.

We see our approach as step towards embodied capture of human-scene in-
teractions, which can open a wide range of immersive AR and VR applications,
for example, collaborative interaction with virtual world through modifying real-
world objects. Furthermore, our approach can be used to record training data
to teach robots and autonomous agents to interact with the world.
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Starting position Motion Ending position

First person view – no motion is visible

In reality, the table is being pulled

Fig. 3: Body-mounted capturing challenges. During the ego-centric camera
capturing, the object might appear static to the camera, even if the motion is
happening in reality. HOPS aims to overcome such problems and still track the
object by using body motion then the visual data is not reliable.

In summary, our contributions are the following: 1) We address a challenging
new problem with many relevant applications: estimating human and object
motion within a global 3D scene, all from ego-centric data alone. 2) We propose
HOPS, an optimization based method which combines visual localization, signal
from wearable IMUs on the body, and reasoning about human-object contacts
and physical constraints. 3) We will release code and data to facilitate further
research in this new direction.

2 Related Work

Human-object interaction: Currently, most of the methods work with exter-
nal cameras to record human-object interactions. Methods to capture the full
body pose are using external cameras and mostly static scenes [19] or not us-
ing the scene context at all [55, 58, 64]. RigidFusion [56] tracks objects using
an external RGBD sensor. There are methods that work with first person view
footage, however they are mostly studying the upper part of the body, e.g .,
hand-object pose estimation [13,26,29,33], and are mostly limited to static cam-
eras. Our method works with body-mounted sensors and a moving camera while
capturing the full-body pose and object position simultaneously.

Embodied research: Body-mounted sensor setups are heavily used to solve
various tasks: activity recognition methods like [4,9,15,32,37,61] use ego-centric
camera setups with a camera looking towards the body. However they typically
concentrate on capturing the upper body. Many full-body capturing methods [36,
49, 57] are working with similar head-mounted setups, but because the cameras
are looking on the person wearing them rather than outwards, these methods
do not take the environment around the subject into consideration. There are
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Fig. 4: Overview. (A) HOPS uses RGB video from a head mounted camera,
human body localization data from IMUs, contact labels, a pre-scanned scene
and object physics constraints as well as object masks for RGB video and the
scene 3D scan. Our method performs a visually plausible human-object inter-
action modeling by localizing human (B), inferring object position from body
motion and visual cues (C) and correcting the object and body motion parame-
ters (D) to match the visual localization results using the bending energy (Sec. 3)
optimization.

methods that work with an outwards-facing camera [24, 62, 63], however they
do not use any additional sensors to capture the human body pose, instead
predicting it using motion priors. This results in body poses far from the ground
truth. Most related to our method, HPS [17] captures human motion by using
body-mounted IMU sensors and a head-mounted camera looking outwards to
initialize and further correct the location of the subject within a pre-built 3D scan
of the environment. Our approach essentially extends [17] by not only tracking
the human pose but also an object the person interacts with. Whereas HPS
is restricted to static environments and cannot model scene changes caused by
human-object interactions, HOPS removes these restrictions.

Visual localization: Visual localization algorithms aim to estimate the pose
of a camera in a known environment. Current state-of-the-art approaches for ac-
curate camera pose estimation are based on 2D-3D matches between pixels in
the camera image and 3D scene points. These 2D-3D matches are either esti-
mated based on matching local features [21, 28, 31, 39, 41, 42] or by regressing
a 3D point coordinate for each pixel [6, 7, 10, 12, 44]4. A recent line of work
focuses on (benchmarking) the robustness of localization algorithms in chang-
ing scenes [12, 23, 48, 53], i.e., to illumination, weather, and seasonal changes
as well as to changes caused by human actions (rearranging furniture, etc.).
These approaches assume that a large-enough part of the scene remains static

4 We refer the interested reader to [5] for a discussion and comparison of both types
of approaches.
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and is observed by the camera to facilitate pose estimation. The second assump-
tion is violated in our scenario and we use IMU-based human pose tracking to
bridge gaps where visual localization fails. We use a state-of-the-art localization
pipeline [39,40]. For convenience, we use the same technique for object pose esti-
mation. Using a dedicated object pose estimation algorithm such as [27,43,54,59]
should further improve performance. Note that the main contribution of HOPS,
i.e., jointly reasoning about human and object poses, is not tied to any particular
localization algorithm.

