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Abstract

We present Multi-Garment Network (MGN), a method
to predict body shape and clothing, layered on top of the
SMPL [40] model from a few frames (1-8) of a video. Sev-
eral experiments demonstrate that this representation al-
lows higher level of control when compared to single mesh
or voxel representations of shape. Our model allows to
predict garment geometry, relate it to the body shape, and
transfer it to new body shapes and poses. To train MGN,
we leverage a digital wardrobe containing 712 digital gar-
ments in correspondence, obtained with a novel method
to register a set of clothing templates to a dataset of real
3D scans of people in different clothing and poses. Gar-
ments from the digital wardrobe, or predicted by MGN, can
be used to dress any body shape in arbitrary poses. We
will make publicly available the digital wardrobe, the MGN
model, and code to dress SMPL with the garments at [1].

1. Introduction
The 3D reconstruction and modelling of humans from

images is a central problem in computer vision and graph-
ics. Although a few recent methods [5, 3, 4, 25, 41, 51]
attempt reconstruction of people with clothing, they lack
realism and control. This limitation is in great part due to
the fact that they use a single surface (mesh or voxels) to
represent both clothing and body. Hence they can not cap-
ture the clothing separately from the subject in the image,
let alone map it to a novel body shape.

In this paper, we introduce Multi-Garment Network
(MGN), the first model capable of inferring human body
and layered garments on top as separate meshes from im-
ages directly. As illustrated in Fig. 1 this new representation
allows full control over body shape, texture and geometry
of clothing and opens the door to a range of applications in
VR/AR, entertainment, cinematography and virtual try-on.

Compared to previous work, MGN produces reconstruc-
tions of higher visual quality, and allows for more control:
1) we can infer the 3D clothing from one subject, and dress
a second subject with it, (see Fig. 1, 8) and 2) we can triv-

Figure 1: Garment re-targeting with Multi-Garment Network
(MGN). Left to right: images from source subject, body from the
target subject, target dressed with source garments. From one or
more images, MGN can reconstruct the body shape and each of
the garments separately. We can transfer the predicted garments to
a novel body including geometry and texture.

ially map the garment texture captured from images to any
garment geometry of the same category (see Fig.7).

To achieve such level of control, we address two major
challenges: learning per-garment models from 3D scans of
people in clothing, and learning to reconstruct them from
images. We define a discrete set of garment templates (ac-
cording to the categories long/short shirt, long/short pants
and coat) and register, for every category, a single tem-
plate to each of the scan instances, which we automatically
segmented into clothing parts and skin. Since garment ge-
ometry varies significantly within one category (e.g. dif-
ferent shapes, sleeve lengths), we first minimize the dis-
tance between template and the scan boundaries, while try-
ing to preserve the Laplacian of the template surface. This
initialization step only requires solving a linear system,
and nicely stretches and compresses the template globally,
which we found crucial to make subsequent non-rigid reg-
istration work. Using this, we compile a digital wardrobe
of real 3D garments worn by people, (see Fig. 3). From
such registrations, we learn a vertex based PCA model per
garment. Since garments are naturally associated with the
underlying SMPL body model, we can transfer them to dif-
ferent body shapes, and re-pose them using SMPL. From
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Figure 2: Overview of our approach. Given a small number of RGB frames (currently 8), we pre-compute semantically segmented images
(I) and 2D Joints (J ). Our Multi-Garment Network (MGN), takes {I,J } as input and infers separable garments and the underlying
human shape in a canonical pose. We repose these predictions using our per-frame pose predictions. We train MGN with a combination of
2D and 3D supervision. The 2D supervision can be used for online refinement at test time.

the digital wardrobe, MGN is trained to predict, given one
or more images of the person, the body pose and shape
parameters, the PCA coefficients of each of the garments,
and a displacement field on top of PCA that encodes cloth-
ing detail. At test time, we refine this bottom-up estimates
with a new top-down objective that forces projected gar-
ments and skin to explain the input semantic segmentation.
This allows more fine-grained image matching as compared
to standard silhouette matching. Our contributions can be
summarized as:

• A novel data driven method to infer, for the first time,
separate body shape and clothing from just images (few
RGB images of a person rotating in front of the camera).

