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Figure 1: The BEHAVE network takes voxelized human and object point cloud as input and generates an input aligned
3D feature grid, F. We then sample 3D query points and for each input point p, we use the point feature F(p) to predict
unsigned distance to human and object surfaces, uh, uo, correspondences to the SMPL model c and object orientation a. We
use these predictions to fit SMPL and object meshes to the input, explicitly taking the contacts between them into account.

1. Network Architecture
The input to our method is multi-view segmented point

cloud of the human and the object. We voxelize it and feed
it to our feature encoder f enc

φ to obtain a grid aligned set of
features. The network f enc

φ comprises of 4×{2×Conv3D+
ReLU + BN} layers. We use a stride of 2 in our convolu-
tional layers.
We then train three separate decoders f udf

φ , f corr
φ and faφ to

predict (i) unsigned distances to the human uh, and the ob-
ject uo, surfaces; (ii) correspondences to the SMPL model c
and (iii) object orientation a, respectively. We use the same
architecture for all our decoders, 3 × {Conv1D + ReLU},
followed by a regression layer, Conv1D.
Our network structure can be seen in Fig. 1. We will release
our code for further research in this direction.

2. Data collection and annotation
In this section, we discuss in more detail about our data

collection, annotation and registration process.

2.1. Data capture system setup

We use four Azure Kinect RGB-D cameras [1] placed
at four corners of a square to capture human-object interac-

tions. We use checkerboard to calibrate the relative poses
between different kinects in a pairwise manner. Specif-
ically, we capture 20 pairs of RGB-D images from two
kinects and then register each color image with correspond-
ing depth image such that they have the same resolution.
We then use OpenCV to extract the checkerboard corners
in the color images and obtain their 3D camera coordinates
utilizing the registered depth map. Finally, we perform a
Procrustes registration on these ordered 3D checkerboard
corners to obtain the relative transformation between two
kinects. We obtain 3 pairs of relative transformation for 4
kinects and combine them to compute the transformation
under a common world coordinate.

2.2. Data preprocess and manual annotation

Both color and depth videos are captured at 30fps.
Kinect cameras are synchronized through audio cables and
the exact capture time of each image is saved for later pro-
cessing. We extract synchronized frames and run depth-
color registrations so that each depth image has the same
resolution as color image. Frames are extracted at 10fps for
better SMPL registration but our manual annotation is done
at 1fps to maximize the diversity of annotated frames.
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Figure 2. We compare our method with PHOSA [9] and show that our approach generates noticeably better quality results.
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Figure 3. We compare our SMPL registration with IPNet [3] and show superior results. IPNet cannot register objects that our approach
can.
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Figure 4. We compare our SMPL registration with LoopReg [4] and show superior results. LoopReg cannot register objects that our
approach can.

Annotating human mask. Accurate human point cloud
segmentation is required for good SMPL registration, which
we achieve by obtaining accurate human masks in color im-
ages. We first run Detectron2 [8] to obtain the human masks
for each image. This automatic segmentation usually works
well when the person is not heavily occluded and can be
easily distinguished from the background. However, fine-
grained details such as hands and legs are often missing, es-
pecially when these parts have similar color with the back-
ground. We correct these minor errors through manual an-
notation from Amazon Mechanical Turk (AMT). Workers
are asked to place 3-6 points on the erroneous segmentation
regions. We use these clicks and run a recently proposed in-
teractive segmentation method [6] to compute the corrected
mask. We finally manually go over all corrected masks to
filter out noisy segmentation.

Annotating object keypoints. Obtaining object segmen-
tation mask is more expensive and the resultant point clouds
are still noisy and incomplete, hence we adopt keypoints an-
notation for object registration. For each object, we prede-
fine 4-8 keypoints depending on the complexity of the ob-
ject geometry. We show multi-view images of the captured
human-object interaction frame together with example pho-
tos of our predefined object keypoints to AMT annotators

and ask them to annotate only the visible keypoints in im-
ages, see one example in Fig. 7. To ensure the annotation
quality, we also manually go over all frames to filter out bad
annotations.