3 Mathematical background

Our method is built on an efficient combination of data coming from the IMUs
and head-mounted camera. However, these two sources of data can often give
different predictions for the human and object positions. For example, IMU
pose estimation is consistent across frames, but accumulates drift over time
which cannot be fixed as IMU sensors cannot track the global position in the
scene. In contrast, camera localizations do not drift, but the resulting poses are
noisy. Therefore it is crucial to have a way to efficiently combine these two data
sources, resulting in drift-free and smooth trajectories both for the object and
body motions. Our solution is, using the IMU estimations, to build a trajectory
and correct it with camera localization estimates, ignoring the noise and keeping
the motion trajectory smooth and realistic.

In this section we describe a general mathematical tool that allows us to do
so: with this tool one can adapt any trajectory to a set of “control points” – a
set of points which trajectory should lean to intersect, while deforming the least.
The key idea here is to interpret deviations in a trajectory from the original as
incurring a potential energy, analogously to flexing a tape. In the context of our
task, this provides a trade-off between remaining close to the captured human
motion (initial IMU estimate) and satisfying the visual localization constraints.
The intuition is to preserve the local characteristics (first and second derivatives,
curvature) of the reference trajectory and hence its naturalness, while satisfy-
ing constraints. This is useful since IMU trajectories are locally accurate, but
globally subject to drift.

Position trajectory deformation. Despite the 3D nature of our method, here we
are focusing on the 2D trajectories. In practice, we correct only the x and y
components in the IMU trajectory and leave z component unchanged. Given a
trajectory described as a curve l(t) = (x(t), y(t)), t = [tstart, tend], and a list of K
control points p = {pi = (xi, yi)}Ki=1 (constraints) at times tstart ≤ t1, . . . , tK ≤
tend, we minimize the trajectory bending energy Etr and the distance to the
control points as follows:

Ftr(l,p) = argmin
l̂

(
K∑
i=1

(||̂l(ti)− pi||2) + λEtr (̂l, l)

)
, (1)
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where λ is the tape rigidness coefficient (Fig. 5, A). The bending energy penalizes
deviations to the initial curve l

Etr (̂l, l) =

∫ tend

tstart

(
dα̂(t)

dt
− dα(t)

dt

)
dt; (2)

where

α̂(t) = arctan

(
dŷ

dt
,
dx̂

dt

)
, α(t) = arctan

(
dy

dt
,
dx

dt

)
.

Here, α is the angle of the curve tangent vector and the energy penalizes devia-
tions of the angle’s temporal derivative. We can interpret it as forcing curvature
preservation.

Body pose trajectory deformation. For pose θ we propose a similar solution,
except that the bending energy

Eθ(θ̂,θ) =

∫
t

∣∣∣∣∣
∣∣∣∣∣dθ̂(t)dt

− dθ(t)

dt

∣∣∣∣∣
∣∣∣∣∣
2

(3)

depends only on the first temporal derivative (for simplicity in high dimensions),
instead of the second derivative as in Eq. (2). The control points are target
positions p for certain vertices j = {ji} of the SMPL model at times {ti}Ki=1. We
find the trajectory by minimizing

Fθ(θ,γ,p, j) = argmin
θ̂,γ̂

(
λ(Eθ(θ̂,θ) + Etr(γ̂,γ))

+

K∑
i=1

(||(Mji(θ̂ti , γ̂ti))x,y − pi||2)

)
, (4)

where (·)x,y means that only the x- and y-axis components are used, andMji(·) ∈
R3 is the ji-th SMPL vertex. All temporal derivatives are approximated with
finite differences. Fig. 5, B shows qualitative results of optimization.

4 Method

We aim to estimate the 3D body and object poses during interaction from body-
mounted sensors (head camera and body-worn IMUs), while localizing both
within a given 3D scene – a static 3D scan of the scene is an input to our
method as in HPS [17]. Formally, our task is to estimate the human body pose
θ = {θt}, translation parameters γ = {γt}, and object position O = {Ot}
at time t ∈ [tstart, tend]. For visually plausible tracking, we need to satisfy the
following (soft) constraints:

1. The object should be close to the object visual localization Ot estimates at
discrete anchor keyframes k ∈ TO ⊆ [tstart, tend], when visual localization is
reliable. Also, the human pose should match the visual localization of the
head camera Ct for reliable intervals t ∈ TC .
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2. During the interaction intervals T int = {[tis, tie]}Ki=1 ⊂ [tstart, tend], contact
locations derived from the human body cbody(θt,γt) should match the ones
derived from object location cobj(Ot).

3. Body parameters θt,γt (pose and translation of the SMPL [30] model)
should remain close to the IMU estimates {θI

t ,γ
I
t }, registered to the scene.