• A robust pipeline for 3D scan segmentation and registra-
tion of garments. To the best of our knowledge, there are
no existing works capable of automatically registering a
single garment template set to multiple scans of real peo-
ple with clothing.

• A novel top-down objective function that forces the pre-
dicted garments and body to fit the input semantic seg-
mentation images.

• We demonstrate several applications that were not pre-
viously possible such as dressing avatars with predicted
3D garments from images, and transfer of garment tex-
ture and geometry.

• We will make publicly available the MGN to predict 3D
clothing from images, the digital wardrobe, as well as
code to “dress” SMPL with it.

2. Related Work
In this section we discuss the two branches of work most

related to our method, namely capture of clothing and body
shape and data-driven clothing models.
Performance Capture. The classical approach to bring dy-

namic sequences into correspondence is to deform meshes
non-rigidly [11, 18, 10] or volumetric shape representa-
tions [28, 2] to fit multiple image silhouettes. Without a
pre-scanned template, fusion [30, 29, 55, 43, 58] trackers in-
crementally fuse geometry and appearance [66] to build the
template on the fly. Although flexible, these require multi-
view [57, 37, 14], one or more depth cameras [19, 45], or
require the subject to stand still while turning the cameras
around them [53, 38, 63, 16]. From RGB video, Habermann
et al.[25] introduced a real time tracking system to capture
non-rigid clothing dynamics. Very recently, SimulCap [59]
allows multi-part tracking of human performances from a
depth camera.
Body and cloth capture from images and depth. Since
current statistical models can not represent clothing, most
works [7, 26, 40, 68, 48, 32, 22, 67, 31, 50, 8, 33, 44, 46]
are restricted to inferring body shape alone. Model fits have
been used to virtually dress and manipulate people’s shape
and clothing in images [50, 67, 62, 36]. None of these ap-
proaches recover 3D clothing. Estimating body shape and
clothing from an image has been attempted in [24, 12], but
it does not separate clothing from body and requires man-
ual intervention [65, 49] . Given a depth camera, Chen et
al. [13] retrieve similar looking synthetic clothing templates
from a database. Daněřek et al. [9] use physics based simu-
lation to train a CNN but do not estimate garment and body
jointly, require pre-specified garment type, and the results
can only be as good as the synthetic data.

Closer to ours is the work of Alldieck et al. [3, 5, 6]
which reconstructs, from a single image or a video, cloth-
ing and hair as displacements on top of SMPL, but can not
separate garments from body, and can not transfer cloth-
ing to new subjects. In stark contrast to [3], we register
the scan garments (matching boundaries) and body sepa-
rately, which allows us to learn the mapping from images to
a multi-layer representation of people.
Data-driven clothing. A common strategy to learn ef-



ficient data-driven models is to use off-line simulations
[17, 34, 21, 54, 52, 23] for generating data. These ap-
proaches often lack realism when compared to models
trained using real data. Very few approaches have shown
models learned from real data. Given a dynamic scan se-
quence, Neophytou et al.[42] learn a two layer model (body
and clothing) and use it to dress novel shapes. A similar
model has been recently proposed [61], where the clothing
layer is associated to the body in a fuzzy fashion. Other
methods [60, 64] focus explicitly on estimating the body
shape under clothing. Like these methods, we treat the un-
derlying body shape as a layer, but unlike them, we seg-
ment out the different garments allowing sharp boundaries
and more control. For garment registration, we build on the
ideas of ClothCap [47], which can register a subject spe-
cific multi-part model to a 4D scan sequence. By contrast,
we register a single template set to multiple scan instances–
varying in garment geometry, subject identity and pose,
which requires a new solution. Most importantly, unlike all
previous work [35, 47, 61], we learn per-garment models
and train a CNN to predict body shape and garment geom-
etry directly from images.