For all our AMT annotations, we first run a test batch to
select good annotators and release the full batch only to the
selected annotators.

2.3. SMPL and object registration

SMPL registration. We use the corrected person seg-
mentation mask discussed above to segment multi-view
depth maps and obtain human point clouds. We initialize
the SMPL pose from FrankMocap [5] and use the multi-step
registration method from [2] to fit SMPL to the segmented
human point clouds.

Object registration. Given template object meshes and
annotated 2D keypoints from multi-views, we register the
mesh to the images by optimizing the reprojection loss, sim-
ilar to the method used in Pix3D registration [7]. To favor
convergence, we downsample the original scans to around
2000 faces and initialize the translation parameter as the
center of human point clouds.
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Figure 5. We show that registering SMPL and object meshes directly to input point cloud results in inaccurate fitting. Our neural predictions
corresponding to human and object unsigned distance fields, SMPL correspondence field and object orientation field are key to good fitting.

3. Comparison with PHOSA [9]

We provide more qualitative comparisons with PHOSA
and show that our approach easily outperforms it. PHOSA
uses pre-defined fixed contact locations and heuristic based
instance specific optimization. Our method on the other
hand learns contact prediction and model fitting from the
data, leading to superior performance and improved scala-
bility. We show qualitative results for the same in Fig. 2

4. Comparison with IPNet [3]

IPNet can only register SMPL and not objects, but we
still find its idea of combining implicit reconstruction and
parametric model fitting interesting. As discussed in Sec.
5.3 (main paper), our formulation for fitting SMPL to the
input is superior than IPNet as it alleviates the requirements
for watertight surfaces, marching cubes and high number
of query points. Our method is the first approach that can
directly fit SMPL to the distance field prediction without ex-
plicitly predicting the 3D mesh. We show more qualitative
comparisons in Fig. 3 and show that we outperform IPNet
(trained on our data) on the task of SMPL fitting to the input
point cloud.

5. Comparison with LoopReg [4]

Although LoopReg cannot fit objects, we still find their
idea of predicting correspondences and then fitting the
SMPL model useful. As discussed in Sec. 5.3 (main pa-
per) our formulation is superior to LoopReg as it can handle
noisy input and use off-surface input points for registration
where as Loopreg can use points only on the input surface.
This allows us to handle incomplete point clouds, which
is common in the case of heavy occlusions during human-
object interactions. We show more qualitative comparisons
in Fig. 4 and show that we outperform LoopReg (trained on
our data) on the task of human registration with noisy and
incomplete input.

6. Comparison with direct fitting to multi-view
input

Fitting SMPL and object meshes directly to the input
point cloud is another intuitive baseline. This experiment
highlights the importance of our network predictions and
Fig. 5 shows that without our predictions the optimization
gets stuck in local minima leading to poor fitting.
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Figure 6. We show some limitations of the proposed method. (Top) The input point cloud from the Kinect is often noisy which makes
tracking fine grained details like hands challenging. (Mid) Our method also struggles to fit symmetric objects such as a square suitcase
accurately. It can be seen that although the object mesh fits the point cloud quite well, the orientation is wrong. (Bottom) A lot of real
world objects are non-rigid, making their tracking difficult with rigid templates. It can be seen here that the deformed strap of the backpack
is not tracked.

7. Limitations and Future Works
We discuss the limitations of our current method in

Fig. 6. We find that network struggles sometimes to predict



Figure 7. Example frame of our object keypoint annotation. Our predefined object keypoints are shown in the left, the frame to be annotated
is shown in the middle. Annotators are asked to place keypoint labels (right panel) at their corresponding locations in the image.

correct orientation of objects that are symmetric such as a
square suitcase. We also observe that since Kinect data is
noisy, we cannot model fine grained hand interactions, this
results in interpenetrations between the hand and the object
and sometimes unrealistic grasps. More interesting limi-
tation arises from the fact that we assume the objects to be
rigid which is not the case in reality. Objects like backpacks
when grabbed from the straps are not accurately registered
as the deformations in this case are non-rigid. All these are
challenging scenarios with no straightforward solution and
these directions warrant further research.
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