To solve such a complex task, we divide it into several subproblems: we perform
human body localization (Sec. 4.1) and object localization (Sec. 4.2) in the given
scene and then refine the result to ensure human and object pose consistency
(Sec. 4.3). Fig. 4 illustrates our method.

Since the focus of this paper is visually plausible tracking and interaction
reasoning, we concentrate on interactions that involve the full body and large
objects whose degrees of freedom are constrained by the environment (e.g., a door
can only move along the hinge joint). We decided to assume a mask of the object
and contact labels as given. Our choice is motivated by our belief that such data
can be obtained automatically during the recording in the near future, although
right now it requires setting up additional hardware or developing additional
algorithms, therefore we leave this as a future work.

We obtain the mask using a semi-automatic method [45], which we use for
both the scene scan images and for the head camera images5 – given the rapid
progress in semantic segmentation, we do not see using a semi-automatic method
as an important limitation. Contact labels are given in form of time stamps of
when the interaction starts and ends, as well as an indication which of the
hands are used during the interaction (left, right, or both). Such labels would
be possible to capture with hand touch sensors, or from visual cues if the hands
are in the field of view, but we leave this for the future work.

4.1 Human body localization

IMU-based pose estimation. Current IMU-based pose estimation solutions,
such as XSens [35] used in our setup, allow us to get a continuous human pose
estimate using a wearable and small IMU sensors. Xsens system consists of 17
IMUs attached to the body with velcro-straps. Using proprietary algorithm based

on the Kalman filter and kinematic body, the system provides human pose θ̃
I

t

and translation estimates γ̃I
t in its own coordinate frame. While these estimates

can be considered accurate, the system has two major flaws: 1) motions are not
registered within the 3D scene and 2) these estimates accumulate significant drift
over time, especially in the global body position and orientation components.
Head-mounted camera localization. For every camera frame, we get the
initial head pose estimates using hierarchical localization algorithm [39], which
operates on RGB images. Given the dataset of images with known position in
the pre-scanned scene, the algorithm establishes correspondences between those
images and frames coming from the camera and finds the position of the the
head camera C̃t by minimizing the reprojection loss.

5 As in [52], we thus assume knowledge about which object changes.
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Fig. 5: Trajectory and pose parameters fitting with bending energy.
A) bending trajectories with Ftr using different rigidness coefficients λ, purple
marks the original trajectory, green marks the result; B) Visualization of the
SMPL model after fitting parameters with Fθ to minimize the distance between
the hand and the control point. Orange dots denote control points.

Combining camera and IMU. Inspired by HPS [17], we use a data from the
head-mounted camera to register the body within the scene and correct the IMU
drift. Our body localization module uses these head camera locations C̃t and

initial IMU estimates (θ̃
I

t , γ̃
I
t ) to derive the body position within the scene and

correct body and camera positions using the bending energy minimization intro-
duced in Sec. 3. As a result, we get improved camera locations Ct and human
pose parameters (θI

t ,γ
I
t ) registered within the scene. Please see the supplemen-

tary for more detailed description of the algorithm.

4.2 Object localization

Robust visual object localization for anchor keyframes. In contrast to
localizing the human head camera which is in permanent motion, the objects we
consider are static and can only move during the interaction with the human.
We use this observation and restrict object visual localization to detecting a few
anchor keyframes, which will serve as control points during interaction reasoning
here and in Sec. 4.3.

After localizing the camera Ct ∈ SE(3) for every frame t ∈ TC , TC ⊂ R, we
compute the object locations OC

t ∈ SE(3) relative to the camera. Here, we use
the same camera localization method from Sec. 4.1, but use only keypoints inside
the object mask (both for the head camera frame, and the database images).
The position and orientation of the object Ot in world coordinates is obtained
as: Ot = Ct(O

C
t )

−1. Since objects only move when the human interacts with
them, we leverage temporal information to accurately locate them. We split ob-
ject positions in K + 1 groups, where K is the expected number of dynamic
interaction intervals. Each group contains object positions detected before in-
teraction interval K + 1 and after K. To filter the noise, for each group, we run
the clustering algorithm DBSCAN [14] on the translation part of every location
in the group and leave only the largest cluster. We compute the mean position
per group, and sort them temporally, which gives us K + 1 reliable positions
{Ot}K+1

t=1 .
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Tracking objects from human motion, even when they are not visi-
ble. The set of reliable object localization estimates {Ot}K+1

t=1 from the previous
paragraph is limited – the object should be visible and contain distinct features
on the surface. As we are dealing with real-world interactions, we cannot guar-
antee that these conditions are met during the interaction. The key idea here
is to leverage the human motion and the physical constraints of object motion
to address an otherwise impossible task: tracking objects that are not visible.
Every object type has its own physical behaviour and restrictions – e.g . some of
the objects can be carried everywhere, but some of them are fixed or cannot be
lifted and can only be dragged. Therefore the solution is class-specific: here, we
describe our approach for objects moved by hands along the floor plane (chairs,
tables, etc.), or fixed to a vertical hinge (doors), but the method can be extended
to the other object classes with different physical restrictions (drawers, sliding
doors, etc.).