3. Method
In order to learn a model to predict body shape and gar-

ment geometry directly from images, we process a dataset
of 356 scans of people in varied clothing, poses and shapes.
Our data pre-processing (Sec. 3.1) consists of the follow-
ing steps: SMPL registration to the scans, body aware scan
segmentation and template registration. We obtain, for ev-
ery scan, the underlying body shape, and the garments of
the person registered to one of the 5 garment template cat-
egories: shirt, t-shirt, coat, short-pants, long-pants. The
obtained digital wardrobe is illustrated in Fig. 3. The gar-
ment templates are defined as regions on the SMPL surface;
the original shape follows a human body, but it deforms to
fit each of the scan instances after registration. Since gar-
ment registrations are naturally associated to the body rep-
resented with SMPL, they can be easily reposed to arbitrary
poses. With this data, we train our Multi-Garment Network
to estimate the body shape and garments from one or more
images of a person, see Sec. 3.2.

3.1. Data Pre-Processing: Scan Segmentation and
Registration

Unlike ClothCap [47] which registers a template to a 4D
scan sequence of a single subject, our task is to register sin-
gle template across instances of varying styles, geometries,
body shapes and poses. Since our registration follows the
ideas of [47], we describe the main differences here.
Body-Aware Scan Segmentation We first automatically
segment the scans into three regions: skin, upper-clothes
and pants (we annotate the garments present for every scan).

Since even SOTA image semantic segmentation [20] is in-
accurate, naive lifting to 3D is not sufficient. Hence, we in-
corporate body specific garment priors and segment scans
by solving an MRF on the UV-map of the SMPL surface
after non-rigid alignment.

A garment prior (for garment g) derives from a set of
labels lig ∈ {0, 1} indicating the vertices vi ∈ S of SMPL
that are likely to overlap with the garment. The aim is to pe-
nalize labelling vertices as g outside this region, see Fig 4.
Since garment geometry varies significantly within one cat-
egory (e.g. t-shirts of different sleeve lengths), we define a
cost increasing with the geodesic distance distgeo(v) : S 7→
R from the garment region boundary – efficiently computed
based on heat flow [15]. Conversely, we define a similar
penalty for labeling vertices in the garment region with a
label different than g. As data terms, we incorporate CNN
based semantic segmentation [20], and appearance terms
based Gaussian Mixture Models in La color space. The in-
fluence of each term is illustrated in Fig. 4, for more details
we refer to the supp. mat.

After solving the MRF on the SMPL UV map, we can
segment the scans into 3 parts by transferring the labels
from the SMPL registration to the scan.
Garment Template We build our garment template on
top of SMPL+D, M(·), which represents the human body
as a parametric function of pose(θ), shape(β), global
translation(t) and optional per-vertex displacements (D):

M(β,θ,D) = W (T (β,θ,D), J(β),θ,W) (1)

T (β,θ,D) = T +Bs(β) +Bp(θ) + D. (2)

The basic principle of SMPL is to apply a series of linear
displacements to a base mesh T with n vertices in a T-pose,
and then apply standard skinning W (·). Specifically, Bp(·)
models pose-dependent deformations of a skeleton J , and
Bs(·) models the shape dependent deformations. W repre-
sents the blend weights.

For each garment class g we define a template mesh,
Gg in T-pose, which we subsequently register to explain
the scan garments. We define Ig ∈ Zmg×n as an indicator
matrix, with Igi,j = 1 if garment g vertex i ∈ {1 . . .mg} is
associated with body shape vertex j ∈ {1 . . . n}. In our ex-
periments, we associate a single body shape vertex to each
garment vertex. We compute displacements to the corre-
sponding SMPL body shape βg under the garment as

Dg = Gg − IgT (βg,0θ,0D) (3)

Consequently, we can obtain the garment shape (unposed),
T g for a new shape β and pose θ as

T g(β,θ,Dg) = IgT (β,θ,0) + Dg (4)

To pose the vertices of a garment, each vertex uses the skin-
ning function in Eq. 1 of the associated SMPL body vertex.