Human trajectory. For each hand marked to be in contact at the start of the
interval (input to our method), we find the closest point to the hand on the object
ci, i ∈ {L,R} (left, right) and mark it as a contact. Then we compute the offset
we need to apply to the human root joint such that hands hi are in contact by
roffset =

1
2

∑
i∈{L,R}(c

i −hi) in case of two hands or simply roffset = (ci −hi) in
case of one hand. The desired SMPL root location rroot at the start of interaction
is therefore p1 = rroot + roffset. Hence, we deform the full trajectory using the
method described in Sec. 3 with a single control point γ̂I = Ftr(γ

I , {p1}).

Tracking objects without seeing them. For objects dragged on the floor with two
hands, we set the object translation ∆tO = ∆hR to the translation of the right
hand ∆hR (the choice of left or right is mathematically equivalent). The change
of rotation ∆RO is determined by the angle change between left and right hand
joints. If the object is dragged with one hand, then ∆tO = ∆hX , where X = L
or R depending on the hand in contact. The rotation cannot be determined from
1 contact point and remains unchanged, however it will be interpolated if visual
localization is available (Sec. 4.3). For the objects attached to vertical hinge we
restrict inference to a planar rotation R(α) along the hinge with angle α. This is
done by computing the angle between previous and current hand to hinge joint

vectors ∆α = ̂(vi,vi−1),vi = hX
i − j, where j is hinge joint position on the floor,

and X = L or R depending on the hand in contact.

4.3 Human-object interaction refinement: Inferring human and
object motion coherently with object localization

With the previously explained human-object reasoning method, we can track
objects, but the human motion might drift during the interaction (since motion
relies on IMU). Here, we can leverage the object localized at the end of the inter-
action (note that only one good visual localization frame is needed to localize the
object after interaction) to self-correct both the human and object trajectories.
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HPS (Improved)
✘ Wrong object position
✘ No contact with the object
✘ No object motion

HPS (Improved) + Visual 
object localization

✓ Object position matches the 
visual localization
✘ No contact with the object
✘ Motion is unrealistic

HOPS
✓ Object position matches the 
visual localization
✓ Contact with the object is 
present
✓ Motion is visually plausible

Sequence 1: Opening the door Sequence 2: Moving the box Sequence 3: Dragging the armchair

Fig. 6: Effect of different components of HOPS. Here, the different interac-
tions are shown. While other methods are either losing contact with the object,
or does not track the object at all, HOPS ensures that the object and the body
are both correctly positioned and interacting in a realistic way.

Without loss of generality, we explain our method for a single interaction
interval. Let Os and Oe be the object visual localizations at the start and end
of the interaction, obtained using the method in Sec. 4.2. Given the starting
contact positions cs from Sec. 4.2 (to simplify notation we use cs to denote the
contact location of the left, right hand or both depending on the situation), we
determine the contact points at the end of the interaction as ce = OeOs

−1cs.

Next, we deform the hand trajectories h = {cbody(θt,γt)}et=s to fit start and

end control points {cs, ce} using again the bending energy ĥ = Ftr(h, {cs, ce})
(Fig. 4, D). If the object has a hinge, hand trajectories ĥ are additionally pro-
jected to the subspace of possible trajectories for this object. The resulting pose
trajectory is then obtained by deforming the pose estimates to fit the newly
found hand trajectories as θ,γ = Fθ(θ

I , γ̂I , ĥ).

5 Experiments

Our approach is, to the best of our knowledge, the first attempt to solve a
novel and difficult problem of tracking human object interactions and capturing
dynamic scene changes from wearable sensors alone. Dealing with an under-
constrained task (modeling interactions that are not visible to the camera) our
method aims to produce visually plausible motion, rather than ground truth
human motion and interactions.
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Fig. 7: Qualitative results of our method. To visualize the motion, several
frames of the person approaching and interacting with the object are shown next
to each other. Please see the supplementary video for more details and results.
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Hence, qualitative evaluations are more meaningful in this setup, and we
consciously focus on qualitative results in our work (see supp. video).