G(β,θ,Dg) = W (T g(β,θ,Dg), J(β),θ,W) (5)



Figure 3: Digital 3D wardrobe. We use our proposed multi-mesh registration approach to register garments present in the scans (left) to
fixed garment templates. This allows us to build a digital wardrobe and dress arbitrary subjects (center) by picking the garments (marked)
from the wardrobe.

Figure 4: Left to right: Scan, segmentation with MRF and CNN
unaries, MRF with CNN unaries + garment prior + appearance
terms, the garment(t-shirt) prior based on geodesics and the tem-
plate. Notice how the garment prior is crucial to obtain robust
results.

Garment Registration Given the segmented scans, we
non-rigidly register the body and garment templates (upper-
clothes, lower-clothes) to scans using the multi-part align-
ment proposed in [47]. The challenging part is that garment
geometries vary significantly across instances, which makes
the multi-part registration fail (see supplementary). Hence,
we first initialize by deforming the vertices of each garment
template with the shape and pose of SMPL registrations,
obtaining deformed vertices Gg

init. Note that since the ver-
tices defining each garment template are fixed, the clothing
boundaries of the initially deformed garment template will
not match the scan boundaries. In order to globally deform
the template to match the clothing boundaries in a single
shot, we define an objective function based on Laplacian
deformation [56].

Let Lg ∈ Rmg×mg be the graph Laplacian of the gar-
ment mesh, and ∆init ∈ Rmg×3 the differential coordi-
nates of the initially deformed garment template ∆init =
L Gg

init. For every vertex si ∈ Sb in a scan boundary
Sb, we find its closest vertex in the corresponding tem-
plate garment boundary, obtaining a matrix of scan points

q1:C = {q1, . . . ,qC} with corresponding template vertex
indices j1:C . Let IC×mg be a selector matrix indicating the
indices in the template corresponding to each qi. With this,
we minimize the following least squares problem:[

Lg

wIC×mg

]
Gg =

[
∆init

wq1:C

]
(6)

with respect to the template garment vertices Gg , where the
first block LgGg = ∆init forces the solution to keep the lo-
cal surface structure, while the second block wIC×mg

Gg =
wq1:C makes the boundaries match. The nice property of
the linear system solve is that the garment template globally
stretches or compresses to match the scan garment bound-
aries, which would take many iterations of non-linear non-
rigid registration [47] with the risk of converging to bad lo-
cal minima. After this initialization, we non-linearly regis-
ter each garment Gg to fit the scan surface. We build on
top of the proposed multi-part registration in [47] and pro-
pose additional loss terms on garment vertices, vk ∈ Gg , to
facilitate better garment unposing, Eunpose, and minimize
interpenetration, Einterp, with the underlying SMPL body
surface, S.

Einterp =
∑
g

∑
vk∈Gg

d(vk,S) (7)

d(x,S) =

{
0, if x outside S
w ∗ |x− y|2, if x inside S

(8)

where w is a constant (w = 25 in our experiments), vk is
the kth vertex of Gg and y is the point closest to x on S.

Our garment formulation allows us to freely repose the
garment vertices. We can use this to our advantage for ap-
plications such as animating clothed virtual avatars, gar-
ment re-targeting etc. However, posing is highly non-
linear and can lead to undesired artefacts, specially when re-
targeting garments across subjects with very different poses.