As we are facing the lack of evaluation data to prove the effectiveness of
HOPS, we captured our own dataset, consisting of 30+ minutes of footage (more
than 50K frames) from the head-mounted camera coupled with segmentations of
the target object for every 10th frame, and inertial data from the on-body IMU
sensors, which we will make publicly available. All subjects explicitly agreed to
being recorded.

Fig. 7 shows HOPS results for some of the sequences. As we are working with
moving humans and objects most of the sequences are best seen in motion. We
therefore urge the reader to see the supplementary video for more results.

Comparisons. To prove the usefulness of being able to adapt to dynamic en-
vironment, we compared our method to the baseline human-only localization
method from Sec. 4.1, which is essentially an improved version of HPS [17]
featuring the revised localization pipeline and minor adaptations to improve
stability. We refer to it as HPS (Improved). To show the advantage of using
camera and IMU information jointly, we designed the version of the algorithm
which does not use body motion to infer the object position and only relies on
the visual object localization, which is a combination on the improved HPS al-
gorithm and a visual object localization. As it is not possible to visually localize
the object during the interaction, the algorithm linearly interpolates the object
motion between starting and ending positions. We refer to this method as HPS
(Improved) + Visual object localization. Note that the body localization
part (Sec. 4.1) still uses information from both the camera and the IMUs, but
the human-object interaction refinement step 4.3 is not applied. The results are
presented in Fig. 6 and supplementary video. We observe that, compared to the
HPS baseline, “HPS (Improved) + Visual object localization” method improves
performance, however, as it is only possible to reliably localize the object before
and after the interaction, the interpolation between those positions does not re-
flect the real motion (see supp. video). A lack of pose correction also leads to
inaccurate contact position. HOPS benefits from both visual and motion clues
resulting in the most accurate representation of a dynamic scene.

6 Conclusions and Future Work

In this paper, we have considered the novel and challenging problem of model-
ing the interaction between a human and an object in the scene from ego-centric
data alone while simultaneously estimating the poses of both in a known scene.
Our proposed approach, HOPS, achieves this goal by combining head-mounted
camera-based visual localization of the human and the object with human body
pose estimation from IMU data. HOPS reasons about the human-object inter-
action by minimizing an energy function that contains terms corresponding to
contact and physical constraints. Our experiments have shown that HOPS allows
us to realistically model these interactions.
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Limitations and future work. To the best of our knowledge, our approach is
the first to tackle the problem of human-object interaction from egocentric data
while positioning both in a scene. It thus represents a first and important step
towards novel immersive applications, e.g ., by enhancing AR/VR experiences
via interaction, and thus towards the recently often-mentioned Metaverse [1].
Yet, many challenges still need to be overcome: currently, our approach focuses
on a single object movement which is segmented semi-automatically. Ultimately,
the goal should be tracking every dynamic motion happening in the scene, with-
out the need to guide the segmentation. Using learned human motion priors, it
would be also interesting to capture interactions using a reduced set of body-
worn IMUs [20, 51, 60]. Further, automatically anticipating the time and loca-
tion of contacts, as well as introducing learned human-object interaction priors
to handle more complicated activities and avoid interpenetration are important
directions for future work. To promote future research in this new exciting di-
rection, we will release our datasets and code.

Ethical implications. As with any approach that analyzes human behavior,
there is potential for misuse. This includes, but is not limited to, surveillance,
building profiles of individual users based on their interactions (and selling that
data, e.g ., for advertisement purposes), and identifying individuals based on
characteristic interactions and movements. Our approach is based on ego-centric
data, which, in combination with on-device processing, offers a user some level
of control over what data is shared with other parties. Further, one could report
generic rather than individual body poses to make it harder to prevent identi-
fying individuals based on their movement. Still, it is not possible to prevent
user surveillance or data aggregation as a post-processing step in later stages
of an applications. We believe that these issues would best be addressed by law
makers.
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Supplementary — Visually plausible
human-object interaction capture from wearable

sensors

Abstract. In this supplementary material, we first (Sec. 7) provide more
details about our method. In Sec. 8, we provide implementation details.
In Sec. 9, we provide additional experiments and details about our ex-
perimental setup. Our project page also includes a supplementary video
illustrating our approach, comparisons and qualitative results for mul-
tiple sequences. In addition, the video presents failure cases and points
out directions for future work. Our work considers the problem of mod-
eling the interaction between a human and an object in the scene. Such
interactions are dynamic by nature. The results of our approach are thus
best appreciated in motion and we strongly encourage the reader to look
at the video.