Since we re-target the garments in unposed space, we re-
duce distortion by forcing distances from garment vertices
to the body to be preserved after unposing:

Eunpose =
∑
g

∑
vk∈Gg

(d(vk,S)− d(v0
k,S0))2 (9)

where d(x,S) is the L2 distance between point x and sur-
face S. v0

k and S0 denote garment vertex and body surface
in unposed space, using Eq. 5 and 1 respectively.
Dressing SMPL The SMPL model has proven very use-
ful for modelling unclothed shapes. Our idea is to build
a wardrobe of digital clothing compatible with SMPL to
model clothed subjects. To this end we propose a simple
extension that allows to dress SMPL. Given a garment Gg ,
we use Eq. 3, 4, 5 to pose and skin the garment vertices.
The dressed body including body shape (encoded as G1)
will be given by stacking the L individual garment ver-
tices [G1(β,θ,D1)

T , . . . , GL(β,θ,DL)
T ]T . We define

the function C(θ,β,D) which returns the posed and shaped
vertices for the skin, and each of the garments combined.
See Fig. 5 and supplementary for results on re-targeting
garments using MGN across different SMPL bodies.

3.2. From Images to Garments

From registrations, we learn a shape space of garments,
and generate a synthetic training dataset with pairs of im-
ages and body+3D garment pairs. From this data we train
MGN:Multi-Garment Net, which maps images to 3D gar-
ments and body shape.
Garment Shape Space In order to factor out pose defor-
mations from garment shape, we “unpose” the jth garment
registrations Gg

j ∈ Rmg×3, similar to [64, 47]. Since the
garments of each category are all in correspondence, we can
easily compute PCA directly on the unposed vertices to ob-
tain pose-invariant shape basis (Bg). Using this, we en-
code a garment shape using 35 components zg ∈ R35, plus
a residual vector of offsets Dhf,g

j , mathematically: Gg
j =

Bgzgj + Dhf,g
j . From each scan, we also extract the body

shape under clothing similarly as in [64], which is essential
to re-target a garment from one body to another.
MGN: Multi-Garment Net The input to the model
is a set of semantically segmented images, I =
{I0, I1, ..., IF − 1}, and corresponding 2D joint estimates,
J = {J0,J1, ...,JF −1}, where F is the number of images
used to make the prediction. Following [20, 3], we abstract
away the appearance information in RGB images and ex-
tract semantic garment segmentation [20] to reduce the risk
of over-fitting, albeit at the cost of disregarding useful shad-
ing signal. For simplicity, let now θ denote both the joint
angles θ and translation t.

The base network, fw, maps the 2D poses J , and image
segmentations I, to per frame latent code (lP) correspond-

ing to 3D poses
lP = fθw(I,J ), (10)

and to a common latent code corresponding to body shape
(lβ) and garments (lG) by averaging the per frame codes

lβ, lG =
1

F

F−1∑
f=0

fβ,Gw (If ,Jf ). (11)

For each garment class, we train separate branches,
Mg
w(·), to map the latent code lG to the un-posed garment

Gg , which itself is reconstructed from low-frequency PCA
coefficients zg , plus Dhf,g encoding high-frequency dis-
placements

Mg
w(lG ,B

g) = Gg = Bgzg + Dhf,g. (12)

From the shape and pose latent codes lβ, lθ, we predict
body shape parameters β and pose θ respectively, using a
fully connected layer. Using the predicted body shape β
and geometry Mg

w(lG ,B
g) we compute displacements as in

Eq. 3:

Dg = Mg
w(lG ,B

g)− IgT (β,0θ,0D). (13)

Consequently, the final predicted 3D vertices posed for the
f th frame are obtained with C(β,θf ,D), from which we
render 2D segmentation masks

Rf = R(C(β,θf ,D), c), (14)

where R(·) is a differentiable renderer [27], Rf the ren-
dered semantic segmentation image for frame f , and c de-
notes the camera parameters that are assumed fixed while
the person moves. The rendering layer in Eq. (14) allows
us to compare predictions against the input images. Since
MGN predicts body and garments separately, we can pre-
dict a semantic segmentation image, leading to a more fine-
grained 2D loss, which is not possible using a single mesh
surface representation [3]. Note that Eq. 14 allows to train
with self-supervision.

3.3. Loss functions

The proposed approach can be trained with 3D super-
vision on vertex coordinates, and with self supervision in
the form of 2D segmented images. We use upper-hat for
variables that are known and used for supervision during
training. We use the following losses to train the network in
an end to end fashion:

• 3D vertex loss in the canonical T-pose (θ = 0θ):

L3D
0θ

= ||C(β,0θ,D)− C(β̂,0θ, D̂)||2, (15)

where, 0θ represents zero-vector corresponding to zero
pose.



Figure 5: Dressing SMPL with just images. We use MGN to extract garments from the images of a source subject (middle) and use the
inferred 3D garments to dress arbitrary human bodies in various poses from SMPL shape subjects. The two sets correspond to male (left)
and female (right) body shapes respectively.

• 3D vertex loss in posed space:

L3D
P =

F−1∑
f=0

||C(β,θf ,D)− C(β̂, θ̂f , D̂)||2 (16)

• 2D segmentation loss: Unlike [3] we do not optimize sil-
houette overlap, instead we jointly optimize the projected
per-garment segmentation against the input segmentation
mask. This ensures that each garment explains its corre-
sponding mask in the image:

L2D
seg =

F−1∑
f=0

||Rf − If ||2, (17)

• Intermediate losses: We further impose losses on inter-
mediate pose, shape and garment parameter predictions:
Lθ =

∑F−1
f=0 ||θ̂f − θf ||2,Lβ = ||β̂ − β||2,Lz =∑L−1

g=0 ||ẑ
g − zg||2 where F,L are the number of images

and garments respectively. ẑ are the ground truth PCA
garment parameters. While such losses are a bit redun-
dant, they stabilize learning.

3.4. Implementation details

Base Network (f∗w): We use a CNN to map the input set
{I,J } to the body shape, pose and garment latent spaces. It
consists of five, 2D convolutions followed by max-pooling
layers. Translation invariance, unfortunately, renders CNNs
unable to capture the location information of the features.
In order to reproduce garment details in 3D, it is impor-
tant to leverage 2D features as well as their location in the
2D image. To this end, we adopt a strategy similar to [39],
where we append the pixel coordinates to the output of ev-
ery CNN layer. We split the last convolutional feature maps
into three parts to individuate the body shape, pose and gar-
ment information. The three branches are flattened out and
we append 2D joint estimates to the pose branch. Three
fully connected layers and average pooling on garment and

shape latent codes, generate lβ, lθ and lG respectively. See
supplementary for more details.
Garment Network (Mg

w): We train separate garment net-
works for each of the garment classes. The garment network
consists of two branches. The first predicts the overall mesh
shape, and second one adds high frequency details. From
the garment latent code (lG), the first branch, consisting of
two fully connected layers (sizes=1024, 128), regresses the
PCA coefficients. Dot product of these coefficients with the
PCA basis generates the base garment mesh. We use the
second fully connected branch (size = mg) to regress dis-
placements on top of the mesh predicted in the first branch.
We restrict these displacements to ≤ 1cm to ensure that
overall shape is explained by the PCA mesh and not these
displacements.

4. Dataset and Experiments

Dataset We use 356 3D scans of people with various body
shapes, poses and in diverse clothing. We held out 70 scans
for testing and use the rest for training. Similar to [3, 5], we
also restrict our setting to the scenario where the person is
turning around in front of the camera. We register the scans
using multi-mesh registration, SMPL+G. This enables fur-
ther data augmentation since the registered scans can now
be re-posed and re-shaped.
We adopt the data pre-processing steps from [3] including
the rendering and segmentation. We also acknowledge the
scale ambiguity primarily present between the object size
and the distance to the camera. Hence we assume that the
subjects in 3D have a fixed height and regress their distance
from the camera. Same as [3], we also ignore the effect of
camera intrinsics.

4.1. Experiments

In this section we discuss the merits of our approach both
qualitatively and quantitatively. We also show real world
applications in the form of texture transfer (Fig. 7), where



Figure 6: Qualitative comparison with Alldieck et al.[3]. In each set we visualize 3D predictions from [3](left) and our method (right) for
five test subjects. Since our approach explicitly models garment geometry, it preserves more garment details, as is evident from minimal
distortions across all the subjects. For more results see supplementary.