7 Method details

7.1 Human body localization based on a head-mounted camera and
IMUs

To effectively reason about object contact and fine-grained interactions, we need
a good initialization of the human body pose first. For that, we need to register
the IMU pose estimation within the scene coordinate system. To achieve so,
we use a 5-step initialization method: Step 1: Initial camera estimates. To
align IMU coordinate frames with the world and camera coordinate frames, we
compute initial camera localization estimates at each frame C̃t. The localization
method is similar to the one used in HPS [17] with several modifications. For each
camera frame time t, we detect keypoints [11] and match them with keypoints
with known 3D position obtained using the prescanned scene. This is done with
the SuperGlue [40] matching network, which outputs matches {mi

t}Mi=1 along
with their confidence scores {sit}Mi=1. To find the camera location, we minimize
the reprojection loss of the matching 3D points w.r.t. the camera pose. We save
the average matching confidence st =

1
M

∑M
i=1 s

i
t to reason about the localization

precision in our pipeline.
Step 2: Finding the mapping between IMU, world and camera co-

ordinate frames. IMU poses θ̃
I

t and translation estimates γ̃I
t obtained from the

IMU mocap system [35] need to be transformed to the world coordinate frame
(i.e., the pre-scanned 3D scene). Specifically, we find transformation matrices
from the global IMU coordinate frame “Z” to scene “W”) XWZ ∈ SE(3) and
local (camera “C” to IMU sensor “I”) XIC ∈ SE(3) coordinate frames – see
supp. Sec. 7.2 for details. With this we can obtain the absolute head camera
pose estimated by the head IMU, as HW

t = XWZHZ
t X

IC , where HZ
t ∈ SE(3)

are the raw head IMU positions.
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Step 3: Improving the camera estimates. We rerun the camera local-
ization with the search space for 2D-3D matches restricted to a vicinity of the
current local scene in the human field of view. To this end, we filter out matches
based on the IMU head pose estimates HW

t . We render a depth map of the
camera view as seen from the head IMU; with the depth map, we filter out all
keypoints in the database images that are not visible in this virtual view. This
drastically restricts the search space from the full building database to only
the current view. Localizing the camera with only filtered keypoints results in
camera estimates Ct (and their corresponding scores st), which are significantly
more accurate than the ones in Step 1. Hence, we also recompute XWZ and XIC

with Ct to increase the IMU-to-scene mapping precision.

Step 4: Correcting IMU drift with visual localizaton. Pose estimation
inferred from the IMUs can drift over time. We solve this problem by minimally
bending the trajectory of the head from the IMU pose estimation to comply
with the head-mounted camera localizations. For that, we consider only reliable
camera estimates Ct with confidence st ≥ 0.5, which are used as a set of control
points in the bending energy minimization framework described in Sec. 3 in the
paper:

r̂H = Ftr(r
H , {Ct|st ≥ 0.5}) , (5)

where rH = {rHt } is the translation part of the head position HW
t . The corrected

head trajectory and initial IMU pose estimates θ̃
I

t , γ̃
I
t are used in the next step

to produce the human body pose and translation parameters θI
t , γ

I
t .

Step 5: SMPL parameters adaptation to the new IMU trajectories.
After correcting the head IMU trajectory with camera localization, we adapt
SMPL parameters θI

t , γ
I
t to fit the new trajectory. We initialize θI

t , γ
I
t with

θ̃
I

t , γ̃
I
t . We map the parameters from the global IMU coordinate frame “Z”

to the scene coordinate frame “W” with XWZ . Translation part is mapped as
γI
t = XWZ γ̃I

t and the body is rotated according to the rotation part of XWZ by
modifying the first 3 values of θI

t (which correspond to the global body rotation).

Next, we take the original trajectory rH and the refined trajectory r̂H and
compute difference in rotation and translation. Our goal is to apply the same
rotation and translation difference to the SMPL parameters θI

t , γ
I
t . To do so,

we treat trajectories as a discrete set of points rH = {rHi }. As a result, for
each SMPL pose and translation parameter set θI

i , γ
I
i there is a corresponding

trajectory point rHi (same for r̂Hi ). We project trajectories to the XY plane,
zeroing out Z axis component (our experiments show that Z axis coordinate
component usually does not require correction). For each SMPL pose index i
we compute the trajectory pose and rotation angle change: ∆γI

i = r̂Hi − rHi ,

∆αi = (̂̂vi, vi), v̂i = r̂Hi − r̂Hi−1, vi = rHi − rHi−1. The translation parameters are

updated as γI
i = γI

i +∆γi. The first 3 pose parameters θI
i corresponding to the

root SMPL joint are modified so that the root joint rotates by ∆αi around the Z
axis. The resulting human pose parameters (θI

i ,γ
I
i ) are drift-free and registered

within the scene.
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7.2 IMU-Camera coordinate frames calibration.