Figure 7: Texture transfer. We model each garment class as a mesh with fixed topology and surface parameterization. This enables us to
transfer texture from any garment to any other registered instance of the same class. The first column shows the source garment mesh,
while the subsequent images show original and transferred garment texture registrations.

we maintain the original geometry of the source garment
but map novel texture. We also show garment re-targeting
from images using MGN in Fig. 8.
Qualitative comparisons: We compare our method against
[3] on our scan dataset. For fair comparison we re-train the
models proposed by Alldieck et al.[3] on our dataset and
compare against our approach (Dataset used by [3] is not
publicly available). Figure 6 indicates the advantage of in-
corporating the garment model in structured prediction over
simply modelling free form displacements. Explicit gar-
ment modelling allows us to predict sharper garment bound-
aries and minimize distortions (see Fig. 6). More examples
are shown in the supplementary material.
Quantitative Comparison: In this experiment we do a
quantitative analysis of our approach against the state of the
art 3D prediction method, [3]. We compute a symmetric er-
ror between the predicted and GT garment surfaces similar
to [3]. We report per-garment error, Eg (supplementary),
and overall error, i.e. mean of Eg over all the garments

Eg =
1

N

N∑
i=1

(
1

|Ŝg
i |

∑
vk∈Ŝ

g
i

d(vk,Sg
i )+

1

|Sg
i |

∑
vk∈S

g
i

d(vk, Ŝg
i )

)
,

(18)
where N is the number of meshes with garment g. Sgi and

Sgi denote the set of vertices and the surface of the ith pre-
dicted mesh respectively, belonging to garment g. Operator
(̂.) denotes GT values. d(vk,S) computes the L2 distance
between the vertex vk and surface S.

This criterion is slightly different than [3] because we
do not evaluate error on the skin parts. We reconstruct
the 3D garments with mean vertex-to-surface error of 5.78
mm with 8 frames as input. We re-train octopus [3] on our
dataset and the resulting error is 5.72mm.

We acknowledge the slightly better performance of [3]
and attribute it to the fact that the single mesh based ap-
proaches do not bind vertices to semantic roles, i.e these ap-
proaches can pull vertices from any part of the mesh to ex-
plain 3D deformations where as our approach ensures that
only semantically correct vertices explain the 3D shape.

It is also worth noting that MGN predicts garments as
linear function (PCA coefficients) of latent code, whereas
[3] deploys GraphCNN. PCA based formulation though
easily tractable is inherently biased towards smooth results.
Our work paves the way for further exploration into build-
ing garment models for modelling the variations in garment
geometry over a fixed topology.

We report the results for using varying number of frames
in the supplementary.



Figure 8: Garment re-targeting by MGN using 8 RGB images. In each of the three sets we show the source subject, target subject and
re-targeted garments. Using MGN, we can re-target garments including both texture and geometry.

GT vs Predicted pose: The 3D vertex predictions are a
function of pose and shape. In this experiment we do an
ablation study to isolate the effect of errors in pose estima-
tion on vertex predictions. This experiment is important to
better understand the strengths and weaknesses of the pro-
posed approach in shape estimation by marginalizing over
the errors due to pose fitting. We study two scenarios, first
where we predict the 3D pose and second, where we have
access to GT pose. We report mean vertex-to-surface error
of 5.78mm with GT poses and 11.90mm with our predicted
poses.