As stated in supp. Sec. 7.1, Step 2, to use IMU pose estimations we need to find
the mapping between the IMU and camera local and global coordinate frames.
Using the notation introduced in supp. Sec. 7.1, we first find transformation
matrices from the global IMU coordinate frame “Z” to scene “W” XWZ ∈
SE(3). For that, we rigidly align a sequence of head IMU positions in 3D to the
initial noisy camera positions (without considering the orientations). In our data,
the Z axis is aligned to the gravity vector for both IMU frame “Z” and the scene
frame “W”, so we project IMU and camera positions to the XY plane and only
perform the alignment in the XY plane. To align IMU positions to noisy camera
observations, we use RANSAC [16] algorithm, which features noise detection in
the data. To synchronize camera and IMU timings we repeat RANSAC fitting
with several time offsets, performing a grid search; the time synchronization is
corrected manually if needed.

Next, we obtain transformation matrix between the local (camera “C” to
IMU sensor “I”) XIC ∈ SE(3) coordinate frames. For this, we select K = 5
camera positions {C̃k}Kk=1 (transformations from local to global camera coor-
dinate frame). We select the camera positions by measuring the distance be-
tween all the camera translations and the IMU head translations {XWZpH

t }
mapped to the scene coordinate frame, where pH

t is the translation part of
the raw head IMU position HZ

t . We select K camera positions with the small-
est distance. We also select the corresponding head IMU positions {HZ

k }Kk=1.

For each k = 1..K, we compute the local camera to IMU transformation X̂IC
k :

X̂IC
k = HZ

k

−1
(XWZ)−1C̃k. To obtain the target XIC , we average all X̂IC

k with

the following algorithm: As X̂IC
k ∈ SE(3)∀k = 1..K, each of them can be sub-

divided to rotation matrix R̂IC
k ∈ SO(3) and translation vector t̂ICk ∈ R3. For

translation, we simply find an arithmetic average tIC = 1
K

∑K
k=1 t̂

IC
k , for ro-

tation RIC we use chordal L2 mean [18]. Averaged rotation and translation
(RIC , tIC) form the resulting transformation XIC .

SMPL parameters optimization details. To ensure smooth parameters
change while optimizing SMPL parameters to fit the trajectory during human-
object interaction refinement (Sec. 4.3 in the paper), we additionaly allow w
parameters before and after the interaction interval to change (w is a hyperpa-
rameter), therefore avoiding abrupt transition. Additionaly, to stabilize motion
we restrict the parameters change only to particular joints, namely hands, arms,
shoulders and pelvis joints.

8 Implementation details

8.1 Capturing setup

We use a combination of Apple iPhone 12 with a head mount to capture first-
person view and Xsens Awinda [35] IMU system to capture body motions. The
iPhone 12 camera is capturing at a resolution of 1920×1440, 30 FPS. While the
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camera features automatic stabilization, we turn it off explicitly to get a better
idea of the head motion. We use OpenCV [8] to get the camera intrinsics. Xsens
Awinda consists of 17 IMU sensors attached to the body with velcro-straps and
captures the body motion at 60 FPS. The camera and IMU systems record their
data independently, for that reason the data need to be temporally and spatially
syncronized (cf . supp. Sec. 7.2) afterwards.

Xsens Awinda outputs the data in form of skeleton joint angles which is not
directly compatible to SMPL [30] pose parameters format. To convert between
these formats we developed the following retargeting algorithm: we export the
motion from Xsens internal format (MVN) into Autodesk FBX format and use
Autodesk FBX Python SDK [2] to read and extract rotation for each joint in
form of quaternions. We convert those quaternions to axis-angle representation
used in SMPL. We map joint rotations from FBX skeleton to SMPL skeleton
according to manually designed mapping. As a result, we can produce SMPL
pose parameter vector by concatenating the mapped axis-angle joint rotations
in the right order. While this method works well in most cases, we notice some
pose artifacts during specific motions, e.g . the stomach is sometimes bent too
much forward while the person leans forward to grab an object (e.g . supp. Fig. 8).
This artifact appears in all of the methods we explored (HPS (Improved), HPS
(Improved) + Visual object localization, HOPS) because the error happens on
the data preprocessing stage and does not depend on the chosen method. One
possible way to improve the quality of retargeting is to switch to fiting the
SMPL model to chosen Xsens skeleton joints instead of copying joint rotations
directly – we aim to explore this in the future work.