4.2. Re-targeting

Our multi-mesh representation essentially decouples the
underlying body and the garments. This opens up an inter-
esting possibility to take garments from source subject and
virtually dress a novel subject. Since the source and the tar-
get subjects could be in different poses, we first unpose the
source body and garments along with the target body. We
drop the (.)0 notation for the unposed space in the following
section for clarity. Below we propose and compare two gar-
ment re-targeting approaches. After re-targeting the target
body and re-targeted garments are re-posed to their original
poses.
Naive re-targeting: The simplest approach to re-target
clothes from source to target is to extract the garment off-
sets, Ds,g from the source subject using Eq. 13 and dress a
target subject using Eq. 5.
Body aware re-targeting: The naive approach is problem-
atic because it relies on non-local pre-set vertex association
between the garment and the body (Ig). This results in in-
accurate association between the body blend shapes, Bp,s
and the garment vertices. This eventually leads to incorrect
estimation of source offsets, Ds,g and in turn leads to higher
inter-penetrations between the re-targeted garment and the
body (see supplementary). In order to mitigate this issue,
we compute the new kth target garment vertex location, vtk
as follows

vtk = vsk − SsIk + StIk (19)

Ik = argmin
I∈[0, |Ss|−1]

||vsk − SsI ||2, (20)

where vsk is the source garment vertex, SsIk is the vertex
(indexed by Ik) among the source body vertices, Ss, closest
to vsk and StIk is the corresponding vertex among the target
body vertices.

MGN allows us to predict separable body shape and gar-
ments in 3D, allowing us to do garment re-targeting (as de-
scribed above) using just images. To the best of our knowl-
edge this is the first method to do so. See Fig. 8 for results
on garment re-targeting by MGN. See supplementary for
more results.

5. Conclusion and Future Works
We introduce MGN, the first model capable of jointly

reconstructing from few images, body shape and garment
geometry as layered meshes. Experiments demonstrate that
this representation has several benefits: it is closer to how
clothing layers on top of the body in the real world, which
allows control such as re-dressing novel shapes with the
reconstructed clothing. Additionally, we introduce for the
first time, a dataset of registered real garments from real
scans obtained with a robust registration pipeline. When
compared to more classical single mesh representations, it
allows more control and qualitatively the results are very
similar. In summary, we think that MGN provides a first
step in a promising research direction. We will release the
MGN model and the digital wardrobe to stimulate research
in this direction. Further discussion on limitations and fu-
ture works in supplementary.
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[9] R c, Endri Dibra, C Öztireli, Remo Ziegler, and Markus
Gross. Deepgarment: 3d garment shape estimation from
a single image. In Computer Graphics Forum, volume 36,
pages 269–280. Wiley Online Library, 2017. 2

[10] Cedric Cagniart, Edmond Boyer, and Slobodan Ilic. Proba-
bilistic deformable surface tracking from multiple videos. In
Kostas Daniilidis, Petros Maragos, and Nikos Paragios, ed-
itors, European Conf. on Computer Vision, volume 6314 of
Lecture Notes in Computer Science, pages 326–339, Herak-
lion, Greece, 2010. Springer. 2

[11] Joel Carranza, Christian Theobalt, Marcus A Magnor, and
Hans-Peter Seidel. Free-viewpoint video of human actors.
In ACM Transactions on Graphics, volume 22, pages 569–
577. ACM, 2003. 2

[12] Xiaowu Chen, Yu Guo, Bin Zhou, and Qinping Zhao.
Deformable model for estimating clothed and naked hu-
man shapes from a single image. The Visual Computer,
29(11):1187–1196, 2013. 2

[13] Xiaowu Chen, Bin Zhou, Feixiang Lu, Lin Wang, Lang Bi,
and Ping Tan. Garment modeling with a depth camera. ACM
Transactions on Graphics, 34(6):203, 2015. 2

[14] Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett, Den-
nis Evseev, David Calabrese, Hugues Hoppe, Adam Kirk,

and Steve Sullivan. High-quality streamable free-viewpoint
video. ACM Transactions on Graphics, 34(4):69, 2015. 2

[15] Keenan Crane, Clarisse Weischedel, and Max Wardetzky.
Geodesics in heat: A new approach to computing distance
based on heat flow. ACM Transactions on Graphics (TOG),
32(5):152, 2013. 3

[16] Yan Cui, Will Chang, Tobias Nöll, and Didier Stricker.
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