8.2 Algorithms implementation and performance

We implement our algorithms on Python using Pytorch [34] library for the visual
localization pipeline and the bending energy optimization algorithm. For opti-
mization of trajectories and pose parameters with bending energy (eq. 2 and 5
in the paper), we use Adam [25] optimizer with number of iterations, learning
rate and rigidness coefficient λ acting as hyperparameters.

Performance-wise, the most computationally expensive part of our algorithm
is the visual localization pipeline, requiring 8 seconds per frame to run on
NVIDIA Q8000 GPU. Other parts of the algorithm does not add significantly to
this time estimation. We use such computationally expensive pipeline to achieve
the best localization results as the performance of visual localization network
itself is not the aim of our study. We expect that this pipeline can be replaced
by less demanding alternative, but this can lead to a localization quality drop.

9 Additional experiments and experimental setup

To additionally measure the human-object localization accuracy of our method,
we recorded a special sequence which additionally has ground truth data ob-
tained via an external depth multicamera system. The experiment setup almost
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Ground truth from the multicamera system Scene reconstruction by HOPS

Fig. 8: Visual comparison between the ground truth point cloud and
our result. Left shows ground truth data from merging point clouds from 3
depth cameras, right shows a reconstruction of the same scene by HOPS as a
combination of object, human model, and visible scan vertices.

exactly repeats the one from HPS [17], however here we capture the full dy-
namic object interaction while in HPS only the human body motion and the
static scene was captured.

We use a system of 3 calibrated Azure Kinect [3] RGBD sensors – by com-
bining the outputs of these sensors we obtain a sequence of 3D point clouds of
the scene and a subject. Each sensor outputs the depth map with resolution
of 640 × 576 pixels and color frames with resolution of 2048 × 1536 at around
30 FPS. Azure Kinect features build-in temporal synchronization, but to merge
the sensors output into scene ground truth representation we also need to cali-
brate them spatially within the 3D scene coordinate system. For that we use a
3-stage localization pipeline, similar to [17]: 1) we record a special sequence of
the empty scene; for each frame of this 300-frame empty sequence we localize
the RGB camera using the same visual localization algorithm used for the head-
mounted camera, all 300 localizations are then averaged; 2) we perform ICP
between the scene 3D scan and the pointcloud unprojected from the depthmap;
3) after that, we perform manual correction if needed. Using the obtained po-
sitions of the sensors, the pointcloud representation of the scene is formed by
unprojecting depthmaps from all 3 sensors to 3D. To perform the evaluation,
we manually synchronize the time between the HOPS motion sequence and the
aforementioned pointcloud representation. For each frame of the test sequence
we separately measure object and human localization accuracy Eobj and Ebody:

– Eobj : mean Chamfer distance from the object point cloud to ground truth
point cloud

– Ebody: mean Chamfer distance from the human body SMPL mesh to ground
truth point cloud

Results are presented in supp. Table 1. As seen from the table, HPS results in
a much higher mean distance between the object representation and the ground
truth point cloud because this method does not track scene changes. The metric
improves when visual object localization is added before and after the interac-
tion. However, the numbers do not relate entirely to the realism of the motion,
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HPS (Improved)
HPS (Improved) +

Visual object localization
HOPS

Object to GT Eobj 23.346 8.557 8.330
SMPL to GT Ebody 8.845 8.845 8.628

Table 1: Quantitative evaluation: 3D error (in cm) between the object and
human models and ground truth point cloud captured by a synchronized Kinect
recording setup. Results are shown for the method without dynamic scene adap-
tation, method with the visual object localization only and HOPS.

which can only be observed from the animated visualizations. Therefore, the
qualitative results are more important than the quantitative for the given prob-
lem. As seen in the supplementary video, a simple interpolation between the
starting and ending positions does not reflect the real motion. As a result, the
human is constantly losing contact with the object. By contrast, the supplemen-
tary video shows greatly improved visual quality and realism of the motion with
HOPS, even though the quantitative improvement is not as obvious. In addition
to that, HOPS also contributes to better human body localization by correcting
the pose based on the motion, meaning that body and object localization benefit
from the joint tracking of both.
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